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Motivation of research program

▶ Goal: approximate propagators D−1, det(D), and hadronic correlation functions

▶ Deep networks work (cf. Krylov solvers)

▶ Multigrid paradigm makes much shallower models perform as well as deep ones
(cf. multigrid solvers)

▶ By casting it in language of neural networks it is easy to investigate non-Krylov
methods.

▶ Focus on explicitly gauge-equivariant models such that gauge-equivariance does
not have to be learned. Helps with transfer learning.
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Preconditioning

▶ First study Dirac equation

Du = b

▶ Time to solution is determined by condition number of Dirac matrix

▶ Condition number increases dramatically in physical quark-mass and
continuum limit

▶ Can be addressed by Preconditioning

▶ Find a preconditioner M such that M ≈ D−1

▶ Define v = M−1u and use

DMM−1u = (DM)v = b

to solve for v with preconditioned matrix DM (smaller condition number)

▶ Then u = Mv
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Low and high modes

▶ Consider the eigendecomposition of D

D =
∑
n

λn|n⟩⟨n|

Preconditioner should approximate low-mode and high-mode components of
D−1. Needs to be adaptive but would be nice to have geometric version (see
later).

▶ State-of-the-art algorithms (multigrid) are
designed to do this

▶ We will follow this paradigm, but here we
learn the preconditioner

Source: https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
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A model to implement a multigrid preconditioner

3

FIG. 2. The two-level multigrid model studied in this work. The model is similar to the one studied in Ref. [12], but explicitly
gauge-equivariant pooling and unpooling layers are used in the current work for the restriction and prolongation layers. The
coarse-grid layer is limited by the blue features. This layer and the last four layers are LPTC layers introduced in Ref. [12].

The subsampling layer SubSample: F' ! F'̃, ' 7!
SubSample' is defined by

SubSample'(y) = '(Br(y)) (9)

for a given choice of reference-point map Br defined in
Eq. (3). This construction therefore satisfies Eq. (4) with
'̃ = RL' for a given ' 2 F'. For a discussion of a general
group-equivariant pooling layer, see Ref. [54].

The prolongation layer (PL) is simply defined as

PL = Pool† � SubSample† , (10)

where the dagger of an operator O is defined in the usual

way by requiring '†
1O'2 = ('†

2O
†'1)

⇤ for arbitrary '1

and '2. Note that the couples and weights of a restric-
tion and prolongation layer can in principle be chosen
independently. The models studied in this work, how-
ever, use the same couples and weights for both RL and
PL so that PL = RL†.2

A graphical representation of the restriction and pro-
longation layers is given in Fig. 1. The pooling layer is
a generalization of the local parallel-transport convolu-
tion (LPTC) layer introduced in Ref. [12]. However, one
would typically implement the combined RL directly to
avoid unnecessary computation of feature elements that
will be discarded by the subsequent subsampling layer.
This can be done e�ciently by precomputing, for each
complete set of paths, a field S ! End(VG) that is used
in combination with a reduction operation within each
block. We provide such implementations of both RL and
PL in the Grid Python Toolkit (GPT) [56].

We note that the construction of similar restriction
and prolongation operations has a long history, see, e.g.,
[20, 25, 35].

2 In the context of a multigrid solver, Ref. [55] calls this the vari-
ational choice because it follows from a variational principle.

C. Coarsening of the gauge fields

In the current work, we preserve the general model
structure introduced in Ref. [12]. However, we replace
the restriction and prolongation layers with ones based
on gauge-equivariant pooling and unpooling layers, see
Fig. 2. This replacement introduces an explicit gauge
degree of freedom on the coarse grid so that the coarse-
grid layer can be constructed in an explicitly gauge-
equivariant manner. For this layer we need coarse gauge
fields Ũ .

The gauge transformation property of coarse fields
given in Eq. (4) is consistent with gauge fields on the
coarse grid that perform a parallel transport between ref-
erence sites Br(y) and Br(y

0) on the fine grid, where y
and y0 are neighboring sites on the coarse grid. Such
gauge fields must transform as

Ũµ(y) ! ⌦̃(y)Ũµ(y)⌦̃†(y + µ̂) (11)

under gauge transformations. We investigate two choices
for the Ũµ in this work.

The first choice is to connect Br(y) and Br(y
0) using

the shortest path on the fine grid connecting both points.
In this work, we use a block map B such that B(y) is
given by a Cartesian product of neighboring sites in each
dimension, and a fixed reference site Br within each block
so that the shortest path is unique and aligns with a
coordinate axis. We then always have

Br(y
0) � Br(y) = bµ̂ (12)

with unit vector µ̂ in direction µ and b 2 N+. The coarse-
grid gauge field Ũµ(y) corresponding to this pair of ref-
erence points is then simply

Ũµ(y) = Uµ(Br(y)) · · · Uµ(Br(y) + (b � 1)µ̂) (13)

with fine-grid gauge links Uµ. We will refer to this choice
as the “plain coarse-link model.”
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Gauge-equivariant layers



Parallel transport

▶ Consider a field ϕ(x) with x ∈ S (space-time lattice, dim = d) and
ϕ ∈ VI = VG ⊗ VḠ

(gauge space: VG = CN , non-gauge space: VḠ = CN̄)

▶ Also consider an SU(N) gauge field Uµ(x) acting on VG

▶ Define the parallel-transport operator for a path p = p1, . . . , pnp with
pi ∈ {±1, . . . ,±d}

Tp = Hpnp · · ·Hp2Hp1 with Hµϕ(x) = U†
µ(x − µ̂)ϕ(x − µ̂)

▶ Hµ transports information by a single hop in direction µ̂

▶ Hµ acts on field; new field Hµϕ is evaluated at x

▶ Example: Tp = H−1H−2H−1H2H2
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Gauge equivariance

▶ A gauge transformation by Ω(x) ∈ SU(N) acts in the usual way

ϕ(x) → Ω(x)ϕ(x)

Uµ(x) → Ω(x)Uµ(x)Ω
†(x + µ̂)

▶ Such gauge transformations commute with Tp for any path p

Tpϕ(x) → Ω(x)Tpϕ(x)
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Parallel-transport convolutions

▶ Parallel-transport convolution layer and local parallel-transport convolution layer

ψa(x)
PTC
=

∑
b

∑
p∈P

W bp
a Tpϕb(x) ψa(x)

LPTC
=

∑
b

∑
p∈P

W bp
a (x)Tpϕb(x)

▶ a = output feature index
▶ b = input feature index
▶ P = set of paths
▶ W bp

a acts in VḠ (here: 4× 4 spin matrix)
▶ Elements of W : “layer weights”

▶ Layers are gauge-equivariant

▶ No activation function since we want
to learn a linear preconditioner; will
be different for correlators.
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Explicit gauge degree of freedom on coarse grid

▶ Field on fine grid: ϕ : S → VG ⊗ VḠ , x 7→ ϕ(x) with
local gauge space (VG ), non-gauge space (VḠ ), and
set of fine-grid sites S

▶ Gauge transformation: ϕ(x) → Ω(x)ϕ(x)

▶ Set of coarse sites S̃ and block map B : S̃ → P(S), y 7→ B(y)
(sites B(y) on fine grid correspond to y on coarse grid)

▶ A reference site Br : S̃ → S, y 7→ Br (y) such that Br (y) ⊂ B(y)

▶ Field on coarse grid: ϕ̃ : S̃ → VG ⊗ ṼḠ , y 7→ ϕ̃(y)
(note: same local gauge space as on fine grid)

▶ Find restriction and prolongation layers such that ϕ̃(y) → Ω̃(y)ϕ̃(y) under
gauge transformation Ω with

Ω̃(y) = Ω(Br (y)) .

B(y) = {•, •}
Br (y) = •
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tails of the Wilson-clover Dirac spectrum on a gauge con-
figuration with nonzero topological charge. In Sec. IV we
discuss the training strategy for the (un)pooling layers,
and in Sec. V we show that the models resolve critical
slowing down. In Sec. VI we summarize our results and
provide an outlook on our future research program.

II. GAUGE-EQUIVARIANT COARSENING

In the following, we build on notation defined in
Ref. [12] but introduce an explicitly gauge-equivariant
coarsening procedure using gauge-equivariant pooling
and unpooling layers that are combined with subsam-
pling layers.

A. Review of notation and coarse-grid vector space

We consider a d-dimensional space-time lattice, the
fine grid, and denote the set of its sites by S. We de-
fine a field ' : S ! VI , x 7! '(x) on the fine grid with
internal vector space

VI = VG ⌦ VḠ , (1)

where VG is a gauge vector space and VḠ is a non-
gauge vector space, respectively. The set of such fields
is denoted by F'. Under a gauge transformation ⌦ :
S ! End(VG), x 7! ⌦(x), the fields transform as
'(x) ! ⌦(x)'(x). Furthermore, we consider gauge fields
Uµ : S ! End(VG), x 7! Uµ(x), where µ 2 {1, . . . , d}. In
the case of QCD, Uµ(x) 2 SU(3) ⇢ End(VG). We will use
U as a short-hand notation for the tuple (U1, . . . , Ud).

We also consider a d-dimensional coarse grid with set
of sites S̃. We define fields on the coarse grid '̃ : S̃ ! ṼI ,
y 7! '̃(y) with internal vector space ṼI . The set of such
coarse fields is denoted by F'̃. In contrast to Ref. [12]

ṼI = VG ⌦ ṼḠ (2)

i.e., in the current work the local gauge space on the
coarse grid is the same as on the fine grid.

As in Ref. [12], we define a block map B : S̃ ! P(S),
where P denotes the power set. We also define a map

Br : S̃ ! S, y 7! Br(y) (3)

that selects for each site y on the coarse grid a reference
site Br(y) on the fine grid. In the following, we only
consider maps Br for which Br(y) 2 B(y). The coarse
fields shall transform as

'̃(y) ! ⌦̃(y)'̃(y) (4)

with

⌦̃(y) = ⌦(Br(y)) (5)

under gauge transformations ⌦. For a related discussion
of gauge-equivariant blocking schemes, see, e.g., Ref. [25].

RL PL

FIG. 1. Graphical representation of restriction layer (left) and
prolongation layer (right) for a single feature. The input and
output features are represented by the planes, and the layers
are represented by the paths drawn and the arrow mapping
the input to the output feature. The reference site is drawn
in black.

B. Restriction and prolongation layers

The restriction layer (RL) can be written as the com-
position of a pooling layer (Pool) and a subsampling layer
(SubSample),

RL = SubSample � Pool . (6)

The pooling layer Pool: F' ! F', ' 7! Pool' is given
by

Pool'(x) =
X

q2Q

Wq(x)Tq'(x) . (7)

In the following we describe the elements of this equa-
tion in detail. The sum is over couples (i.e., two-tuples)
q = (p, Ū) that consist of a path p and a gauge field Ū .
A path p is defined as a sequence of hops without refer-
ence to a starting or end point. A set of paths P shall
be called “complete” if it connects every site in B(y) to
Br(y) exactly once. A complete set of paths therefore
always has |B(y)| elements, where |X| denotes the cardi-
nality of a set X. In the current work, we only consider
couples with |Q| = n|B(y)| and n 2 N+ such that n pre-
scriptions to construct the gauge field are combined with
n prescriptions to construct a complete set of paths.

The pooling layer is parametrized by weights Wq(x) 2
End(VḠ). In the context of the current paper the Wq(x)
are spin matrices.

Finally, the operator Tq for q = (p, Ū) is the parallel-
transport operator Tp : F' ! F', ' 7! Tp' defined in
Ref. [12] with gauge fields U replaced by Ū .1 The gauge
fields Ū entering Tp do not have to be the original fine-
grid gauge links U as long as they transform in the usual
way, i.e., as

Ūµ(x) ! ⌦(x)Ūµ(x)⌦†(x + µ̂) (8)

under gauge transformations ⌦. We will make use of this
freedom in this work.

1 In Eq. (7), Tq'(x) means that the field Tq' is evaluated at x.

▶ Define RL/PL by pooling and subsampling layers:

RL = SubSample ◦ Pool , (1)

PL = Pool† ◦ SubSample† . (2)

(weights in RL and PL can differ, so not necessarily RL† = PL)

▶ The pooling layer Pool: Fϕ → Fϕ, ϕ 7→ Poolϕ is given by

Poolϕ(x) =
∑
q∈Q

Wq(x)Tqϕ(x) (3)

with q = (p, Ū), path p, gauge field Ū, and Tq = Tp(Ū). Weights Wq(x) are
spin matrices, separated gauge DOF.

▶ The subsampling layer is given by

SubSampleϕ(y) = ϕ(Br (y)) . (4)
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coarse fields is denoted by F'̃. In contrast to Ref. [12]
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B. Restriction and prolongation layers

The restriction layer (RL) can be written as the com-
position of a pooling layer (Pool) and a subsampling layer
(SubSample),

RL = SubSample � Pool . (6)

The pooling layer Pool: F' ! F', ' 7! Pool' is given
by

Pool'(x) =
X

q2Q

Wq(x)Tq'(x) . (7)

In the following we describe the elements of this equa-
tion in detail. The sum is over couples (i.e., two-tuples)
q = (p, Ū) that consist of a path p and a gauge field Ū .
A path p is defined as a sequence of hops without refer-
ence to a starting or end point. A set of paths P shall
be called “complete” if it connects every site in B(y) to
Br(y) exactly once. A complete set of paths therefore
always has |B(y)| elements, where |X| denotes the cardi-
nality of a set X. In the current work, we only consider
couples with |Q| = n|B(y)| and n 2 N+ such that n pre-
scriptions to construct the gauge field are combined with
n prescriptions to construct a complete set of paths.

The pooling layer is parametrized by weights Wq(x) 2
End(VḠ). In the context of the current paper the Wq(x)
are spin matrices.

Finally, the operator Tq for q = (p, Ū) is the parallel-
transport operator Tp : F' ! F', ' 7! Tp' defined in
Ref. [12] with gauge fields U replaced by Ū .1 The gauge
fields Ū entering Tp do not have to be the original fine-
grid gauge links U as long as they transform in the usual
way, i.e., as

Ūµ(x) ! ⌦(x)Ūµ(x)⌦†(x + µ̂) (8)

under gauge transformations ⌦. We will make use of this
freedom in this work.

1 In Eq. (7), Tq'(x) means that the field Tq' is evaluated at x.

▶ Gauge field Ū in Tp(Ū) needs to satisfy

Ūµ(x) → Ω(x)Ūµ(x)Ω
†(x + µ̂) . (5)

In practice, we use a variety of differently smeared links.

▶ Complete set of paths P transports every element of B(y) exactly once to Br (y)
⇒ |P| = |B(y)|

▶ Efficient implementation for each complete set of path possible: GPT

▶ ϕ̃ = RLϕ yields ϕ̃(y) → Ω̃(y)ϕ̃(y) under gauge transformations
ϕ(x) → Ω(x)ϕ(x)
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Model details I

▶ Need prescription for q in

Poolϕ(x) =
∑
q∈Q

Wq(x)Tqϕ(x)

with q = (p, Ū), path p, gauge field Ū, and Tq = Tp(Ū).

▶ For fixed i , we define paths p(ij) that connect all elements of B(y), enumerated
by j = 1, . . . , |B(y)|, to the reference site Br (y). For different i we use different
prescriptions for the paths p(ij), and then use the couples qij = (p(ij), Ū(i)).

▶ We define four different prescriptions p̂1, . . . , p̂4 (depth first/breadth first
lexicographic/reverse lexicographic)

and set p(ij) = p̂
(j)
i mod 4.
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Model details II

▶ Concretely, we use 9 different gauge fields Ū(i) with i = 1, . . . , 9. We construct
the Ū(i) by applying i(i − 1)/2 steps of ρ = 0.1 stout smearing to the

unsmeared gauge fields U. Smearing radius proportional to
√

i(i − 1).

▶ So we have 9 different spin-matrix fields W1(x), . . . ,W9(x).

▶ In practice, sufficient to use same weights in PL and RL such that PL = RL†.
Found no benefits from general case.

▶ Coarse-grid size 23 × 4
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Explicit gauge-equivariant coarse layers need coarse gauge field

▶ Plain coarse gauge field construction:

Br (y
′)− Br (y) = bµ̂

with unit vector µ̂ in direction µ and b ∈ N+. The coarse-grid gauge field Ũµ(y)
corresponding to this pair of reference points is then simply

Ũµ(y) = Uµ(Br (y)) · · ·Uµ(Br (y) + (b − 1)µ̂) . (6)

▶ Galerkin coarse gauge field construction:

Ũµ(y) = D̃(y , y + µ̂) (7)

with

D̃ = RL ◦ D ◦ PL (8)

for Wilson-clover D.
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Spectrum of Wilson-clover Dirac operator
4

The second choice is based on the Galerkin coarse-grid
operator

D̃ = RL � D � PL (14)

with gauge-equivariant fine-grid operator D. For the pur-
pose of the current paper, D is the Wilson-clover Dirac
operator (for the precise definition see Ref. [12]). We
then simply define

Ũµ(y) = D̃(y, y + µ̂) , (15)

which transforms as in Eq. (11) since D̃(y, y0) transforms

to ⌦̃(y)D̃(y, y0)⌦̃†(y0) under gauge transformations ⌦.
We refer to this choice as the “Galerkin model.” Note
that in the Galerkin model the coarse gauge links will
depend on the weights in the RL and PL. In the Galerkin
model Ũµ(y) 2 End(ṼI), while Ũµ(y) 2 End(VG) in the
plain coarse-link model. Both are acceptable in the con-
text of the gauge-equivariant coarse-grid LPTC layer in
Fig. 2 as long as Eq. (11) is satisfied.

We again note that there is a rich history of related
work, see, e.g., Refs. [21, 38, 57–60]. As in these works,
our coarse gauge fields defined by Eq. (15) are, in gen-
eral, no longer elements of the original gauge group.
While this is not a problem of principle, Refs. [21, 27]
found better performance of the multigrid algorithm if
the coarse gauge fields are projected back to the original
gauge group. We plan to investigate this possibility in
future work. We also note that there is an alternative
way to define the coarse gauge fields using the pooling
and subsampling layers introduced in Sec. II B and ap-
plying them to the gauge links between the blocks, see,
e.g., Ref. [38]. We did not implement this alternative be-
cause it does not increase the expressivity of the model
compared to Eq. (15).

III. DIRAC SPECTRUM AND TOPOLOGY

As in Ref. [12], we have generated quenched Wilson
gauge configurations with 83 ⇥ 16 lattice sites for � = 6
and attempt to precondition the Dirac equation for the
Wilson-clover Dirac operator with csw = 1. In order to
provide an even more challenging setup for the precondi-
tioner models, we select gauge configurations with topo-
logical charge Q = 1 defined via the five-loop enhanced
definition of Ref. [61] after cooling the gauge fields by ap-
plying the Wilson flow [62] with flow time t = 10.3 The
Dirac operator has an eigenvalue with vanishing imagi-
nary part and real part very close to the lower edge of
the spectrum, see Fig. 3. In this case, we expect critical
slowing down to be clearly visible as the quark mass is
tuned to criticality.

3 The measured value for the configuration used in this work is
Q = 0.998.
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FIG. 3. Smallest eigenvalues � of the Wilson-clover Dirac
operator with mass m = �0.5645 and csw = 1 on a pure-
Wilson-gauge configuration with topological charge Q = 1,
� = 6, and 83 ⇥ 16 lattice sites. The mass m is tuned to near
criticality for the experiments in this work.

IV. TRAINING STRATEGY

In the following we describe our training strategy for
the preconditioner model shown in Fig. 2. We perform
the training in two steps.

In the first step, we train only the restriction and pro-
longation layers. One may naturally consider to train
PL � RL as an autoencoder with training vectors sam-
pled from the low-mode space of D. We find that this
strategy by itself is not su�cient to obtain an e�cient
model. Instead, we also train PL �RL to act as a projec-
tor onto the low-mode space, i.e., it should project high
modes to zero. Furthermore, we found that it is benefi-
cial to approximately preserve the property RL�PL = 1.
We also found that restricting PL = RL† by using the
same couples q = (p, Ū) and the same weights Wq(x)
for the restriction and prolongation layers did not reduce
the performance of the model, and therefore we adopt
this choice for simplicity.

We implement this strategy by using the cost function

C = |PL � RLv` � v`|2 + |PL � RLvh � P`vh|2

+ |RL � PLvc � vc|2 (16)

with two fine-grid vectors v` and vh and one coarse-grid
vector vc. For each training step new random vectors
v`, vh, vc are chosen according to the following proce-
dure. For v` we select a random element of {u1, . . . , us}
of the near-null space vectors ui defined in Ref. [12] with
s 2 N+. For vh and vc we take random vectors with el-
ements normally distributed about zero. The low-mode

▶ β = 6 pure Wilson gauge field with topological charge Q = 1

▶ 83 × 16 lattice sites

▶ Wilson-clover operator with m = −0.5645 and csw = 1
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Training setup – How to train RL/PL?

▶ Obvious approach: train

PL ◦ RL (9)

as an autoencoder with training vectors from the near-null space.

▶ This could be done with a cost function

C = |PL ◦ RLvℓ − vℓ|2 (10)

with fine-grid vectors vℓ. For each training step we select a random element of
vℓ ∈ {u1, . . . , us} of the near-null space vectors ui defined above.

▶ Use Adam optimizer.

▶ Result: did not perform well in MG preconditioner!
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Training setup – How to train RL/PL?

▶ What was missing: PL ◦ RL should also project high eigenmodes to zero (if not
could overload smoother layers)

▶ Found also additional benefit from encouraging RL ◦ PL = 1 such that we have
a proper projection operator P = PL ◦ RL with P2 = P.

▶ We implement this strategy by using the cost function

C = |PL ◦ RLvℓ − vℓ|2 + |PL ◦ RLvh − Pℓvh|2 + |RL ◦ PLvc − vc |2 (11)

with additional fine-grid vector vh and coarse-grid vector vc . For each training
step vh and vc are random vectors with elements normally distributed about
zero.
Pℓ is the blocked low-mode projector

Pℓ = W †W , W (y , x)† =
s∑

i=1

ūyi (x)ê
†
i (12)

with block-orthonormalized ūi from ui .

▶ All vectors vℓ, vh, and vc are normalized to unit length before being used in the
cost function.
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Training setup – How to train RL/PL?

▶ Train with s = 4.

▶ Training converged after O(1000) steps.

▶ Yields W1(x), . . . ,W9(x) but still costly since we first need near-null space
vectors.

▶ In future work: obtain Wi (x) as output of gauge-invariant models based on
energy density E(x), topology density Q(x), plaquette P(x) and other Wilson
loops. At this point the ui are no longer needed. (In a sense we generate
training data for the next step in this work.)
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Constructing the architecture for the W model
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Training setup – combined preconditioner model

3

FIG. 2. The two-level multigrid model studied in this work. The model is similar to the one studied in Ref. [12], but explicitly
gauge-equivariant pooling and unpooling layers are used in the current work for the restriction and prolongation layers. The
coarse-grid layer is limited by the blue features. This layer and the last four layers are LPTC layers introduced in Ref. [12].

The subsampling layer SubSample: F' ! F'̃, ' 7!
SubSample' is defined by

SubSample'(y) = '(Br(y)) (9)

for a given choice of reference-point map Br defined in
Eq. (3). This construction therefore satisfies Eq. (4) with
'̃ = RL' for a given ' 2 F'. For a discussion of a general
group-equivariant pooling layer, see Ref. [54].

The prolongation layer (PL) is simply defined as

PL = Pool† � SubSample† , (10)

where the dagger of an operator O is defined in the usual

way by requiring '†
1O'2 = ('†

2O
†'1)

⇤ for arbitrary '1

and '2. Note that the couples and weights of a restric-
tion and prolongation layer can in principle be chosen
independently. The models studied in this work, how-
ever, use the same couples and weights for both RL and
PL so that PL = RL†.2

A graphical representation of the restriction and pro-
longation layers is given in Fig. 1. The pooling layer is
a generalization of the local parallel-transport convolu-
tion (LPTC) layer introduced in Ref. [12]. However, one
would typically implement the combined RL directly to
avoid unnecessary computation of feature elements that
will be discarded by the subsequent subsampling layer.
This can be done e�ciently by precomputing, for each
complete set of paths, a field S ! End(VG) that is used
in combination with a reduction operation within each
block. We provide such implementations of both RL and
PL in the Grid Python Toolkit (GPT) [56].

We note that the construction of similar restriction
and prolongation operations has a long history, see, e.g.,
[20, 25, 35].

2 In the context of a multigrid solver, Ref. [55] calls this the vari-
ational choice because it follows from a variational principle.

C. Coarsening of the gauge fields

In the current work, we preserve the general model
structure introduced in Ref. [12]. However, we replace
the restriction and prolongation layers with ones based
on gauge-equivariant pooling and unpooling layers, see
Fig. 2. This replacement introduces an explicit gauge
degree of freedom on the coarse grid so that the coarse-
grid layer can be constructed in an explicitly gauge-
equivariant manner. For this layer we need coarse gauge
fields Ũ .

The gauge transformation property of coarse fields
given in Eq. (4) is consistent with gauge fields on the
coarse grid that perform a parallel transport between ref-
erence sites Br(y) and Br(y

0) on the fine grid, where y
and y0 are neighboring sites on the coarse grid. Such
gauge fields must transform as

Ũµ(y) ! ⌦̃(y)Ũµ(y)⌦̃†(y + µ̂) (11)

under gauge transformations. We investigate two choices
for the Ũµ in this work.

The first choice is to connect Br(y) and Br(y
0) using

the shortest path on the fine grid connecting both points.
In this work, we use a block map B such that B(y) is
given by a Cartesian product of neighboring sites in each
dimension, and a fixed reference site Br within each block
so that the shortest path is unique and aligns with a
coordinate axis. We then always have

Br(y
0) � Br(y) = bµ̂ (12)

with unit vector µ̂ in direction µ and b 2 N+. The coarse-
grid gauge field Ũµ(y) corresponding to this pair of ref-
erence points is then simply

Ũµ(y) = Uµ(Br(y)) · · · Uµ(Br(y) + (b � 1)µ̂) (13)

with fine-grid gauge links Uµ. We will refer to this choice
as the “plain coarse-link model.”

▶ First train RL/PL as described above.

▶ Then train combined model with frozen RL/PL using cost function

C = |Mbh − uh|2 + |Mbℓ − uℓ|2 (13)

with bh = Dv1, uh = v1, bℓ = v2, and uℓ = D−1v2.

▶ Further training with unfrozen RL/PL leads to no notable improvement.
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Results – critical slowing down
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▶ Show outer iteration count in GMRES to 10−8 precision with and without
model as preconditioner.

▶ Model with Galerkin gauge fields removes critical slowing down.
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Results – critical slowing down
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▶ Original multi-grid model also removes critical slowing down.

▶ Model with plain gauge fields shows small remnants of critical slowing down.
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The gauge-equivariant multigrid neural network research program

▶ Future work:

▶ Relate RL/PL spin matrices to energy density, topology density, Wilson
loops via gauge-invariant models. This would eliminate most of the
typical multigrid setup cost. Useful for ensemble generation.

▶ Address fermions with more complex spectrum (such as DWF)

▶ Do not just approximate D−1 but directly complex hadronic correlation
functions to be used in AMA.
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