Characterizing Strongly Interacting Matter at Finite Temperature: (2+1)flavor QCD with Möbius Domain Wall Fermions

Jishnu Goswami, In collaboration with

Sinya Aoki, Yasumichi Aoki, Hidenori Fukaya, Shoji Hashimoto, Issaku Kanamori, Takashi Kaneko, Yoshifumi Nakamura, Yu Zhang (JLQCD Collaboration)

Field Theory Research Team, RIKEN Center for Computational Science

24/11/2023

Large-scale lattice QCD simulation and application of machine learning Center for Computational Sciences, University of Tsukuba

QCD phase diagram : fluctuation of conserved charges

"Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan", Bzdaket al., Phys. Rept. '20

Conserve charge in Heavy Ion Collision experiment : Baryon number (B), Electric charge (Q) and Strangeness number (S).

A detailed review : Masayuki Asakawa, Masakiyo Kitazawa, Prog.Part.Nucl.Phys. 90 (2016) 299-342

Current status on the CEP search

From QCD EoS calculation

QCD CEP doesn't exist in the BESII range:

D. Bollweg et. al (HotQCD collaboration), Phys.Rev.D 105 (2022) 7, 074511,

J. Goswami , PoS LATTICE2022 (2023) 149

L. Adamczyk *et al.* (STAR Collaboration) Phys. Rev. Lett. 113, 092301, (2014) A. Adare *et al.* (PHENIX Collaboration) Phys. Rev. C 93, 011901(R) (2016)

In this talk, we will focus on calculating, χ^Q_{γ} using Möbius Domain Wall fermions.

Acknowledgments

1. Computational resource:

- Supercomputer Fugaku (hp230207, hp200130, hp210165, hp220174, ra000001).
- 2. Funding sources :
 - MEXT as "Program for Promoting Researches on the Supercomputer Fugaku", Simulation for basic science: from fundamental laws of particles to creation of nuclei, JPMXP1020200105;

シミュレーションでせまる基礎科学:量子新時代へのアプ

ローチ課題番号, JPMXP102023041.

- JICFuS.
- JPS KAKENHI(JP20K0396, I. Kanamori).

Ongoing work and code bases

Ongoing research on QCD thermodynamics with Möbius Domain Wall fermions: (JLQCD collaboration) (1) Finite temperature QCD phase transition with 3 flavors.

- (2) Conserved charge fluctuations, (this talk)
- (3) Symmetries in $N_f = 2 + 1$ lattice QCD at high temperatures

Configuration generation: Grid (<u>https://github.com/paboyle/Grid</u>) Measurements : (i) Hadrons (<u>https://github.com/aportelli/Hadrons</u>) (ii) Bridge++ (<u>https://bridge.kek.jp/Lattice-code/</u>) Data Analysis : <u>https://github.com/LatticeQCD/LatticeToolbox</u>

Properties of strongly interacting matter

 $T < T_{pc}$: QCD and Hadron resonance gas(HRG) $T = T_{pc}$: QCD at the transition region; Contact to heavy ion collision data $T > T_{pc}$: QCD and high T perturbation theory/Ideal fermi gas

Heavy Ion Collision experiment : 3 conserved charges; baryon number (B), electric charge (Q) and Strangeness number (S).

Low T : HRG	High T : Ideal fermi gas
B = +/-1	B = +/-1/3
Q= 0, +/-1,+/-2	Q= +/-1/3,+/-2/3
S=0,+/-1	S=0,+/-1

At,
$$T = T_{pc}$$
,

Q -fluctuations are Ideal for making contact with the heavy ion data: Detector can detect all the charge particles.

Extremely challenging in Lattice : χ_2^Q -fluctuations are dominated by the fluctuations of light pions at low T. For ex. Staggered quarks : pion spectrum distorted (i.e. $m_{\pi} \sim m_{\pi}^{RMS}$, depends on the lattice spacing).

S-fluctuations also suffer from similar effect, however effects are small as, $m_K > m_{\pi}$

We propose Möbius Domain Wall Fermions

Tuning of the bare input quark masses on the line of constant physics (LCP)

For,
$$N_{ au} = 12, \ m_u^{latt} \le m_{res}$$
. We tune the m_u^{input} in the LCP.

For, $N_{\tau} = 16$, $m_{u}^{latt} > m_{res}$, we perform mass reweighting.

Quark number susceptibility with Domain wall fermions

 $Z = \int DU \prod_{f=u,d,s} det M(m_f) \exp[-S_g], \quad \det M(m_f, \hat{\mu}_f) = \left[\frac{\det D(m_f, \hat{\mu}_f)^{DWF}}{\det D(m_{PV}, \hat{\mu}_f)^{DWF}}\right]$

 $U_4(x) \rightarrow \exp(\hat{\mu}_f)U_4(x), \ U_4^{\dagger}(x) \rightarrow \exp(-\hat{\mu}_f)U_4^{\dagger}(x), \ J.$ Bloch and T. Wettig, Phys. Rev. Lett. 97, 012003 (2006)

 $\hat{\mu}_f = \mu_f / T$, where , μ_f is the quark chemical potential for flavor f.

The diagonal and off-diagonal quark number susceptibilities can be written as,

$$\chi_{2}^{f} = \frac{N_{\tau}}{N_{\sigma}^{3}} \frac{\partial^{2} \ln Z}{\partial \hat{\mu}_{f}^{2}} \bigg|_{\hat{\mu}_{f}=0} = \frac{N_{\tau}}{N_{\sigma}^{3}} \left[\left\langle \frac{\partial^{2}}{\partial \hat{\mu}_{f}^{2}} \ln \det M \right\rangle + \left\langle \left(\frac{\partial}{\partial \hat{\mu}_{f}} \ln \det M \right)^{2} \right\rangle \right] \\ = \frac{N_{\tau}}{N_{\sigma}^{3}} \langle D_{2}^{f} \rangle + \langle (D_{1}^{f})^{2} \rangle, f = \{u, d, s\} \qquad \begin{array}{c} \text{M. Cheng et al,} \\ \text{Phys.Rev.D81:054510,2010}; \\ \text{P. Hegde et al, PoS} \\ \text{LATTICE2008:187,2008} \end{array}$$
$$\chi_{11}^{fg} = \frac{N_{\tau}}{N_{\sigma}^{3}} \frac{\partial^{2} \ln Z}{\partial \hat{\mu}_{f} \partial \hat{\mu}_{g}} \bigg|_{\hat{\mu}_{f}=0} = \frac{N_{\tau}}{N_{\sigma}^{3}} \langle D_{1}^{f} D_{1}^{g} \rangle, f \neq g, f, g = \{u, d, s\} \qquad \begin{array}{c} (D_{1}^{f})^{2} \text{ and } D_{1}^{f} D_{1}^{g} \text{ are the most noisy} \end{array}$$

pan

in our calculation

Stochastic trace estimation

Matrix size : $12V_5 \times 12V_5$

 $V_5 = N_\sigma^3 \times N_\tau \times L_s$

Error reduction in stochastic trace estimators ??

Each trace needs proper subtraction from the unphysical degrees of freedom

$$D_{1}^{f} = \operatorname{Tr}\left[D(m_{f})^{-1} \frac{dD(m_{f})}{d\hat{\mu}_{f}} - D(m_{pv})^{-1} \frac{dD(m_{pv})}{d\hat{\mu}_{f}}\right]$$
$$D_{1}^{f} = \frac{1}{N_{n}} \sum_{j}^{N_{n}} \left[\eta_{j}^{\dagger} D(m_{f})^{-1} \frac{dD(m_{f})}{d\hat{\mu}_{f}} \eta_{j} - \eta_{j}^{\dagger} D(m_{pv})^{-1} \frac{dD(m_{pv})}{d\hat{\mu}_{f}} \eta_{j}\right]$$

 η_j is the gaussian random noise.

Stochastic error reduction using dilution vectors :

$$D_{1}^{f} = \frac{1}{N_{n}} \sum_{j}^{N_{n}} \left[\sum_{a=1}^{N_{p}} \eta_{aj}^{\dagger} D(m_{f})^{-1} \frac{dD(m_{f})}{d\mu_{f}} \eta_{aj} - \sum_{a=1}^{N_{p}} \eta_{aj}^{\dagger} D(m_{pv})^{-1} \frac{dD(m_{pv})}{d\mu_{f}} \eta_{aj} \right]$$

 η_{aj} is the diluted gaussian random noise.

 $(D_1^f)^2$ we need to employ the unbiased estimator method.

We present calculations of qns and charge fluctuations for the lattice size, $N_{\sigma}^{3} \times N_{\tau} \times L_{s} = 24^{3} \times 12 \times 12, \ 32^{3} \times 16 \times 12$

Stochastic error reduction

We examine three dilution methods:

- (i) Even Odd dilution : splitting the η_i into two parts, in even and Odd lattice sites.
- (ii) Spin dilution : splitting the η_i into four spinor components.

(iii) Timeslice dilution : splitting the η_i into four parts, using $(N_{\tau} \mod 4)$.

Spin and timeslice dilution : Efficient for $(D_1^f)^2$, 2 - 3 times error reduction. EvenOdd dilution : Efficient for (D_2^f) .

Quark number susceptibility: $24^3 \times 12 \times 12$

 χ_2^u/χ_2^s : Reduction in the mass difference between u, s quarks at high temperatures. Results are qualitatively consistent with, S. Borsanyi et al, JHEP 1201 (2012) 138

Conserved charge fluctuations : electric charge-strangeness correlations

At $T < T_{pc}$, χ_{11}^{QS} is dominated by the ground state kaons and K * (892). We use LO Chpt to estimate the ground state for $m_l = m_s/10$. Good agreement between QCD data and the HRG curve for $T \leq T_{pc}$.

 $N_{\tau} = 16$, data needs more statistics for understanding the cut-off effects.

QMHRG2020 : D. Bollweg el al, Phys.Rev.D 104 (2021) 7, 074512

R. Bellwied et al, Phys. Rev. D 92, 114505 (2015) D. Bollweg el al, *Phys.Rev.D* 104 (2021) 7, 074512

13

Conserved charge fluctuations : electric charge cumulant

$$\chi_2^Q = \frac{1}{9} (5\chi_2^u + \chi_2^s - 4\chi_{11}^{ud} - 2\chi_{11}^{us})$$

- Non interacting HRG framework, At low T, χ_2^Q is dominated by charged pions and Kaons.
- Using LO chpt we obtained pion mass for slightly heavy light quarks ($m_l = 0.1m_s$) is 223 MeV.
- We will use HRG to understand the cut-off effects in this observables.

Line of constant physics

 $N_{\tau} = 12$, the LCP deviates at the lower temperatures. Which will lead to smaller pion and Kaon masses.

- Non interacting HRG framework, At low T, χ_2^Q is dominated by charged pions and Kaons.
- Using LO chpt we obtained pion mass for slightly heavy light quarks ($m_l = 0.1m_s$) is 223 MeV.
- We also use the LO chpt to estimate the ground state pion and Kaons.

Conserved charge fluctuations : electric charge cumulant

 $\chi_2^Q = \frac{1}{9} (5\chi_2^u + \chi_2^s - 4\chi_{11}^{ud} - 2\chi_{11}^{us})$

- At low temperatures, χ_2^Q is dominated by pions.
- Using LO chpt we obtained pion mass for slightly heavy light quarks $(m_l = 0.1m_s)$ is 223 MeV.
- Unlike calculations with staggered fermions, we see a good agreement with hadron resonance gas (HRG) with χ_2^Q at

$$T < T_{pc}$$
 at $N_{\tau} = 12$.

- However, close to the T_{pc} the deviations seems to be robust.

D. Bollweg el al, *Phys.Rev.D* 104 (2021) 7, 074512

 $N_{\tau} = 16$, data needs more statistics for better understanding the cut-off effects.

Summary and future work

- We present preliminary results of conserved charge fluctuations using (2+1)-flavor QCD with a chiral fermion formalism, specifically Möbius Domain Wall Fermions.
- For benchmarking and understanding all the systematics of Möbius Domain Wall Fermions, we consider slightly heavier light quark mass on the line of constant physics.
- We also compare our results with HRG (Hadron Resonance Gas) model.
- Calculations with physical quark masses are currently ongoing.

Thank you for your attention !!

Manny value yvar accention ...

Conserved charge fluctuations : electric charge cumulant

$$\chi_2^Q = \frac{1}{9} (5\chi_2^u + \chi_2^s - 4\chi_{11}^{ud} - 2\chi_{11}^{us})$$

 $N_{\tau} = 16$, data needs more statistics for understanding the cut-off effects.