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Motivation of research program

» Goal: approximate propagators D1, det(D), and hadronic correlation functions

» Deep networks work (cf. Krylov solvers)

» Multigrid paradigm makes much shallower models perform as well as deep ones
(cf. multigrid solvers)

» By casting it in language of neural networks it is easy to investigate non-Krylov
methods.

» Focus on explicitly gauge-equivariant models such that gauge-equivariance does
not have to be learned. Helps with transfer learning.

1/22



Preconditioning

> First study Dirac equation

» Time to solution is determined by condition number of Dirac matrix

» Condition number increases dramatically in physical quark-mass and
continuum limit

» Can be addressed by Preconditioning
» Find a preconditioner M such that M ~ D~1
> Define v =M~y and use
DMM~ty = (DM)v = b
to solve for v with preconditioned matrix DM (smaller condition number)

» Then u= Mv
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Low and high modes

» Consider the eigendecomposition of D
D= Z An|n)(n|
n

Preconditioner should approximate low-mode and high-mode components of
D~1. Needs to be adaptive but would be nice to have geometric version (see
later).

> State-of-the-art algorithms (multigrid) are
designed to do this

» We will follow this paradigm, but here we
learn the preconditioner

Source: https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
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https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

A model to implement a multigrid preconditioner
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Gauge-equivariant layers



Parallel transport

>

Consider a field ¢(x) with x € S (space-time lattice, dim = d) and
eV =Ve® Vg )
(gauge space: Vg = CV, non-gauge space: Vg = CV)

Also consider an SU(N) gauge field U, (x) acting on V¢

Define the parallel-transport operator for a path p = p1,. .., ps, with
pi € {£1,...,+d}

Tp = Hpy, - Hpy Hp, with Hud(x) = U (x — )d(x — )

H,, transports information by a single hop in direction [

H,, acts on field; new field H, ¢ is evaluated at x

Example: Ty = H_1H_>H_1HH>
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Gauge equivariance

> A gauge transformation by Q(x) € SU(N) acts in the usual way

B(x) = Q(x)o(x)
Un(x) = Q0 Up ()27 (x + 1)

» Such gauge transformations commute with T, for any path p

Tpd(x) — Q(x) Tpo(x)
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Parallel-transport convolutions

» Parallel-transport convolution layer and local parallel-transport convolution layer

Ya(x) IO ST W T, e(x) $a(x) BT ST WP () Togin(x)
b peP b peP
> a = output feature index
» b = input feature index
> P = set of paths
> W2 acts in Vg (here: 4 x 4 spin matrix)
» Elements of W: “layer weights”

» Layers are gauge-equivariant

» No activation function since we want
to learn a linear preconditioner; will
be different for correlators.
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Explicit gauge degree of freedom on coarse grid

> Field on fine grid: ¢ : S — V5 ® Vg, x — ¢(x) with
local gauge space (V;), non-gauge space (V¢), and
set of fine-grid sites S

B(y) ={e,}
> Gauge transformation: ¢(x) — Q(x)¢(x) Bi(y)=-e

> Set of coarse sites 5 and block map B : 5 — P(S),y — B(y)
(sites B(y) on fine grid correspond to y on coarse grid)

> A reference site B, : S — S,y — B,(y) such that B,(y) C B(y)

> Field on coarse grid: ¢:5 — Ve ® \76-,y — <;3(y)
(note: same local gauge space as on fine grid)

> Find restriction and prolongation layers such that ¢(y) — €(y)d(y) under
gauge transformation Q with

Q(y) = QB(y)).
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> Define RL/PL by pooling and subsampling layers:
RL = SubSample o Pool , (1)
PL = Pool® o SubSample . ()

(weights in RL and PL can differ, so not necessarily RLT = PL)
» The pooling layer Pool: 7y, — Fy, ¢ — Pool¢ is given by

Poolg(x) = > Wa(x) Tqe(x) ®3)

qeQ

with g = (p, U), path p, gauge field U, and T4 = T,(U). Weights W,(x) are
spin matrices, separated gauge DOF.

» The subsampling layer is given by

SubSampleg(y) = ¢(B(y)) - (4)
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Gauge field U in T,(0) needs to satisfy
O (x) = Q) U0 ()27 (x + ) - (5)

In practice, we use a variety of differently smeared links.

Complete set of paths P transports every element of B(y) exactly once to B-(y)
= |P| = [B(y)I

Efficient implementation for each complete set of path possible: GPT

é = RL¢ yields ¢~>(y) — ﬁ(y)zz;(y) under gauge transformations
B(x) = Q(x)o(x)
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Model details |
» Need prescription for g in

Poolep(x) = > We(x) Tae(x)

qeQ

with g = (p, U), path p, gauge field U, and T4 = T,(0).

» For fixed i, we define paths p(ij) that connect all elements of B(y), enumerated
by j =1,...,|B(y)l, to the reference site B/(y). For different j we use different
prescriptions for the paths p(/), and then use the couples gj = (p(’f)7 U(’)).

» We define four different prescriptions pi, ..., pa (depth first/breadth first
lexicographic/reverse lexicographic)

and set p(i) = ﬁfj)mod e

11/ 22



Model details Il

> Concretely, we use 9 different gauge fields O with i =1,...,9. We construct
the U() by applying i(i — 1)/2 steps of p = 0.1 stout smearing to the
unsmeared gauge fields U. Smearing radius proportional to /i(i — 1).

> So we have 9 different spin-matrix fields Wi(x),. .., Wo(x).

> In practice, sufficient to use same weights in PL and RL such that PL = RLT.
Found no benefits from general case.

> Coarse-grid size 23 x 4
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Explicit gauge-equivariant coarse layers need coarse gauge field

» Plain coarse gauge field construction:

B.(y') - Biy) = bt

with unit vector {i in direction p and b € NT. The coarse-grid gauge field Uu(y)

corresponding to this pair of reference points is then simply

Uu(y) = Uu(Br(¥) - Un(Br(y) + (b — 1)i1).

» Galerkin coarse gauge field construction:
Ou(y) = D(y,y + )
with

D=RLoDoPL

for Wilson-clover D.
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Spectrum of Wilson-clover Dirac operator
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» B =6 pure Wilson gauge field with topological charge Q =1

> 83 X 16 lattice sites

»  Wilson-clover operator with m = —0.5645 and csw = 1
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Training setup — How to train RL/PL?

» Obvious approach: train
PLoRL 9

as an autoencoder with training vectors from the near-null space.

» This could be done with a cost function
C = |PLoRLvy — vg? (10)
with fine-grid vectors vy. For each training step we select a random element of
ve € {u1,...,us} of the near-null space vectors u; defined above.

» Use Adam optimizer.

» Result: did not perform well in MG preconditioner!
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Training setup — How to train RL/PL?

» What was missing: PL o RL should also project high eigenmodes to zero (if not
could overload smoother layers)

» Found also additional benefit from encouraging RL o PL = 1 such that we have
a proper projection operator P = PL o RL with P? = P.

» We implement this strategy by using the cost function
C = |PLoRLvy — vg|2 4+ |PLoRLv, — Ppvp|2 + |RL o PLve — vel|? (11)

with additional fine-grid vector v;, and coarse-grid vector v.. For each training
step vy and v¢ are random vectors with elements normally distributed about
zero.

Py is the blocked low-mode projector

Py =wiw, W(y,x)" =" @ (x)éf (12)

with block-orthonormalized &; from u;.

» All vectors vy, vp, and v¢ are normalized to unit length before being used in the
cost function.
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Training setup — How to train RL/PL?

v

Train with s = 4.

Training converged after O(1000) steps.

Yields Wi(x),. .., Wo(x) but still costly since we first need near-null space
vectors.

In future work: obtain W;(x) as output of gauge-invariant models based on
energy density E(x), topology density Q(x), plaquette P(x) and other Wilson
loops. At this point the u; are no longer needed. (In a sense we generate
training data for the next step in this work.)

17 / 22



Constructing the architecture for the W model

Topological charge density:

Qtop after 40 x 0.1 stout smearing
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Training setup — combined preconditioner model

> First train RL/PL as described above.
» Then train combined model with frozen RL/PL using cost function
C = |Mby — up|* + [Mby — ug|? (13)
with by, = Dvy, up = v1, by = vp, and uy = D1y,

» Further training with unfrozen RL/PL leads to no notable improvement.
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Results — critical slowing down
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» Show outer iteration count in GMRES to 10~8 precision with and without
model as preconditioner.

» Model with Galerkin gauge fields removes critical slowing down.
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Results — critical slowing down

®  Original multi-grid model
B Gauge-equivariant plain coarse-link model
V¥ Gauge-equivariant Galerkin model
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» Original multi-grid model also removes critical slowing down.

» Model with plain gauge fields shows small remnants of critical slowing down.
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The gauge-equivariant multigrid neural network research program

» Future work:

> Relate RL/PL spin matrices to energy density, topology density, Wilson
loops via gauge-invariant models. This would eliminate most of the
typical multigrid setup cost. Useful for ensemble generation.

» Address fermions with more complex spectrum (such as DWF)

» Do not just approximate D! but directly complex hadronic correlation
functions to be used in AMA.
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