Calculations using PACS10 configuration

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

Large-scale lattice QCD simulation and application of machine learning

@ Center for Computational Sciences, University of Tsukuba

November 23-25 2023

Outline

- PACS10 project
- Calculations with PACS10 configuration
- Preliminary results
 - Hadron spectrum
 - Kaon semileptonic decay form factor
- Summary

PACS10 project

history of Collaboration name $\frac{\text{CP-PACS} (\sim 2006) \rightarrow \text{PACS-CS} (\sim 2014) \rightarrow \text{PACS} (2015\sim)}{\text{name of supercomputer at CCS}}$

PACS Collaboration

Tsukuba Univ.

N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,

T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié

Hiroshima Univ.

K.-I. Ishikawa, N. Namekawa

Kyoto Univ.

H. Watanabe

Riken-CCS

Y. Aoki, Y. Nakamura

Tohoku Univ.

S. Sasaki, R. Tsuji

PACS10 project

PACS Collaboration

Tsukuba	N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié
Hiroshima	KI. Ishikawa, N. Namekawa
Kyoto	H. Watanabe
Riken-CCS	Y. Aoki, Y. Nakamura
Tohoku	S. Sasaki, R. Tsuji

Larger than $(10 \text{ fm})^4$ volume

PACS10 project

PACS Collaboration

Tsukuba	N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié
Hiroshima	KI. Ishikawa, N. Namekawa
Kyoto	H. Watanabe
Riken-CCS	Y. Aoki, Y. Nakamura
Tohoku	S. Sasaki, R. Tsuji

Larger than $(10 \text{ fm})^4$ volume

Purpose of PACS10 project

Removing main systematic uncertainties in lattice QCD

three $N_f = 2 + 1$ ensembles at physical m_{π} on (10 fm)⁴ volume

PACS10 project since 2016

	PACS10 configuration				
$L^{3} \cdot T$	128 ⁴	160 ⁴	256 ⁴		
<i>L</i> [fm]	10.9	10.2	10.5		
<i>a</i> [fm]	0.08	0.06	0.04		
m_{π} [GeV]	0.135	0.138	0.141		
$m_K \; [\text{GeV}]$	0.497	0.505	0.514		
Machine	OFP	OFP	OFP→Fugaku		
Node	512	512	2048→16384		

OFP: Oakforest-PACS (KNL machine); Fugaku: since 2020

PACS10 configuration: More than $(10 \text{ fm})^4$ at the physical point

 $N_f = 2 + 1$ nonperturbatively O(a) improved Wilson clover quark action with 6-stout smeared link + Iwasaki gauge action

same actions as HPCI Field 5 project using K computer [PoS LATTICE2015 (2016) 075]

 a^{-1} determined from Ξ baryon mass

Fugaku co-design outcome: [Ishikawa et al.:CPC(2023)]

QCD Wide SIMD (QWS) Library for Fugaku

 \rightarrow Ken-ichi Ishikawa's talk

Resources: Fugaku in HPCI System Research Project

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of Al technology

(hp200062, hp200167, hp210112, hp220079, hp230199)

Purpose of PACS10 project

precise determination of physical quantity w/o main systematic uncertainties in lattice QCD

- I. quantitatively understand property of hadrons reproduce experimental values in high accuracy
 - Hadron spectrum
 - Light meson electromagnetic form factor
 - Nucleon form factor

Kohei Sato's talk Ryutaro Tsuji's talk

- II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment
 - Nucleon charge
 - Proton decay matrix element
 - Hadron vacuum polarization
 - Kaon semileptonic decay form factor

Ryutaro Tsuji's talk

Purpose of PACS10 project

precise determination of physical quantity w/o main systematic uncertainties in lattice QCD

- I. quantitatively understand property of hadrons reproduce experimental values in high accuracy
 - Hadron spectrum
 - Light meson electromagnetic form factor
 - Nucleon form factor

Kohei Sato's talk Ryutaro Tsuji's talk

- II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment
 - Nucleon charge
 - Proton decay matrix element
 - Hadron vacuum polarization
 - Kaon semileptonic decay form factor

Ryutaro Tsuji's talk

Hadron spectrum

Short m_{π} and m_{K} extrapolation to physical point using m_{π} and m_{K} dependences determined from 64⁴ reweigted data

Octet baryon masses [Preliminary result]

Kaon semileptonic ($K_{\ell 3}$) decay form factor

Introduction

Urgent task: search for signal beyond standard model (BSM) Muon g - 2 @ FNAL 2023 : 5σ away from SM(?)

Important to confirm by several independent calculations

 $K_{\ell 3}$ form factors with two PACS10 configurations ['20 PACS, '22 PACS] $L \gtrsim 10$ [fm] at physical point

> Negligible finite L effect, tiny q^2 region, without chiral extrapolation Largest uncertainty form finite a effect

This talk: preliminary result with 3rd PACS10 configuration

Simulation parameters

PACS10 configurations: $L \gtrsim 10$ [fm] at physical point

 $N_f = 2 + 1$ six-stout-smeared non-perturbative O(a) Wilson action + Iwasaki gauge action

β	$L^3 \cdot T$	L[fm]	a[fm]	a^{-1} [GeV]	M_{π} [MeV]	M_K [MeV]	N _{conf}	$t_{sep}[fm]$
2.20	256 ⁴	10.5	0.041	4.792	142	514	20	3.5, 4.0
2.00	160 ⁴	10.2	0.063	3.111	137	501	20	2.3-4.1
1.82	128 ⁴	10.9	0.085	2.316	135	497	20	3.4–3.9

 $(1000-2500 \text{ measurements in each } t_{sep})$

All the results on 256⁴ are preliminary.

 $K_{\ell 3}$ form factors $f_+(q^2), f_0(q^2)$ from 3-point function

w/ $Z(2) \otimes Z(2)$ random source spread in L^3 , color, spin ['08 RBC-UKQCD] $C_{V_{\mu}}(t,p) = \langle 0|O_K(t_{sep},0)V_{\mu}(t,\mathbf{p})O_{\pi}^{\dagger}(0,\mathbf{p})|0\rangle$

 V_{μ} : Local vector current renormalized by Z_V

Conserved vector current

$$\langle \pi(p) | V_{\mu} | K(0) \rangle = (p_{K} + p_{\pi})_{\mu} f_{+}(q^{2}) + (p_{K} - p_{\pi})_{\mu} f_{-}(q^{2})$$

$$f_{0}(q^{2}) = f_{+}(q^{2}) - \frac{q^{2}}{M_{K}^{2} - M_{\pi}^{2}} f_{-}(q^{2}) \qquad \begin{array}{c} p_{K} = (M_{K}, 0), p_{\pi} = (E_{\pi}, \vec{p}) \\ q^{2} = -(M_{K} - E_{\pi})^{2} + p^{2} \end{array}$$

Program for Promoting Researches on the Supercomputer Fugaku Large-scale lattice QCD simulation and development of AI technology

Resources: Fugaku in HPCI System Research Project

(hp200062, hp200167, hp210112, hp220079, hp230199)

 $f_+(q^2)$ and $f_0(q^2)$ at three lattice spacings (local current)

local : Little a dependence in small and large q^2 region \rightarrow Small a effect in $q^2 \sim 0$ $f_+(q^2)$ and $f_0(q^2)$ at three lattice spacings (conserved current)

local : Little *a* dependence in small and large q^2 region \rightarrow Small *a* effect in $q^2 \sim 0$ conserved : Relatively larger difference in all q^2 region $f_+(q^2)$ and $f_0(q^2)$ decrease with *a*. \rightarrow expect to converge to local current data toward $a \rightarrow 0$

q^2 interpolation + tiny chiral extrapolation $|V_{us}|f_+(0) = 0.21654(41)$ ['17 Moulson]

Fit based on SU(3) NLO ChPT with $f_+(0) = f_0(0)$ [PACS, PRD101,9,094504(2020)]

$$f_{+}(q^{2}) = 1 - \frac{4}{F_{0}^{2}} L_{9}(\mu)q^{2} + K_{+}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{+}q^{4}$$

$$f_{0}(q^{2}) = 1 - \frac{8}{F_{0}^{2}} L_{5}(\mu)q^{2} + K_{0}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{0}q^{4}$$

Fit parameters : $L_9(\mu), L_5(\mu), c_0, c_2^+, c_2^0$; Known functions : K_+, K_0 ['85 Gasser, Leutwyler] using $\mu = 0.77$ GeV, $F_0 = 0.11205$ GeV (estimated from FLAG $F^{SU(2)}/F_0$ w/ $F^{SU(2)} = 0.129$ GeV)

Continuum extrapolation of $f_+(0)$

local current: little *a* dependence after tiny chiral extrapolation conserved current: clear *a* dependence

Continuum extrapolation of $f_+(0)$

local current: little *a* dependence after tiny chiral extrapolation conserved current: clear *a* dependence

fit form	Fit A	Fit B	Fit C
local	C_{O}	$C_0 + C_2 a^2$	$C_0 + C_1 a$
conserved	$C_0 + C_1'a$	$C_0 + C'_2 a^2$	$C_0 + C'_1 a$

Result of Fit C covers other two fit results within the error. Fit C adopted as our preliminary result Consistent with PACS22 result

Future work: Continue 256^4 calculation + IB correction

Summary

PACS10 Project

calculation w/o three main systematic uncertainties in lattice QCD

PACS10 configuration:

 $V \gtrsim (10 \text{fm})^4$ in physical point at three lattice spacings

various calculations

- Hadron spectrum
- Nucleon charge and form factor
- Light meson electromagnetic form factor
- Proton decay matrix element
- Hadron vacuum polarization
- Kaon semileptonic decay form factor

Future works

Continue calculations with 3rd PACS10 configuration

Reliable $a \rightarrow 0$ extrapolations

Estimate systematic uncertainties e.g., isospin breaking, c quark effect