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Recent application of ML to physics

from the low-energ

Detect the phase transition
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Ising magnetization glass transition
(Nat. Phys: 13.431(2017)) (Nat. Phys: 10.1038(2020))

Materials Infomatics

Traditional approach Database driven approach
(1st, 2nd, 3rd paradigms) (4th paradigm)
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new materials new materials

(Advanced Science: 6.1900808(2019))

hoint of view

Calcu. equilibrium ot steady state
Calc. spin systems by RBM(Science: 335.602-606(2017))
(PRB: 96.205152(2017))
Calc. steady state by RBM (PRB: 99.214306(2019))

Calc. GS in lattice system by RNN (PRR: 2.023358(2020))

Remove noise or enhance the accuracy

Suppose the Gaussian Process (IEICE: 10.1587(2010))

Applied to NV center (Sci. Rep.: 12.13942(2022))
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What is a “Theoretical Analysis method” ?

®Scale separation & Reduction

» Nonlinear system =>  reduction

» 'The Hubbard model (Lattice model)=> Heisenberg model
» Open quantum system =>  Markov app., GKSL equation

» Periodic driving system =>  high-frequency expansion

It usually needs appropriate
Unitary transformation or projection

» (DMRG, Tensor network =>  SVD & reduction)

» (Renormalization Group =>  cutoft scale)

%k The two bottom examples are classified to “scale separation & reduction”
because we introduce the cutoff scale by hand and perform reduction in them.



What is a “Theoretical Analysis method” ?

e Points

> If there is a scale separation, we can perform the reduction.

» In order to perform the perturbation treatment or the reduction

we have to find the frame where above treatment 1s justitied

Thus, we can sum up the analytic method (by hand) into three step:
Want the reinforcement learning to find

1. (When there is a scale separation) Find the appropriate frame

2. Perform the reduction or perturbation to construct an eftective model

3. Analyze the physical properties in the derived eftective model.



Why Reinforcement Learning?

o]t’s difficult to gather the data in theoretical research

» If we gather the data by the conventional simulation methods,

it should be just the replacement of the old methods and cannot surpass them

» Cannot verify the validity where the conventional approach cannot access.

» Usually the machine resource 1s essential (Ditficult to get in academia.)

®Not necessary to prepare the data

» The algorithm 1s essential.

» Not so-heavy calculation. (I could run my code in my M1 MBA.)
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Tree representation of equation

eEquation is a tree (= game)

Tree can describe any equation with three types of nodes;
Function, Branch, and Variable

exp[A + B] = =P H e
v
e.g. ) When focusing on the unitary transformation and its -ilog,
it should be Hermitian, and the nodes are

. . .I.
FunCTlon".Zi y €XP, |Og, fdx’ ax Branch--- +’ ) _|[ ’ ], { ’ } Varioble”'%;—i('ﬁi - l/);r)

(THBEE. SHRETHLFOLET ILIEOFB LB AL 50 7)



Rule of the game

e The rule of making an equation tree

- procedure of adding nodes

@ 3
_I_

J dx exp[A — i[A, B(x)]] = [fdx exp

- Rule

| . Must satisfy (# of Variable) < (# of Branch+1) (When the equality satisfied, equation is completed.)
2. Not consecutive the same node (due to the symmetry of the operation)

3. If function nodes include a function and its inverse, do not consective (forbid redundancy)

FunCTion'"Zi y €XP, IOg, fdx, ax Branch:--: +9 ) _l[ ’ ], { ’ } Voriable'"lpi; lpj



Rule Of the game 6/14

eExample
(2)
Turn 1 Turn 2 Turn 3 Turn 4
o— | ofent ot oot

Turn 5(finished)

) o-fon}-{+



Quick review of RL

®Reinforcement Learning

* consists of the environment and the agent
* Agent can know only the state of environment and the reward

- Agent can change the state of the environment by his/her action

Environment

Agent
state: Sy € S , reward: Iy ®

)
U/

Action: a; € A

Policy:  (s; = a;)
(e.g.) update the policy to maximize ), 1,

tradeoff of exploration and exploitation

Reward : R (St, at)
tr. prob.: p(S¢41|Se, ar)



Alpha Zero
eScratch of Alpha Zero

- Consists of an agent with neural network and environment

Agent
@

Environment state: Sy € &
reward: I'¢

P )
J

Action: a; € A - V(sp), p(se ap)
- Gt Policy: PUCT State Value: V(s,),

Memory : N(s, a), Q(s,a), P(s,a)

N\

Search policy: p(S, a¢)



Alpha Zero

ePlayer

> UCT (Upper Confidential Bound (applied to Trees))

log(Xame(sy,a) + 1) ici
a; = argmax{aEA}[qt(St, a) + c ma( ] (UCB... R.egreT(Efflmency badness of search)
t(sp,a) +1 is upper bounded by O(log(t1))

Estimate value Try small-experienced action
(Exploitation) (Exploitation)
Practice: select action until the game ends, and update N(s,a) and Q(s,a).
Repeat Practice and update the statistics
Serious game: select most practiced action.
(After some games, the experiences are used to the learning of NN.)

> P+UCT

0g(Xq m¢(se, a))]

m¢ (S, a)

]
ar = argmax(qea}[qe(se, @) + c p(se, @) j

Policy for searching (important for deep search)



Alpha Zero

eNeural networks and its learning

> Architecuture ,
(CNN+ Dual(Dueling) network)

(3*3 Convolution+BatchNorm+RelLu+ResNet)* 19 (judge the situation)

F—

| *1 Conv. +BatchNorm+RelLu BatchNorm+RelLu + tanh
(predictive)(advice) (Win rate) (estimated value of state)

» Learning

weight decay

1
L(m) = ﬁz (Tn - v(m(Sn)))z — mplog p(m(sy)) + 1 Xm.w? (Ban hard coaching)

MSE of Value estimation effectiveness of advices
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Quick review of Floquet theory & RF

> Formalism
_ L d _
HO =H, + V() th/)(t) >=H®[Y() > U(t) = exp[iK ()]

i% () > = i%ﬁ(t)h/)(t) >= 0.0 [P () > H-@) =U0@@H®) —io)TT (t)

When the deriving is petiodic H(t) = H(t + T), There is Ug(t) satisfying Up(t) = Up(t + T), H.(t) = Hp
In the high-frequency regime ||H0 || & (), There are methods which perturbatively construct Ur(t), Hp

_ (n)
> Fl h 1. < Ultrafast phenomena by short pulses (@) oscillation
oquet pre-thermalization = -
E photo-doping - Floquet prethermalization gls @thgrmalzzgtzon
. . . . '_5 _H Heaing prethermalization 1l|:'l)gna(‘:§‘1{gltg)lzation
When Hamiltonian is local and the time t = mT, A g ey
(arXiv:1509.03968(2015)) :
% i Relaxation (electron + phonon) Franck-Condon
. L] < b w onEEEEE
| |T eXp [_lf dS H(S)] - eXp _lHF t | | = eXp [_0 (Q)]‘ § multi-photon absorption G coherent phonon pumping WT\/
: and tunneling (Schwinger mechanism)  (1)lattice structural dynamics OW state
5 | PR e T . s
fs ps

time (log)



Quick review of Floquet theory & RF

> Formalism

d _
Hit) =Ho+ V() i1p@®)>=HOW® >

d d _. o
i [b(©) > =i U@ >= HOP) >

H.@®) =U@®)H®)

U(t) = exp[iK(t)]

—i0)UT (1)

When the deriving is petiodic H(t) = H(t + T), There is Ug(t) satisfying Up(t) = Up(t + T), H.(t) = Hp
In the high-frequency regime ||H0 || & (), There are methods which perturbatively construct Ur(t), Hp

» Floque

1
Hy(0) = Hy” + 0 (g7, )

- Demonstration

When Har
(arX1v:150

|7 exp|—if a

Can Alpha Zero for Physics derive
“High-frequency expantion™ ?

open system
ctron + phonon)

ing
nt phonon pumping
structural dynamics

Franck-Condon

G
Off‘g CRE

ae (log)



Demonstration

eModel
V) =V(t+T)
> Interacting quantum Two-Spin model under driving

Ht) =Hy,+V(t 5
m)=_z(1a§§®§g+ha2§§) (\/
a i ]

V() = - Z &,sin(Qt) z (Y

J=UxJy=0J,), h=(he=0h,=0h,),&=(0,0)



®Algorithm

Agent(Alpha Zero) ®Learmng from

Input: state of environment (DTell the state the actual score

= equation in the making m
-
(= J dx exp[A + D])\Q> U

@select the next symbol

® NN calculate(speculate)
= _ & the evaluation values
(output)

— U
AN K NI

sHffE -1
/® @ If the equation is completed,
_-_-_ - calculate the score of the game

(= [ dx exp[A + B]) - Score(reward)

= —log| dt tr(H,(t) — H.(t — 6t))"2

@Update the equation




Results

AlphaZero

Ty = 14
12 ¢ .
[de{v(t) —if dt[Ho,V(£)]} .
10 - [dtv(t) ‘
| >
o 8r
—
o
nw 6 « [dt{v(t) —if dt[HoV(t) — if dt[Ho,V(£)]]}
% I
©
& al time-independent term
s tria| 1
e trial2
2+ e {1213
triald
e triQ|5
0 IO '1 |2 .3
10 10 10 10

iterate

pol=0.61543405
pol=0.60332686
pol=0.695877
pol=0.6558915

val=1.5820317,
val=1.1977102,
val=1.0977467,
val=1.2222252,
val=1.6906229, pol=0.6552366
val=2.8830054, pol=0.69791865

68.607700 seconds (107.28 M allocations: 28.289 GiB, 4.51% gc time)
store data

, score:10.395253,
, score:10.395253,
, Score:10.395253,
, score:10.395253,
, score:10.395253,

val(NN) :10.398022
val(NN) :10.398022
val(NN) :10.398022
val(NN):10.398022
val(NN):10.398022

’ ’ ’ ’

’ ’ ’ ’

’ ’ ’ ’

’ ’ ’ ’

’ ’ ’ ’

e Alpha Zero VS e-greedy (T,,, = 14)

e —greedy methods(old approach)

12

T

.
10° 107

(4)

(6)

(2)Rnown as fzzlgqueT—Magnu
= [dt (V(t) =i [dt[Hy, V(]

Remarks:

Model:

H(t) = Hy + V(t)

Ho=) (5T ®5F +ho » 57)
a i

V) =- Z £,sin(Qt) Z 57

Formalism:

H.®) =0@®)H® —id,)U" ()
U(t) = exp[iK(t)]

=

K'(t) =—K()

d
dt
Reward:

—log/ dt tr(H,(t) — H,.(t — 61))"2

S {Find a tree maximizing reward!




Results

- — Remarks:
e Alpha Zero VS e-greedy (T,,, = 14)
AlphaZero € —greedy methods(old approach) Model:
Thax =14 — .
2r [dt{v(t) —ifdtan_,V(t)l} - |l H(t) = Ho + V()
10 10 — — — —
g | o= (JuST® S5 +ho » 5)
o 8r 8 r a i
o
a6 L p [dt{V(e) —if dt[Ho,V(£) — i dt[H,V()]]} 6 | — _ —
< P@t) = — Z £, 5in(Q) Z 57
& 4l time-independent term al a i
—i
27 | :E;::E gl s Formalism:
o T =25 < H,() =0®@®) —id)0* ()
[de{v(t) — ifdtan., V(t)]} . —
101 farvn - ) (&) (1) 0(t) = expCEiK(t)]
N _ _
i > H K'(t) =—K(t)
v 8 0 dt
o
@]
% 6 ‘—| Reward:
e al time-independent term —— V(t —IOQf dt tr(Tir (t) . i:Ir(t . 6t))/\2
e trial2 2
2| :EEEE (2> nown as |gq ue’r-Mag nuk1Find a tree maximizing reward!
0L - - - = [dt (V(t) —i [ dt[Hy, V()]




Results

Remarks:

e Alpha Zero VS AC+PPO (T, = 14)
Actor-Critic+PPO

AlphaZero Model
Ty = 14 AC+PPO _ _
21 ey - if arna v - 2 H(®) =Ho +V(®)
10 | [dev(e 10 - = — — —
hape | | o= UeST®ST +he ) 5D
[0) 8 8r a i
S
@ 6l « [de(V(e) — if de[Ho, V() = i de[HoV(D)]]} 6 | L _ . —
< | V() == £&sin@) ) §;
e 4l time-independent term 4t a i
e trigll e trig| 1
e £ 32 —triag
e trial3 L e {ria
2r triala 2 trial4 Formalism:
e tria|5 e trial5
0 : : ' o ' ' : - —~ ~ —~
10° 10 10° 10° 10° 10" 10° 10° H.(t)=U{)(H(t) —ia,)U" (1)
iterate iterate

it=2;

496.071510 seconds (401.56 k allocations: 134.160 MiB, 0.01% gc time, 0.02%

val=1.5820317, pol=0.61543405 (6) (4) . d
val=1.1977102, pol=0.60332686 ! — 74
val=1.0977467, pol=0.695877 K'(t) i K(t)

val=1.2222252,
val=1.6906229,
val=2.8830054,

pol=0.6558915
pol=0.6552366
pol=0.69791865

68.607700 seconds (107.28 M allocations: 28.289 GiB, 4.51% gc time)

store data

(1)

i
v

U(t) = exp[iK(t)]

Reward:

—log/ dt tr(H,(t) — H,.(t — 61))"2

, score:10.395253, val(NN):10.398022

, score:10.395253, val(NN):10.398022
score:10.395253, val(NN):10.398022 :2
score:10.395253, val(NN):10.398022

, score:10.395253, val(NN):10.398022

S {Find a tree maximizing reward!

Known a(szl):loqueT—Magnu
= [dt (V(t) —i [ dt[Hy, V()]




Remarks & Outlook

e Remarks

» Maybe UCT is enough for the Floquet problem

* PUCT show its true value when there are many kinds of nodes or deep tree.
* Just by replacing the part of the environment in code, we can apply to other problems
* Because not doing self-play, we do not make use of the strong points.

* In this calculation, we set the maximum length of the equation trees 14, 25

» This framework is not for the problem where the score calculation needs much time

- the system should be simple because we focus on the symbolic representation of equation



Remarks & Outlook

eOutlook

> Application to the other problems
- derivation of the effective model for unknown nonlinear dynamics
* effective model renormalized from the original model

* Construction of an efficient quantum circuit.

> Better algorithm or fine tuning ?



Development of theoretical analysis methods
=Finding an equation with good properties

\/

Finding the construction of a tree with good properties

\/

Finding the strategy of the game to high-score

» Alpha Zero for Physics can solve (find the strategy)



