Application of Reinforcement Learning to the development of theoretical analysis methods

(w/ Alpha Zero For Physics)

Yoshihiro Michishita(Riken, CEMS)

arXiv: 2311.12713(2023)

(codes: https://github.com/YoshihiroMichishita/julia/AlphaZeroForPhysics)

Outline

Introduction

- ➤ Machine Learning & Physics
- ➤ What is "Theoretical Analysis method"?
- > Purpose

- Quick Review
- > Tree representation of equations and its game
- > Reinforcement Learning
- > Alpha Zero

Results

Recent application of ML to physics

(from the low-energy point of view)

Detect the phase transition

Ising magnetization (Nat. Phys: 13.431(2017))

glass transition (Nat. Phys: 10.1038(2020))

Calcu. equilibrium or steady state

Calc. spin systems by RBM(Science: 335.602-606(2017))

(PRB: 96.205152(2017))

Calc. steady state by RBM (PRB: 99.214306(2019))

Calc. GS in lattice system by RNN (PRR: 2.023358(2020))

Materials Infomatics

(Advanced Science: 6.1900808(2019))

Remove noise or enhance the accuracy

Suppose the Gaussian Process (IEICE: 10.1587(2010))

Applied to NV center (Sci. Rep.: 12.13942(2022))

Recent application of ML to physics

(from the low-energy point of view)

Detect the phase transition

Ising magnetization (Nat. Phys: 13.431(2017)

Calcu. equilibrium or steady state

Usually, machine learning is used for supporting the experiment or numerical simulation...

ience: 335.602-606(2017))
3: 96.205152(2017))

3: 99.214306(2019))

IN (PRR: 2.023358(2020))

Materials Infon

Traditional approach

Can we use it for theoretical analysis?

e the accuracy

(IEICE: 10.1587(2010))

Applied to NV center (Sci. Rep.: 12.13942(2022))

(Advanced Science: 6.1900808(2019))

What is a "Theoretical Analysis method"?

Scale separation & Reduction

> (DMRG, Tensor network

Nonlinear system => reduction
 The Hubbard model (Lattice model)=> Heisenberg model
 Open quantum system => Markov app., GKSL equation
 Periodic driving system => high-frequency expansion
 (Renormalization Group => cutoff scale) It usually needs appropriate Unitary transformation or projection

SVD & reduction)

*The two bottom examples are classified to "scale separation & reduction" because we introduce the cutoff scale by hand and perform reduction in them.

What is a "Theoretical Analysis method"?

Points

- > If there is a scale separation, we can perform the reduction.
- ➤ In order to perform the perturbation treatment or the reduction we have to find the frame where above treatment is justified

Thus, we can sum up the analytic method (by hand) into three step:

Want the reinforcement learning to find

- 1. (When there is a scale separation) Find the appropriate frame
- 2. Perform the reduction or perturbation to construct an effective model
- 3. Analyze the physical properties in the derived effective model.

Why Reinforcement Learning?

•It's difficult to gather the data in theoretical research

- > If we gather the data by the conventional simulation methods, it should be just the replacement of the old methods and cannot surpass them
- > Cannot verify the validity where the conventional approach cannot access.
- > Usually the machine resource is essential (Difficult to get in academia.)

Not necessary to prepare the data

- > The algorithm is essential.
- ➤ Not so-heavy calculation. (I could run my code in my M1 MBA.)

Outline

Introduction

- ➤ Machine Learning & Physics
- ➤ What is "Theoretical Analysis method"?
- > Purpose

- Quick Review
- > Tree representation of equations and its game
- > Reinforcement Learning
- > Alpha Zero

Results

Tree representation of equation

■ Equation is a tree (≃ game)

Tree can describe any equation with three types of nodes; Function, Branch, and Variable

e.g.) When focusing on the unitary transformation and its -ilog, it should be Hermitian, and the nodes are

Function…
$$\sum_i$$
 , exp, \log , $\int dx$, ∂_x Branch… +, -, -i[,], {,} Variable… $\frac{\psi_i + \psi_i^\dagger}{2}$, $-i(\psi_i - \psi_i^\dagger)$ (この場合は、多体系でも手の広さは将棋の中盤と割と同じくらい?)

Rule of the game

The rule of making an equation tree

- 1. Must satisfy (# of Variable) \leq (# of Branch+I) (When the equality satisfied, equation is completed.)
- 2. Not consecutive the same node (due to the symmetry of the operation)
- 3. If function nodes include a function and its inverse, do not consective (forbid redundancy)

Function…
$$\sum_i$$
, exp, log, $\int dx$, ∂_x Branch… +, -, -i[,], {,} Variable… ψ_i , ψ_i^{\dagger}

Rule of the game

Example

Quick review of RL

Reinforcement Learning

- · consists of the environment and the agent
- · Agent can know only the state of environment and the reward
- · Agent can change the state of the environment by his/her action

Environment

Reward: $R(s_t, a_t)$

tr. prob.: $p(s_{t+1}|s_t, a_t)$

state: $s_t \in S$, reward: r_t

Action: $a_t \in \mathcal{A}$

Agent

Policy: $\pi (s_t \rightarrow a_t)$

(e.g.) update the policy to maximize $\sum_t r_t$

tradeoff of exploration and exploitation

Alpha Zero

Scratch of Alpha Zero

· Consists of an agent with neural network and environment

Environment

Policy: PUCT

Memory: N(s, a), Q(s,a), P(s,a)

State Value: $V(s_t)$,

Search policy: $p(s_t, a_t)$

Alpha Zero

Player

UCT(Upper Confidential Bound (applied to Trees))

$$a_t = \operatorname{argmax}_{\{a \in A\}} [q_t(s_t, a) + c \sqrt{\frac{\log(\sum_a m_t(s_t, a) + 1)}{m_t(s_t, a) + 1}}] \quad \text{(UCB... Regret(Efficiency badness of search)}$$
 is upper bounded by $O(\log(t))$

Estimate value Try small-experienced action (Exploitation) (Exploitation)

Practice: select action until the game ends, and update N(s,a) and Q(s,a).

Repeat Practice and update the statistics

Serious game: select most practiced action.

(After some games, the experiences are used to the learning of NN.)

> P+UCT

$$a_t = \operatorname{argmax}_{\{a \in A\}} [q_t(s_t, a) + c p(s_t, a) \sqrt{\frac{\log(\sum_a m_t(s_t, a))}{m_t(s_t, a)}}]$$

Policy for searching (important for deep search)

Alpha Zero

Neural networks and its learning

> Architecuture

(CNN+ Dual(Dueling) network)

(3*3 Convolution+BatchNorm+ReLu+ResNet)*19 (judge the situation)

BatchNorm+ReLu + tanh
(Win rate)(estimated value of state)

> Learning

$$L(m) = \frac{1}{N} \sum_{n} \left(r_n - v(m(s_n)) \right)^2 - \pi_n \log p(m(s_n)) + \eta \sum_{n} m \cdot w^2$$
 weight decay (Ban hard coaching)

MSE of Value estimation effectiveness of advices

Outline

Introduction

- ➤ Machine Learning & Physics
- ➤ What is "Theoretical Analysis method"?
- > Purpose

- Quick Review
- > Tree representation of equations and its game
- > Reinforcement Learning
- > Alpha Zero

Results

Quick review of Floquet theory & RF

> Formalism

$$\widehat{H}(t) = \widehat{H_0} + \widehat{V}(t) \qquad i\frac{d}{dt}|\psi(t)\rangle = \widehat{H}(t)|\psi(t)\rangle$$

$$\widehat{U}(t) = \exp[i\widehat{K}(t)]$$

$$i\frac{d}{dt}|\widetilde{\psi}(t)\rangle = i\frac{d}{dt}\widehat{U}(t)|\psi(t)\rangle = \widehat{H}_r(t)|\widetilde{\psi}(t)\rangle$$

$$\widehat{H}_r(t) = \widehat{U}(t)(\widehat{H}(t) - i\partial_t)\widehat{U}^{\dagger}(t)$$

When the deriving is periodic $\widehat{H}(t) = \widehat{H}(t+T)$, There is $U_F(t)$ satisfying $\widehat{U}_F(t) = \widehat{U}_F(t+T)$, $\widehat{H}_r(t) = \widehat{H}_F$ In the high-frequency regime $|H_0| \ll \Omega$, There are methods which perturbatively construct $U_F(t)$, H_F

$$H_r(t) = H_F^{(n)} + O(\frac{1}{\Omega^{n+1}}, t)$$

> Floquet pre-thermalization

When Hamiltonian is local and the time t = mT, (arXiv:1509.03968(2015))

$$||\mathcal{T} \exp[-i\int ds \, H(s)] - \exp[-iH_F^{(n)}t]|| \le \exp[-O(\Omega)]$$

Quick review of Floquet theory & RF

> Formalism

$$\widehat{H}(t) = \widehat{H_0} + \widehat{V}(t) \qquad i \frac{d}{dt} |\psi(t)\rangle = \widehat{H}(t) |\psi(t)\rangle$$

$$\widehat{U}(t) = \exp[i\widehat{K}(t)]$$

$$i \frac{d}{dt} |\widetilde{\psi}(t)\rangle = i \frac{d}{dt} \widehat{U}(t) |\psi(t)\rangle = \widehat{H}_r(t) |\widetilde{\psi}(t)\rangle$$

$$\widehat{H}_r(t) = \widehat{U}(t) (\widehat{H}(t) - i\partial_t) \widehat{U}^{\dagger}(t)$$

When the deriving is periodic $\widehat{H}(t) = \widehat{H}(t+T)$, There is $U_F(t)$ satisfying $\widehat{U}_F(t) = \widehat{U}_F(t+T)$, $\widehat{H}_r(t) = \widehat{H}_F$ In the high-frequency regime $|H_0| \ll \Omega$, There are methods which perturbatively construct $U_F(t)$, H_F

$$H_r(t) = H_F^{(n)} + O(\frac{1}{\Omega^{n+1}}, t)$$

> Floque

When Har (arXiv:150

 $||\mathcal{T} \exp[-i\int a$

Demonstration

Can Alpha Zero for Physics derive "High-frequency expantion"?

Demonstration

Model

> Interacting quantum Two-Spin model under driving

$$\begin{split} \widehat{H}(t) &= \widehat{H_0} + \widehat{V}(t) \\ \widehat{H_0} &= -\sum_{\alpha} (J_{\alpha} \widehat{S_1^{\alpha}} \otimes \widehat{S_2^{\alpha}} + h_{\alpha} \sum_{i} \widehat{S_1^{\alpha}}) \\ \widehat{V}(t) &= -\sum_{\alpha} \xi_{\alpha} sin(\Omega t) \sum_{i} \widehat{S_i^{\alpha}} \\ \widehat{J} &= (J_x, J_y = 0, J_z), \qquad \overrightarrow{h} = (h_x = 0, h_y = 0, h_z), \overrightarrow{\xi} = (\xi, 0, 0) \end{split}$$

Setup

Algorithm

Input: state of environment = equation in the making

3Update the equation

①Tell the state

②select the next symbol

Agent(Alpha Zero)

5Learning from the actual score

候補手	A	В	-i[,]	_	∫dt
評価値	-1	4	1	0	2

4 If the equation is completed, calculate the score of the game

Score(reward)

 $= -\log \int dt \, tr(\widehat{H}_r(t) - \widehat{H}_r(t - \delta t))^2$

Results

• Alpha Zero VS e-greedy $(T_{max} = 14)$

AlphaZero

Remarks:

Model:

$$\widehat{H}(t) = \widehat{H_0} + \widehat{V}(t)$$

$$\widehat{H_0} = \sum_{\alpha} (J_{\alpha} \widehat{S_1^{\alpha}} \otimes \widehat{S_2^{\alpha}} + h_{\alpha} \sum_{i} \widehat{S_1^{\alpha}})$$

$$\widehat{V}(t) = -\sum_{\alpha} \xi_{\alpha} sin(\Omega t) \sum_{i} \widehat{S}_{i}^{\alpha}$$

Formalism:

$$\widehat{H}_r(t) = \widehat{U}(t)(\widehat{H}(t) \, - i\partial_t)\widehat{U}^+(t)$$

$$\widehat{U}(t) = \exp[i\widehat{K}(t)]$$

$$\widehat{K}'(t) = \frac{d}{dt}\widehat{K}(t)$$

Reward:

$$-\log\int dt \ tr(\widehat{H}_r(t) - \widehat{H}_r(t - \delta t))^2$$

Results

• Alpha Zero VS e-greedy $(T_{max} = 14)$

trial5

Remarks:

Model:

$$\widehat{H}(t) = \widehat{H_0} + \widehat{V}(t)$$

$$\widehat{H_0} = \sum_{\alpha} (J_{\alpha} \widehat{S_1^{\alpha}} \otimes \widehat{S_2^{\alpha}} + h_{\alpha} \sum_{i} \widehat{S_1^{\alpha}})$$

$$\widehat{V}(t) = -\sum_{\alpha} \xi_{\alpha} sin(\Omega t) \sum_{i} \widehat{S}_{i}^{\alpha}$$

Formalism:

$$\widehat{H}_r(t) = \widehat{U}(t)(\widehat{H}(t) - i\partial_t)\widehat{U}^+(t)$$

$$\widehat{U}(t) = \exp[i\widehat{K}(t)]$$

$$\widehat{K}'(t) = \frac{d}{dt}\widehat{K}(t)$$

Reward:

$$-\log\int dt \ tr(\widehat{H}_r(t) - \widehat{H}_r(t - \delta t))^2$$

Results

AC+PPO

trial1

trial2

trial3

trial4

trial5

 10^{3}

Actor-Critic+PPO

• Alpha Zero VS AC+PPO $(T_{max} = 14)$

Remarks:

Model:

$$\widehat{H}(t) = \widehat{H_0} + \widehat{V}(t)$$

$$\widehat{H_0} = \sum_{\alpha} (J_{\alpha} \widehat{S_1^{\alpha}} \otimes \widehat{S_2^{\alpha}} + h_{\alpha} \sum_{i} \widehat{S_1^{\alpha}})$$

$$\widehat{V}(t) = -\sum_{\alpha} \xi_{\alpha} sin(\Omega t) \sum_{i} \widehat{S}_{i}^{\alpha}$$

Formalism:

$$\widehat{H}_r(t) = \widehat{U}(t)(\widehat{H}(t) - i\partial_t)\widehat{U}^+(t)$$

$$\widehat{U}(t) = \exp[i\widehat{K}(t)]$$

$$\widehat{K}'(t) = \frac{d}{dt}\widehat{K}(t)$$

Reward:

$$-log\int dt \ tr(\widehat{H}_r(t) - \widehat{H}_r(t - \delta t))^2$$

Remarks & Outlook

Remarks

- > Maybe UCT is enough for the Floquet problem
 - PUCT show its true value when there are many kinds of nodes or deep tree.
 - Just by replacing the part of the environment in code, we can apply to other problems
 - · Because not doing self-play, we do not make use of the strong points.
 - In this calculation, we set the maximum length of the equation trees 14, 25
- > This framework is not for the problem where the score calculation needs much time
 - · the system should be simple because we focus on the symbolic representation of equation

Remarks & Outlook

Outlook

- > Application to the other problems
 - · derivation of the effective model for unknown nonlinear dynamics
 - · effective model renormalized from the original model
 - · Construction of an efficient quantum circuit.

> Better algorithm or fine tuning?

Summary

Development of theoretical analysis methods =Finding an equation with good properties

Finding the construction of a tree with good properties

Finding the strategy of the game to high-score

Alpha Zero for Physics can solve (find the strategy)