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Basic concepts

Change of variables Z = /dUeS = /dVe_SHOgJ

Trivializing map condition — S + log|J| = 0 minimizes relative entropy (Kullback-

Leibler divergence) w.r.t. Haar measure — full thermodynamic integration

Less ambitious: — S +log|J| = —S’ — partial thermodynamic integration
g o g

S' = Sgefect — restoration of topological ergodicity

S' = §) —— renormalization group interpretation

LUscher [arXiv:0907.5491]

(f) Renormalization group. By composing the trivializing map U = F1(V) in the
Wilson theory with its inverse at another value of the gauge coupling, one obtains a

group of transformations whose only effect on the action is a shift of the coupling.
The locality properties of these transformations are not transparent, however, and
could be quite different from the ones of a Wilsonian “block spin” transformation.




Renormalization group interpretation

Weinberg, Why The Renormalization Group Is A Good Thing (1983)

What would be the short-distance or the high-energy behavior of such
atheory? Well, suppose we make a graph in coupling-constant space show-
ing the trajectory of the coupling constants G, f, /', h, etc., as we vary the
renormalization scale. The renormalization group applies here; a theory
doesn’t have to be renormalizable for us to apply the renormalization-
group method to it. These trajectories simply describe how all the

couplings change as you go from one renormalization scale to another.
Now many of those trajectories—in fact, perhaps most of them—go off
to infinity as you go to short-distance renormalization scales. However,
it may be that there’s a fixed point somewhere in coupling-constant space.
A fixed point, remember, is defined by the condition that if you put the
coupling constant at that point it stays there as you vary the renormaliza-
tion scale. Now, it 1s a fairly general phenomenon that for each fixed




Wilsonian RG interpretation (smoothing)

dS
- Regularized stochastic quantization (Langevin equation): — = —— + 7, (A)7n

or oo

0
- Corresponding Fokker-Planck equation: p(8¢, ™) = / d i (6—3 a ri(A)i>P(¢a 7)
T

9p=0 — pa(9) xexp(~S - ASy) with ASy = 3 [ dp o) (

. Sharp cutoff: rx(p?) = (A — p?) — rA(A)n(z) = (2711_)2 /ddP e "*n(p)f(A* — p?)

Pawlowski et al [arXiv:1705.06231]
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Wilsonian RG interpretation (smoothing)

Gies [arXiv:hep-ph/0611146]

The functional RG combines this functional approach with the RG idea
of treating the fluctuations not all at once but successively from scale to
scale [9, 10]. Instead of studying correlation functions after having averaged
over all fluctuations, only the change of the correlation functions as induced
by an infinitesimal momentum shell of fluctuations is considered. From a

structural viewpoint, this allows to transform the functional structure

of standard field theory formulations into a functional |differential|structure
[11, 12, 13, 14]. This goes along not only with a better analytical and nu-
merical accessibility and stability, but also with a great flexibility of devising
approximations adapted to a specific physical system. In addition, structural
investigations of field theories from first principles such as proofs of renormal-
izability can more elegantly and efficiently be performed with this strategy
[13, 15, 16, 17].

Cotler et al [arXiv:2202.11737]

One of our main results is that Polchinski’s equation can be written as

d | ; _
—Aﬁ Pp[¢] = =Vw, S(PA[¢] || Qal4]) (1.2)

where Vyy, is a gradient with respect to a functional generalization of the Wasserstein-2 metric,
S(P||Q) := [[do|P[o]log(P[¢]/Q|d)) is a functional version of the relative entropy, and Qx[¢] is

a background probability functional which essentially defines our RG scheme. We emphasize that




Kadanoffian RG interpretation (blocking)

Huang, Statistical Mechanics

Fig. 18.1 Block-spin transformation: averaging the spins in a block,
and then rescaling the lattice to the original size. In more than one
dimension, the indirect interaction between B and C gives rise to
next-to-nearest-neighbor interactions of the block spins.




Wilson vs Kadanoft

Huang, Statistical Mechanics

Real space
| Momentum
: space

CUtO” P e e PN

Fig. 18.5 Coarse-graining in momentum space and in real
space. In the former, one effectively lowers the cutoff. In
the latter, one blots out finer details, enlarging the effective
lattice spacing.
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Recursion equations in gauge field theories

A. A. Migdal

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences
(Submitted April 28, 1975)
Zh. Eksp. Teor. Fiz. 69, 810-822 (September 1975)

An approximate recursion equation is formulated, describing the scale transformation of the effective action
of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it
reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the B-function. In the strong-
coupling region the B-function remains negative and this results in an asymptotic prison in the infrared
region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.

PACS numbers: 11.10.Np

Phase transitions in gauge and spin-lattice systems

A. A. Migdal

L. D. Landau Theoretical Physics Institute, USSR Academy of Solences
(Submitted June 11, 1975)
Zh. Eksp. Teor. Fiz. 69, 1457-1465 (October 1975)

A simple recursion equation giving an approximate description of critical phenomena in lattice systems is
proposed. The equations for a d-dimensional spin system and a 2d-dimensional gauge system coincide. An
interesting consequence is the zero transition temperature in the two-dimensional Heisenberg model and
four-dimensional Yang-Mills model; this corresponds to asymptotic freedom in field theory.

Notes on Migdal’s Recursion Formulas*

Leo P. KApANoOFF!

The James Franck Institute, The University of Chicago, Chicago, Illinois 60637
Received March 24, 1976

A set of renormalization group recursion formulas which were proposed by Migdal
are rederived, reinterpreted, and critically analyzed. The new derivation shows the con-
nection between these formulas and previous work on renormalization via decimation

MIGDAL-KADANOFF RECURSION RELATIONS IN SU(2) AND
SU(3) GAUGE THEORIES

Michael NAUENBERG

Physics Department, University of California, Santa Cruz, California 95060 and
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Doug TOUSSAINT

Physics Department and Institute for Theoretical Physics, University of California, Santa Barbara,
California 93106, USA

Received 23 October 1980

We study the Migdal recursion relations and the reformulation due to Kadanoff for SU(2)
and SU(3) lattice gauge theory, using analytic approximations for large and small couplings and
numerical methods for all couplings. In SU(2) we obtain the beta function and the expectation
value of the plaquette, which is compared with recent Monte Carlo results. In analogy to U(1), we
find that a Villain form (periodic gaussian) for the exponential of the plaquette action is a good
approximation to the result of the Migdal renormalization transformation. We also perform some
calculations in SU(3) and find that its behavior is similar to SU(2).

As above, the integration is carried out independently
in each plane, and joining 2D L-cubes into one 2L-cube,

we obtain
z.=[[11 Z Fo* (L) dgxn (Vi(2.)) (38)

u<v x, i p

o J
{
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<~—-»-4 1 J
e —
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GROUP INTEGRATION FOR LATTICE GAUGE THEORY AT
LARGE N AND AT SMALL COUPLING*

Richard C. BROWER and Michael NAUENBERG
Physics Department, University of California, Santa Cruz, California 94064, USA

Received 15 July 1980

We consider the fundamental SU(N) invariant integrals encountered in Wilson’s lattice

QCD with an eye to analytical results for N— oo and approximations for small g2 at fixed N. We
develop a new semiclassical technique starting from the Schwinger-Dyson equations cast in
differential form to give an exact solution to the single-link integral for N— o0. The third-order
phase transition discovered by Gross and Witten for two-dimensional QCD occurs here for any




Ref .TH.2974-CERN

ON INVARIANT GROUP INTEGRALS IN LATTICE QCD

K.E. Eriksson and N. Svartholm

Institute of Theoretical Physics
Fack, 41296 Goteborg, Sweden

and
*)

B. S. Skagerstam

CERN -- Geneva
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where Ww. =

i
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in (8).

Sv

valuating the SU(3)

SU(3)

one-link integral, we have found it very useful

group manifold in terms of two normalized, complex

tors u and v. Each g in SU(3) can then be writtem in the form:
* * *
Wy Uy Uy
* * *
= \'4 Vv
9 1 Va2 3 (8)
W
Wy Wa 3
Eijk‘ujvk and u” - v = 0, which leads to eight independent variables.

ation over SU(3) can be re-expressed in terms of the

G = SU(3)

u,v variables

in (1) we obtain

o . [ "
z’?/"‘”s_f"“"' ‘

For the case

fdﬂ . 3 ™

(3
silswturt vy iz(g*-_\{-pg*,g)
Jd= [déu [dév e e !
T ( + Tm)
5 rigm' + 9

Volume 102B, number 2,3

SU(N) ONE-LINK INTEGRAL BY RECURSION

Jaap HOEK

PHYSICS LETTERS

11 June 1981

Instituut voor Theoretische Fysica, 1018 XE Amsterdam, The Netherlands

Received 24 February 1981

The SU(3) one-link integral is calculated by solving recursion relations by computer. The method is applicable to SU(A')

for small V.

In order to obtain the generating functional of
Green’s functions in lattice gauge theory it is useful to
determine the one-link integral over the group space:

ZIA,A) = [du)explt(AU + Ut 4)) 0
G

where du denotes the Haar-measure on G. The sources
A and A represent sources for the gauge field on the
link or pairs of Dirac fields coming from the covariant
derivative term in a theory with fermions. In case onc
starts from the euclidean formulation of field theory
the complex matrices A and A are unrelated. In casc
one starts from minkowskian field theory 4 is the
hermitean conjugate AT of 4.

N and consists of the derivation of equations for Z
and solving them by a power series in terms of invar-
iants. The equations are found by differentiating (1)
and then use the group relations. The unitarity rela-
tion U U =1 leads to

2 - 7sb
522/5A% 5P, = Z80, @
det (UT) =1 leads to:

R sVz(@6An b, - SAN, V=N Z, (3)

and an analogous relation is obtained from det U = 1.
Because the left-invariant Haar-measure is also right-
invariant on the compact group SU(V) the functional
Z[A, A) is invariant under the transformation

M ikl dijkt Cijkl
0: 0000 1 0
22 0010 1 1
3: 0100 1 1
4 0001 -1 -1
4 0020 9/8 1/8
5: 0110 3/4 -1/4
6: 0011 ~3/5 25
6: 0030 9/8 -1/4
6: 0200 1/2 -1/2
6: 1100 3/5 -2/s
7: 0101 -2/5 3/5
7. 0120 3/5 -1/40
8: 0002 415 ~11/15
8: 0021 -2/5 ~3/40
8: 0040 81/80 69/320
8 0210 3/10 3/10
8 1110 7/20 1/4
9: 0111 -1/5 -9/20
9: 0130 9/20 39/160
9: 0300 3/20 13/20
9: 1200 1/5 12
10: 0012 4/35 68/105
10: 0031 ~9/35 -9/35
10: 0050 459/560 39/560
10: 0201 ~1/10 -4/5
10: 0220 3/16 -1/20
10: 1101 -4/35 -5/7
10: 1120 3/14 ~1/28
11: 0102 2/35 104/105
1: 0121 -3/28 27/140
11: 0140 351/1120 ~213/560
11: 0310 3/40 -3/5

P I 297

getZld, A] rom Z|A4, A7 |, by replacing A~ every-
where by A. So we can use as set of basic invariants:

u=detd, fg=detd,
- - (6)
K =t(Ad), A= t((4A)?).
Substitution of the serics expansion
z= L d daN )

inki=0 Y

in (2) and (3) leads to recursion relations for ik
which can be solved by computer. Terms up to order
30 have been calculated, where the order of a term in
the expansion is defined to be the number of source-
fields (4 or A) in it. In table 1 the values of d’s which
belong to terms of order up till 12 are given, and also
the values of ¢’s from the analogous expansion of
log(Z ). For case of representation a factor has been
taken out:

(), = ae | it (3t sk gyl ®)

The values for Z are consistent with those derived in
ref. [5). [Note: one must use their Y as defined by
their eq. (11) and not by their expression (12).]

I would like to thank Jan Smit for suggesting the
problem and helpful discussions, and I am indebted to
NIKHEF for use of their computer facilities.




Trivializing maps, the Wilson flow and
the HMC algorithm

Martin Liischer

Equivariant flow-based sampling for lattice gauge theory

Gurtej Kanwar,! Michael S. Albergo,? Denis Boyda,! Kyle Cranmer,? Daniel C. Hackett,!
Sébastien Racaniere,® Danilo Jimenez Rezende,® and Phiala E. Shanahan!

LeapfrogLayers: A Trainable Framework for Effective
Topological Sampling

Sampling using SU(N) gauge equivariant flows

5 P + , . . 2 5 . 2 &
Denis Boyda,! * Gurtej Kanwar,!: T Sébastien Racaniere,? ¥ Danilo Jimenez Rezende,?: ¥

Michael S. Albergo,® Kyle Cranmer,® Daniel C. Hackett,! and Phiala E. Shanahan®

Sam Foreman,“* Xiao-Yong Jin®? and James C. Osborn®?

Tackling critical slowing down using global correction steps with equivariant flows:
the case of the Schwinger model

Jacob Finkenrath!

HMC with Normalizing Flows

Sam Foreman,”* Taku lzubuchi,”¢ Luchang Jin,? Xiao-Yong Jin,” James C. Osborn“
and Akio Tomiya”

Flow-based sampling in the lattice Schwinger model at criticality

Michael S. Albergo,! Denis Boyda,>** Kyle Cranmer,! Daniel C. Hackett,** Gurtej Kanwar,> 34
Sébastien Racaniere,® Danilo J. Rezende,® Fernando Romero-Lépez,* 4 Phiala E. Shanahan,** and Julian M. Urban”

Gauge-equivariant flow models for sampling in lattice field theories with
pseudofermions

Ryan Abbott,»2 Michael S. Albergo,® Denis Boyda,* 2 Kyle Cranmer,*
Daniel C. Hackett,"? Gurtej Kanwar,> 2 Sébastien Racaniere, Danilo J. Rezende,%
Fernando Romero-Lépez,!+? Phiala E. Shanahan,!'? Betsy Tian,! and Julian M. Urban”

Use of Schwinger-Dyson equation in constructing an
approximate trivializing map

Sampling QCD field configurations with gauge-equivariant
flow models

(&7 ]

Ryan Abbott,"” Michael S. Albergo,® Aleksandar Botev,® Denis Boyda," "¢
Kyle Cranmer,“* Daniel C. Hackett,”” Gurtej Kanwar,”"-/ Alexander G. D.

G. Matthews,* Sébastien Racaniére,® Ali Razavi,? Danilo J. Rezende,*
Fernando Romero-Lépez,*” Phiala E. Shanahan®*-* and Julian M. Urban“""

Learning Trivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,! Pan Kessel,>3 Stefan Schaefer,* and Lorenz Vaitl?

Pe &b lzubuchi,”¢ Luchang Jin,? Chulwoo Jung,” Christoph Lehner,*
Nobuyuki Matsumoto) and Akio Tomiya’

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Ryan Abbott,!»? Michael S. Albergo,® Aleksandar Botev,* Denis Boyda,''? Kyle Cranmer,’
Daniel C. Hackett,!? Gurtej Kanwar,® 2 Alexander G.D.G. Matthews,* Sébastien Racaniere,* Ali
Razavi,* Danilo J. Rezende,* Fernando Romero-Lépez,'*? Phiala E. Shanahan,’? and Julian M. Urban':2




(Un-)trivializing (1+1)d U(1) LGT

< 7\

4 ¢2 4 2m
¢ € [0,27), S = —Beos (D ) b3 R I | (/ dcbk) exp(—S( D))
k=1 b4 k=1 \/0
- Change of variables: x(¢1) = ¢1 + quk S [Z Ok, 2T + Z ¢k> X X % =1

X 9 2
— Z:/ dx/ d¢oddsdes exp (Bcos(x)) E/ dxdepadesdps exp (5 cos(x))
x Vo ’

. Trivialization: Z(n) = /0 ' dz exp (Bcos(z)), x' = 2m ZI((;;)) : %;l = 1(227;) exp (Bcos(x))
5 2 / 8X, =l 5 I(27r) 2 ,
— 7 = /0 dx dopsdgsdoy D exp (ﬂ cos(X)) === /0 dx dgpsdpsdoy

4 /
. Change of variables: ¢|(x') = x' — Z [ Z¢k,2ﬂ'—z¢k) qS gbl gﬁ} = ]l

k=2

I(2r) [% o 7(2
— Z = il /Q5 '1 de) /0 dpadpsddy = (2:) /o d¢idpoddsdey

27

11



(Un-)trivializing (1+1)d U(1) LGT

< 7\

4 ®2

¢r € [0,2m), S = —fcos (Z¢k) b3 b1 o ﬁ </027r d¢k) exp(_g(

k=1 =1
|4 ¢4 -

a

change of variables: gauge fields (links) <— invariants (plaquettes)

Y

Y

(un-)trivialization via (inverse) cumulative distribution function

N

change of variables: invariants (plaquettes) +— gauge fields (links)

AN

11



(Un-)trivializing (1+1)d U(1) LGT

¢r € [0,2m), S = —fcos (Z¢k)

<

y

b2
P4

y

A

[
!

oo 2= ([ as) exp(—s(;m))

— inverse transform sampling the von Mises distribution

rejection sampling

27

11

inverse CDF




(Un-)trivializing (1+1)d U(1) LGT

4=l

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1
cos(x)

12 —1



(Un-)trivializing (1+1)d U(1) LGT

+1
cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1
cos(x)




(Un-)trivializing (1+1)d U(1) LGT

4=l

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

4=l

)

<

COS

s
-

12 —1



(Un-)trivializing (1+1)d U(1) LGT

+1
cos(x)

.
o

12 —1




(Un-)trivializing (1+1)d U(1) LGT

4=

cos(x)

12 —1



(Un-)trivializing (1+1)d U(1) LGT

4=

cos(x)

12 —1



(Un-)trivializing (1+1)d U(1) LGT

4=

cos(x)

12 —1



(Un-)trivializing (1+1)d U(1) LGT

4=

cos(x)

12 —1



(Un-)trivializing (1+1)d U(1) LGT

16 x 16
1
Metropolizing defect:
baseline
\ 1st order improvement
\ (effective 2 x 1 loop action)
.\‘
\
\
acceptance rate \
(independence | \
sampling) A N
N
S
\\\\\\<
0 :
0 2 4 6 8 10 12
B
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(Un-)trivializing (1+1)d U(1) LGT

16 x 16, B =8

— trivialization @ —— heatbath

0 2000 4000 6000 8000 10000

Hsweeps

14



(Un-)trivializing (1+1)d SU(3) LGT

U

A

4

UkESU(?)), S:—gReTI‘(HUk) U3 U1 = 1 (/dUk> exp(—S(i{_4 Uk>)

k=1

\ 4

A 4

Uy
4
- Change of variables: P(U;) = U, H by — H = /deUgdU3dU4 exp(—S(P))
k=2

- Weyl integration formula for compact connected Lie group G in terms of a maximal torus T :

pifm _ gifn

/Gde(U) = /Tdu(e) f(6) with du(0) = ]

m>n

Hdek’
k

where f is a class function, i.e. f(U) = f(QUQ') (conjugation-invariant),

and e'* are unique eigenvalues (N — 1 for SU(N)).

— reduces the eight-dim. map for the complete parameterization of SU(3)

to a two-dim. map for the unique eigenvalue angles 6y,

15



(Un-)trivializing (1+1)d SU(3) LGT
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(Un-)trivializing (1+1)d SU(3) LGT

16



(Un-)trivializing (1+1)d SU(3) LGT

Approximate solution with tractable Jacobian using differentiable quadrature:

(further details will be provided in Lattice2023 PoS)
— acceptance rate ~ 0.15at 16 x 16, 8 =06

17



Higher dimensions?




Higher dimensions?

B i W i id [
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Higher dimensions?
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Higher dimensions?
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(Un-)trivializing (n4+1)d SU(3) LGT with ML

Abbott et al [arXiv:2305.02402]

Replace local conditional CDF with rational quadratic spline (RQS)

finite interval with fixed endpoints — compactness
monotonicity — invertibility
differentiability — Jacobian

bounded derivative — stability

Locally compute spline parameters from surrounding features using neural networks

Global invertibility from alternating masking patterns — coupling layers

Variational optimization by minimizing reverse Kullback-Leibler divergence

19



Neural RQS eigenvalue flow

Choose suitable parameterization of canonical cell, e.g. 2m
polar coordinates — best results so far

Choose set of features preserving gauge covariance, e.g. loops:

plaquette 2x1 chair crown

ST e ~m <
. g a . o E T om 5
~0 H K . o H
< W R.. = -
..-"“ g i = R K ,.~‘x
NG ; Y = S :
= Y H < = HE &
= iy 5 g & - g S o
= R = S
: N : R V 4 ? =
g ¢ z g V4 7
B a8 - : I 2 ol g ST, F 4B
. = : . i S V 4 £ R K F 4 E
" H *a, V4 i Yoy 0 27"'
g : § B . y
- */ | . ., J/ o 1/
N N i L ,/ o 9

location coupling in (24+1)d

Choose local coupling geometry, e.g.

direction coupling location coupling




Masking pattern algorithm

- Flexible parameterization for automated construction of suitable masks in (n+1)d

Simple alternation scheme via cyclic permutations of parameters

—— cover all links in one cycle to avoid blind spots

- Iterate over loop orientations — cover all plaquettes

Ay %gﬁj

Full implementation and interactive visualizations in supplementary jupyter notebook

[arXiv:2305.02402]

21



Training and evaluation

Variance reduction in gradient estimates using path gradients 4+ control variates

‘— standard control variates
Estimated Sample Size (ESS) 0.8
4
N i
(% D k=1 w(Uk)) 1 00
Y 1 N 2 E [N, 1] % it
N Zk:l w(Uk) &
with IV model samples U}, ~ q(Uy,) 0.2
exp(—S(Uk)) _ | . | |
2l w(Uk) — q(Uk) ’ o 0 200 400 600 800 1000

training step

. Easy target (84, B = 1), testing heatbath prior with 0 < Bheatbath < Starget

prior
ESS =0 B=0.5
spectral 0.75 0.82
flow
residual 0.09 0.18

22



Practical applications (cf. Dan Hackett)

App 1: Correlated ensembles
Flow an ensemble {U}N 7” — {f__(fj\)} ~q

f
— {U} and {f (U)} are correlated o ——>—0o0

- | h 0 \
This is useful! % \
a. :
e.g. for noise cancellation in differences '\ BT \\%DD/ oy

(0)p — (O)y TR

= (W0)q —(0), D

= (w(f) o(f)) —oW)),_.

Application: Feynman-Hellmann S->S5S4+A10 % M (h|O|h)
=0

(Complication: involves fits for Ej, but same idea)
See also [Bacchio 2305.07932]

23



Practical applications (cf. Dan Hackett)

App 2: T-REX Results

Three target Bs on 12* Swap AR ~ 15% Swap AR ~ 20%
Two different flows .18 =5.95 T-REX |3 = 6.00 T-REX |8 =6.05 T_REX
595 6 _
6 < 6.05
,B=5.95HB |B=6.00 HB |B=6.05HB
r& W 4
o o q _
-2 3 J J
—4_
1] 10'00 ZOIOO 30I00 40'00 50000 10’00 20'00 30'00 40'00 50000 IOIOO ZOIOO 30‘00 40'00 5000
Swap AR ~ 0 Swap AR~ 0

1 step =5 HB + 2 OR, propose swaps every 5 steps

23



Summary

(14+1)d LGT can be trivialized almost trivially with (semi-)analytic methods

Proof-of-principle results for machine-learned maps applied to (3-+1)d SU(3) LGT

Outlook

Gauge invariants represent only the most basic data features from the perspective of

geometric deep learning, analytic trivialization attempts suggest missing information
— need covariant features to achieve expressivity

Naive (un-)trivialization in (341)d leads to proliferation of defects due to the
geometric properties of Wilson loop actions

— need hierarchical / multi-scale architectures

Machine-learned maps are already capable of partial trivialization / thermodynamic
integration on small volumes

— practical applications are within reach (correlated ensembles, parallel tempering)

24
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