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Self-learning Monte Carlo
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Sometimes, the computational cost is heavy.

Configurations Boltzmann weightHeavy tasks

effective model

Spins Electrons Atoms, 
molecules Lattice QCD

To propose a new configuration, we use the effective model

We calculate a partition function Z=∫exp(-S) or Σexp(-βH)
With the use of Monte Carlo method, we can calculate physical variables

Configurations Boltzmann weight



SLMC and SLHMC
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Self-learning Monte Carlo method (SLMC)

To speed up the Markov Chain Monte Carlo (MCMC) simulations

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA CB

Machine learning molecular dynamics

To propose CB from CA

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA C2 CBC3 …C4

Another Markov chain with the probability W’(C)

To propose CB from CA

Self-learning Hybrid Monte Carlo method (SLHMC)

SLMC SLHMC

Machine learning techniques are used for proposing new configuration!
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YN, Akinori Tanaka, Akio Tomiya, 
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Phys. Rev. D 107, 054501 (2023) effective model 

SU(2) gauge fields with staggered fermions with 4 flavors in 4D

integrated fermion action
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effective model 

UNN: trainable stout smearing

with different mass

without fermion actions



Problems of SLMC
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How to construct effective models?

Configurations Boltzmann weightHeavy tasks

effective modelConfigurations Boltzmann weight

Quality of the effective model is very important

In previous studies, 
the linear regression is used to construct the effective model 
inspired by the physical insight 

Use Transformer!!



Transformer and Attention mechanism
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Generative AIs
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These AI have same architecture called Transformer

Transformer
AI Chat, Visualization, language translation

protein foldings etc. 



Scaling lows of Transformer
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It requires huge data (e.g. GPT uses all electric books in the world) 
= weak inductive bias, large data makes prediction better

https://arxiv.org/abs/2001.08361



Transformer and Attention
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When we translate a sentence, we pay “attention” to words:
I am Yuki Nagai, who studies machine learning and physics

Ich bin Yuki Nagai, der Maschinenlernen und Physik studiert

English:

German:

In physics terminology, this is non local correlation.

The attention layer enables us to treat it with a neural net!

Non-local dependencies can be treated by “Attention layer”
What are most important relations in words?

“Attention” layer can capture these relations 

translated by DeepL



What is the attention mechanism?
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There are many websites to explain the transformer and attention 
mechanism, in terms of language processing…

I try to explain the attention in terms of simple mathematics
This came from discussions with Dr. Tomiya



What is the attention mechanism?
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There are many websites to explain the transformer and attention 
mechanism, in terms of language processing…

I try to explain the attention in terms of simple mathematics
This came from discussions with Dr. Tomiya

1. We consider a vector/matrix/tensor A Ai or Aij or Aijk

Wk,WQ,WV:trainable parameters 
2. We make three variables K,Q,V from A

K = WKA, Q = WQA, V = WVA
3. We generate new vector/matrix/tensor B

Bl = Al + ∑
i

Pl
iVi P = σ(QKT)

correlation between Q and K l=i or ij or ijk



What is the attention mechanism?
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Wk,WQ,WV:trainable parameters K = WKA, Q = WQA, V = WVA
3. We generate new vector/matrix/tensor B

Bl = Al + ∑
i

Pl
iVi P = σ(QKT)

correlation between Q and K
weighted sum

self-attention mechanism
This is most simplest architecture

In generative AIs, they use the multi-head attention

σ:nonlinear funciton

Simple mechanism but very effective! 

How can we use this in physics?



Equvariant transformer
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Fermion and spin model
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We want to focus on a simple lattice model

H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

fermions and classical spins
called double exchange model  
in condensed matter physics

Z = ∑
{S}

∏
n

(1 + e−β(μ−En({S})))

Partition function:

Configurations: classical spins {Si}
Si: i-th three dimensional vector in spin space

Input: spin configurations {S}

Output: Boltzmann weight

diagonalization

We want to replace the diagonalization



Fermion and spin model
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H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

fermions and classical spins

Simple effective model

HLinear
eff = − ∑

⟨i,j⟩n

Jeff
n Si ⋅ Sj + E0

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 241104(R)(2017) 

This is a linear model
Jneff: n-th nearest neighbor interaction

by integrating out fermion degrees of freedom

There are only few parameters Jneff
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Jeff
n Si ⋅ Sj + E0

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 241104(R)(2017) 

This is a linear model
Jneff: n-th nearest neighbor interaction

by integrating out fermion degrees of freedom

There are only few parameters Jneff

Heff = − ∑
⟨i,j⟩n

Jeff
n SNN

i ⋅ SNN
j + E0 SNN

i = f transformer({Si})

We replace the spins with “translated” spin with a transformer

Effective model with a transformer



Invariance and equivariance
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Hamiltonian has a symmetry ->invariant with the symmetry operation T

symmetry invariant
We can consider two kinds of networksS

T[S]

H(S) = H(T[S])

1. make invariant input and put it into neural networks
S -> C

T[S] -> C
H = f(C) Conventional architecture can be used
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Hamiltonian has a symmetry ->invariant with the symmetry operation T

symmetry invariant
We can consider two kinds of networksS

T[S]

H(S) = H(T[S])

1. make invariant input and put it into neural networks
S -> C

T[S] -> C
H = f(C) Conventional architecture can be used

2. make equivariant networks and make the output invariant

C = g(S)T’[g(S)] = g(T[S])
Equivariance

H = f(C)
This network can keep a symmetry
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S

T[S]

2. make equivariant networks and make the output invariant

T’[g(S)] = g(T[S])
Equivariance

g

g

g(S) f

f

f(g(S))
f(T’[S]) = f(S)
Invariance

Outputs are same
CNN uses equivariance

Invariance and equivariance
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S

T[S]

2. make equivariant networks and make the output invariant

T’[g(S)] = g(T[S])
Equivariance

g

g

g(S) f

f

f(g(S))

g(T[S]) f(g(T[S]))

f(T’[S]) = f(S)
Invariance

Outputs are same
CNN uses equivariance

Invariance and equivariance



Equivariant Transformer for spin systems
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S

K = WKS

Q = WQS

V = WVS

= +

W only mixes neighbor spins

M = WQSS+WK

S’ = S + ReLU(M) WVS 
Long range correlation is included 

Rotational and translational invariant

Ki = ∑
l

WlSi+l

(short range interaction)

YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer”, arXiv:2306.11527



23

If the second term is zero

Layer 1

Layer 2

Layer 3

Last
E = ∑

i
∑

l

Jl
⃗S3i ⋅ ⃗S3i+l + E0

Heisenberg model with effective spins

E = ∑
i

∑
l

Jl
⃗Si ⋅ ⃗Si+l + E0 we get linearized model

𝒩(Si) = Si/∥Si∥

S1 = 𝒩(S + ReLU(M1(S))WV1S)

S2 = 𝒩(S1 + ReLU(M2(S1))WV2S1)

S3 = 𝒩(S2 + ReLU(M3(S2))WV3S2)

Equivariant Transformer for spin systems
YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer”, arXiv:2306.11527
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H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

Original model: fermions and classical spins

Z = ∑
{S}

∏
n

(1 + e−β(μ−En({S})))

Partition function:

We make the effective model with Transformer

We generate target data and train the network in SLMC, simultaneously 

YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer”, arXiv:2306.11527

We use Flux.jl, a machine learning framework in Julia language
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6-th nearest neighbors
Ki = ∑

l

WlSi+l

Num. of parameters per layer
7+7+7 = 21

Num. of parameters is small

High acceptance ratio!

N=6

arXiv: 2306.11527
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YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer”, arXiv:2306.11527
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6-th nearest neighbors
Ki = ∑

l

WlSi+l

Num. of parameters per layer
7+7+7 = 21

arXiv: 2306.11527

Scaling low?

arXiv: 2306.11527

This is like the scaling lows in 
Large Language Models

This is MC simulation
We generate data as we want

YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer

”, arXiv:2306.11527

6x6
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Summary
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Equivariant Transformer in spin systems

YN and A. Tomiya, “Self-learning Monte Carlo with equivariant Transformer”, arXiv:2306.11527

Equivariant with respect to spin-rotational and 
translational symmetries

We found the scaling low!
We can improve models with increasing num. 
of layers

“Transformer and Attention” is very useful!


