The Fokker-Planck formalism for closed bosonic strings

Talk at SFT@Cloud
Nobuyuki Ishibashi (University of Tsukuba)
March 9, 2023

String Field Theory (SFT)

- The amplitudes in string theory are expressed by Feynman diagrams = worldsheets \sim Riemann surfaces
- In order to construct an SFT, we should define a rule to cut all the worldsheets into propagators and vertices systematically.
- In general, we need infinitely many vertices to do so.

$$
S=\phi K \phi+\phi^{3}+\phi^{4}+\cdots+\hbar \phi+\cdots
$$

- Such a theory can be studied by using the homotopy algebra methods. (Zwiebach, ...)

SFT with only three string vertices

We would like to find out a way to construct an SFT as simple as

$$
S=\phi K \phi+\phi^{3}
$$

- So far, there exist essentially two known rules for which the theory looks like that.

LC type

Witten type

- We would like to find out yet another rule.

SFT with only three string vertices

Witten type

- SFT's for bosonic strings were constructed using these rules.

$$
S=\phi K \phi+\phi^{3}
$$

- Light-cone gauge SFT(Kaku-Kikkawa), $\alpha=p^{+}$HIKKO (Kugo-Zwiebach theory), covariantized light-cone
- Witten's SFT
- These rules do not work for superstrings, because of the "spurious singularity" problem.

The pants decomposition

a pair of pants

- A Riemann surface with $2 g-2+n>0$ admits a hyperbolic metric such that the boundaries are geodesics. (cf. Moosavian-Pius, Costello-Zwiebach)
- It can be decomposed into pairs of pants whose boundaries are geodesics.

An SFT based on the pants decomposition?

- We may be able to construct an SFT based on the pants decomposition at least for closed bosonic strings

$$
S=\phi K \phi+\phi^{3}
$$

- The SFT will be quite different from the usual ones.
- The string field $|\phi(L)\rangle$ depends on the length L of the string
- We may consider $|\phi(L)\rangle$ as an operator from which we can derive various properties of the particles.
- The kinetic term should be different from the conventional one

$$
\langle\phi| Q c_{0}^{+}|\phi\rangle
$$

An SFT based on the pants decomposition?

$$
S=\phi K \phi+\phi^{3}
$$

- This action does not work. (D'Hoker-Gross)
- One-loop one point amplitudes diverge because the pants decomposition is not unique.

... $A=\infty x$
- The decompositions are related by modular transformations.
- Most of the amplitudes diverge in the same way.
- We cannot construct the action.

We should take an alternative approach. \longrightarrow the Fokker-Planck formalism

The Fokker-Planck formalism

- Euclidean field theory: action $S[\phi]$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{\int[d \phi] e^{-S[\phi]} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)}{\int[d \phi] e^{-S[\phi]}}
$$

- Fokker-Planck formalism

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\lim _{\tau \rightarrow \infty}\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{\phi}\left(x_{1}\right) \cdots \hat{\phi}\left(x_{n}\right)|0\rangle \\
{[\hat{\pi}(x), \hat{\phi}(y)]=\delta(x-y),[\hat{\pi}, \hat{\pi}]=[\hat{\phi}, \hat{\phi}]=0} \\
\langle 0| \hat{\phi}(x)=\hat{\pi}(x)|0\rangle=0 \\
\hat{H}_{\mathrm{FP}}=-\int d x\left(\hat{\pi}(x)+\frac{\delta S}{\delta \phi(x)}[\hat{\phi}]\right) \hat{\pi}(x)
\end{gathered}
$$

- path integral: action $I_{\mathrm{FP}}[\phi, \pi]$

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{\int[d \pi d \phi] e^{-I_{\mathrm{FP}}} \phi\left(0, x_{1}\right) \cdots \phi\left(0, x_{n}\right)}{\int[d \pi d \phi] e^{-I_{\mathrm{FP}}}} \\
I_{\mathrm{FP}}=\int_{0}^{\infty} d \tau\left[-\int d x \pi \partial_{\tau} \phi+H_{\mathrm{FP}}\right]
\end{gathered}
$$

In this talk

- I would like to show that it is possible to construct an SFT for closed bosonic strings based on the pants decomposition via the Fokker-Planck formalism.

$$
\begin{aligned}
& I_{\mathrm{FPP}}[\phi, \pi, \lambda] \\
& \qquad \begin{aligned}
=\int_{0}^{\infty} d \tau[& -\int_{0}^{\infty} d L\left\langle R \mid \pi_{\alpha}(\tau, L)\right\rangle \frac{\partial}{\partial \tau}\left|\phi^{\alpha}(\tau, L)\right\rangle+H(\tau) \\
& \left.+\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{Q}}(\tau, L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\tau}(\tau, L)\right\rangle\right)\right]
\end{aligned}
\end{aligned}
$$

- $\lambda_{\alpha}^{\mathcal{Q}}, \lambda_{\alpha}^{\mathcal{T}}$: auxiliary fields
- This action consists of kinetic terms and three string interaction terms.
- $S[\phi]$ is not well-defined in our setup.

Based on PTEP 2023,023B05 (2023)

This talk

A recursion relation for closed bosonic strings

BRST invariant
formulation

Plan of the talk

1. Mirzakhani recursion
2. A recursion relation for the off-shell amplitudes of closed bosonic strings
3. The Fokker-Planck formalism
4. BRST invariant formulation
5. Conclusions
6. Mirzakhani recursion

1. Mirzakhani recursion

- Reviews: Moosavian-Pius, Do arXiv:1103.4674 [math], Huang arXiv:1509.06880 [math.GT]

Mirzakhani recursion

The volume of the moduli space of Riemann surfaces with genus g and n boundaries $(2 g-2+n>0)$ whose lengths are L_{1}, \cdots, L_{n} is given by

$$
V_{g, n}\left(L_{1}, \cdots, L_{n}\right)=\int \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]
$$

- The moduli space of Riemann surfaces (genus g, n boundaries) is parametrized by the coordinates $\left(l_{s} ; \theta_{s}\right)(s=1, \cdots, 3 g-3+n)$.
- l_{s} denotes the length of a nonperipheral boundary and θ_{s} is the twist angle in a pants decomposition.

Modular invariance

$$
V_{g, n}\left(L_{1}, \cdots, L_{n}\right)=\int \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]
$$

- Integrating over $0<l_{s}<\infty$, the integral diverges.
- The pants decomposition is not unique. There are infinitely many pants decomposition related by modular transformations.

$\cdots \quad \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{l d l d \theta}{2 \pi}=\infty \times$

- We should integrate over the fundamental domain \mathcal{F}, which is very complicated in general.

$$
V_{g, n}\left(L_{1}, \cdots, L_{n}\right)=\int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]
$$

McShane identity $(g=n=1, L=0)$

- McShane identity (1998): for $f(l)=\frac{2}{1+e^{l}}$

$$
1=\sum_{\gamma \text { cmodular group }} f(\gamma \cdot l)
$$

- $V_{1,1}$ can be calculated multiplying this by $\int_{\mathcal{F}} \frac{l d l d \theta}{2 \pi}$ (Mirzakhani)

$$
\begin{aligned}
V_{1,1}(0) & =\int_{\mathcal{F}} \frac{l d l d \theta}{2 \pi}=\int_{\mathcal{F}} \sum_{\gamma} f(\gamma \cdot l) \frac{l d l d \theta}{2 \pi} \\
& =\int_{\mathcal{F}} \sum_{\gamma} f(\gamma \cdot l) \frac{\gamma \cdot l d(\gamma \cdot l) d(\gamma \cdot \theta)}{2 \pi}=\sum_{\gamma} \int_{\gamma \mathcal{F}} f(l) \frac{l d l d \theta}{2 \pi} \\
& =\int \frac{d l d \theta l}{2 \pi} \frac{2}{1+e^{l}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

Generalized McShane identity

- Mirzakhani obtained identities for general g, n with $2 g-2+n>0$.

$$
L_{1}=\sum_{\{\gamma, \delta\} \in \mathcal{C}_{1}} D_{L_{1} l_{\gamma} l_{\delta}}+\sum_{a=2}^{n} \sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right)
$$

$$
\begin{aligned}
D_{L L^{\prime} L^{\prime \prime}} & =2\left(\log \left(e^{\frac{L}{2}}+e^{\frac{L^{\prime}+L^{\prime \prime}}{2}}\right)-\log \left(e^{-\frac{L}{2}}+e^{\frac{L^{\prime}+L^{\prime \prime}}{2}}\right)\right) \\
T_{L L^{\prime} L^{\prime \prime}} & =\log \frac{\cosh \frac{L^{\prime \prime}}{2}+\cosh \frac{L+L^{\prime}}{2}}{\cosh \frac{L^{\prime \prime}}{2}+\cosh \frac{L-L^{\prime}}{2}}
\end{aligned}
$$

Mirzakhani recursion relation

Multiplying

$$
L_{1}=\sum_{\{\gamma, \delta\} \in \mathscr{C}_{1}} \mathrm{D}_{L_{1} l_{\gamma} l_{\delta}}+\sum_{a=2}^{n} \sum_{\gamma \in \mathscr{C}_{a}}\left(\mathrm{~T}_{L_{1} L_{a} l_{\gamma}}+\mathrm{D}_{L_{1} L_{a} l_{\gamma}}\right)
$$

by $\int_{\mathcal{F}} \Pi_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]$, we get

$$
\begin{aligned}
L V_{g, n+1}(L, \mathbf{L})= & \frac{1}{2} \int_{0}^{\infty} d L^{\prime} L^{\prime} \int_{0}^{\infty} d L^{\prime \prime} L^{\prime \prime} D_{L L^{\prime} L^{\prime \prime}} V_{g-1, n+2}\left(L^{\prime}, L^{\prime \prime}, \mathbf{L}\right) \\
& +\frac{1}{2} \int_{0}^{\infty} d L^{\prime} L^{\prime} \int_{0}^{\infty} d L^{\prime \prime} L^{\prime \prime} D_{L L^{\prime} L^{\prime \prime}} \sum_{\text {stable }} V_{g_{1}, n_{1}}\left(L^{\prime}, \mathbf{L}_{1}\right) V_{g_{2}, n_{2}}\left(L^{\prime \prime}, \mathbf{L}_{2}\right) \\
& +\sum_{a=1}^{n} \int_{0}^{\infty} d L^{\prime} L^{\prime}\left(T_{L_{1} L_{a} L^{\prime}}+D_{L_{1} L_{a} L^{\prime}}\right) V_{g, n}\left(L, \mathbf{L} \backslash L_{a}\right)
\end{aligned}
$$

- One can calculate $V_{g, n}\left(L_{1}, \cdots, L_{n}\right)$ by solving this equation.
- The right hand side consists of quantities with less $2 g-2+n$.

Mirzakhani recursion relation

$$
\begin{aligned}
& \int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right] \times \\
& L_{1}=\sum_{\{\gamma, \delta\} \in \mathcal{C}_{1}} D_{L_{1} l_{\gamma} l_{\delta}}+\sum_{a=2}^{n} \underline{\sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right)} \\
& \int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right] \sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right) \\
&=\sum_{\gamma \in \mathcal{C}_{a}} \int_{\mathcal{F}} \frac{l_{\gamma} d l_{\gamma} d \theta_{\gamma}}{2 \pi}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right) \times \underline{\ldots} \\
&=\int_{0}^{\infty} d l l\left(T_{L_{1} L_{a} l}+D_{L_{1} L_{a} l}\right) \underline{V_{g, n}\left(l, \mathbf{L} \backslash L_{a}\right)}
\end{aligned}
$$

2. A recursion relation for the off-shell amplitudes of closed bosonic strings

2. A recursion relation for the off-shell amplitudes of closed bosonic strings

Amplitudes in string theory

- In string theory, the amplitudes are given by integrals over the moduli space of Riemann surfaces

$$
A_{g, n}=\int_{\mathcal{F}} \prod_{s}\left[d l_{s} d \theta_{s}\right]\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] V_{i_{1}} \cdots V_{i_{n}}\right\rangle
$$

- It is conceivable that we can derive a recursion relation for these amplitudes in the same way as we did for the recursion relation for

$$
V_{g, n}\left(L_{1}, \cdots, L_{n}\right)=\int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]
$$

The recursion relation

generalized McShane identity

$$
\int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right] \times
$$

$$
L_{1}=\sum_{\{\gamma, \delta\} \in \mathcal{C}_{1}} D_{L_{1} l_{\gamma} l_{s}}+\sum_{a=2}^{n} \sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right) \longrightarrow \begin{gathered}
\text { recursion relation for } \\
V_{g, n}\left(L_{1}, \cdots, L_{n}\right)=\int_{\mathcal{F}} \prod_{s}\left[\frac{\left.l_{s} d l_{s} d \theta_{s}\right]}{2 \pi}\right]
\end{gathered}
$$

$$
\int_{\mathcal{F}} \prod_{s} d l_{s} d \theta_{s}\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] V_{i_{1}} \cdots V_{i_{n}}\right\rangle \times
$$

recursion relation for
$A_{g, n}^{i_{1} \cdots i_{n}}=\int_{\mathcal{F}} \prod_{s} d l_{s} d \theta_{s}\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] V_{i_{1}} \cdots V_{i_{n}}\right\rangle$

$$
\begin{aligned}
L_{1} A_{g, n}^{I_{1} \cdots I_{n}}= & L_{1} G^{I_{1} I_{2}} \delta_{g, 0} \delta_{n, 2} \\
& +\frac{1}{2} D^{I_{1} J^{\prime} J} G_{J I} G_{J^{\prime} I^{\prime}}\left[A_{g-1, n+1}^{I I^{\prime} I_{2} \cdots I_{n}}+\sum^{\prime} \frac{\varepsilon_{\mathcal{I}_{1} \mathcal{I}_{2}}}{\left(n_{1}-1\right)!\left(n_{2}-1\right)!} A_{g_{1}, n_{1}}^{I \mathcal{I}_{1}} A_{g_{2}, n_{2}}^{I^{\prime} \mathcal{I}_{2}}\right] \\
& +\sum_{a=2}^{n} \varepsilon_{a} T^{I_{1} I_{a} J} G_{J I} A_{g, n-1}^{I I_{2} \cdots \hat{I}_{a} \cdots I_{n}}
\end{aligned}
$$

Details 1:The off-shell amplitudes

- The off-shell amplitudes on Σ can be defined using $\operatorname{gr}_{\infty}^{\prime} \Sigma$. (Costello-Zwiebach)

$$
A_{g, n}=\int_{\mathcal{F}} \prod_{s}\left[d l_{s} d \theta_{s}\right]\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] V_{i_{1}} \cdots V_{i_{n}}\right\rangle
$$

- We can use the coordinates l_{s}, θ_{s} to parameterize the moduli space of the punctured Riemann surface. (Mondello)
- For states $\left|\varphi^{i}{ }_{a}\right\rangle=\mathcal{O}_{i_{a}}(0)|0\rangle$ in the state space of the bosonic string (in any background), satisfying

$$
\begin{gathered}
\left(b_{0}-\bar{b}_{0}\right)\left|\varphi^{i_{a}}\right\rangle=\left(L_{0}-\bar{L}_{0}\right)\left|\varphi^{i_{a}}\right\rangle=0 \\
V_{i_{a}} \sim w_{a} \mathcal{O}_{\varphi^{i} a}(0)|0\rangle
\end{gathered}
$$

Details 2: b-ghost insertions

$$
A_{g, n}=\int_{\mathcal{F}} \prod_{s}\left[d l_{s} d \theta_{s}\right]\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] V_{i_{1}} \cdots V_{i_{n}}\right\rangle
$$

- $b\left(\partial_{l_{s}}\right), b\left(\partial_{\theta_{s}}\right)$ are constructed following the standard prescription. (Sen 2015, Erbin's book, ...)
- They are expressed by the variations of the transition functions between local patches.
- In our case, we can take the patches to be the pairs of pants.
- Since a pair of pants $\mathbb{C}-\cup_{k} D_{k}$, we take z on \mathbb{C} as the local coordinate.

b-ghost insertions

- The explicit forms of $W_{k}(z)$ are given in terms of the hypergeometric function (Fırat, Hadasz-Jaskolski)
- $b\left(\partial_{l}\right)$ has contributions from two adjacent pairs of pants.

Details 3: The recursion relation

$$
\int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right]\langle\cdots\rangle \times
$$

$$
\begin{aligned}
L_{1}= & \sum_{\{\gamma, \delta\} \in \mathcal{C}_{1}} D_{L_{1} l_{\gamma} l_{\delta}}+\sum_{a=2}^{n} \frac{\sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right)}{\downarrow} \\
& \int_{\mathcal{F}} \prod_{s}\left[\frac{l_{s} d l_{s} d \theta_{s}}{2 \pi}\right] \sum_{\gamma \in \mathcal{C}_{a}}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right) \times
\end{aligned}
$$

$$
=\sum_{\gamma \in \mathcal{C}_{a}} \int \frac{l_{\gamma} d l_{\gamma} d \theta_{\gamma}}{2 \pi}\left(T_{L_{1} L_{a} l_{\gamma}}+D_{L_{1} L_{a} l_{\gamma}}\right)
$$

$$
b\left(\partial_{\theta_{\gamma}}\right)\left(b_{S}\left(\partial_{l_{\gamma}}\right)+b_{S^{\prime}}\left(\partial_{l_{\gamma}}\right)\right)
$$

The recursion relation

- The string field is labeled by $(i, L, \alpha) \equiv I(\alpha= \pm)$

$$
\begin{aligned}
& A_{g, n}^{I_{1} \cdots I_{n}}=\int_{\mathcal{F}} \prod_{s}\left[d l_{s} d \theta_{s}\right]\left\langle\prod_{s}\left[b\left(\partial_{l_{s}}\right) b\left(\partial_{\theta_{s}}\right)\right] B_{\alpha_{1}} \cdots B_{\alpha_{n}} V_{i_{1}} \cdots V_{i_{n}}\right\rangle \\
& B_{\alpha_{a}} \equiv \begin{cases}1 & \alpha_{a}=+ \\
\left(b_{0}^{(a)}-\bar{b}_{0}^{(a)}\right) b_{S_{a}}\left(\partial_{L_{a}}\right) \int_{0}^{2 \pi} \frac{d \theta_{a}}{2 \pi} e^{i \theta_{a}\left(L_{o}^{(a)}-\bar{L}_{o}^{(a)}\right)} & \alpha_{a}=-\end{cases} \\
& L_{1} A_{g, n}^{I_{1} \cdots I_{n}}=L_{1} G^{I_{1} I_{2}} \delta_{g, 0} \delta_{n, 2} \\
& +\frac{1}{2} D^{I_{1} J^{\prime} J} G_{J I} G_{J^{\prime} I^{\prime}}\left[A_{g-1, n+1}^{I I^{\prime} I_{2} \cdots I_{n}}+\sum^{\prime} \frac{\varepsilon_{\mathcal{I}_{1} \mathcal{I}_{2}}}{\left(n_{1}-1\right)!\left(n_{2}-1\right)!} A_{g_{1}, n_{1}}^{I \mathcal{I}_{1}} A_{g_{2}, n_{2}}^{I^{\prime} \mathcal{I}_{2}}\right] \\
& +\sum_{a=2}^{n} \varepsilon_{a} T^{I_{1} I_{a} J} G_{J I} A_{g, n-1}^{I I_{2} \cdots \hat{I}_{a} \cdots I_{n}} \\
& T^{I_{1} I_{2} I_{3}} \equiv T_{L_{1} L_{2} L_{3}}\left\langle B_{\alpha_{1}} B_{\alpha_{2}} B_{\alpha_{3}} V^{i_{1}} V^{i_{2}} V^{i_{3}}\right\rangle \\
& D^{I_{1} I_{2} I_{3}} \equiv D_{L_{1} L_{2} L_{3}}\left\langle B_{\alpha_{1}} B_{\alpha_{2}} B_{\alpha_{3}} V^{i_{1}} V^{i_{2}} V^{i_{3}}\right\rangle \\
& G_{I_{1} I_{2}} \equiv\left\langle\varphi_{i_{1}}^{c} \mid \varphi_{i_{2}}^{c}\right\rangle(-1)^{n_{\varphi_{i}}} \delta\left(L_{1}-L_{2}\right) \delta_{\alpha_{1},-\alpha_{2}},
\end{aligned}
$$

3. The Fokker-Planck formalism

3. The Fokker-Planck formalism

$$
\begin{aligned}
\hat{H}_{\mathrm{FP}}= & -L \hat{\pi}_{I} \hat{\pi}_{I^{\prime}} G^{I^{\prime} I}+L \hat{\phi}^{I} \hat{\pi}_{I} \\
& -\frac{1}{2} g_{\mathrm{s}} D^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} G_{I^{\prime} K^{\prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\phi}^{K^{\prime}} \hat{\pi}_{I} \\
& -g_{\mathrm{s}} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\pi}_{I^{\prime}} \hat{\pi}_{I}
\end{aligned}
$$

The Fokker-Planck formalism

$$
\begin{aligned}
L_{1} A_{g, n}^{I_{1} \cdots I_{n}}= & L_{1} G^{I_{1} I_{2}} \delta_{g, 0} \delta_{n, 2} \\
& +\frac{1}{2} D^{I_{1} J^{\prime} J} G_{J I} G_{J^{\prime} I^{\prime}}\left[A_{g-1, n+1}^{I I^{\prime} I_{2} \cdots I_{n}}+\sum{ }^{\prime} \frac{\varepsilon_{\mathcal{I}_{1} \mathcal{I}_{2}}}{\left(n_{1}-1\right)!\left(n_{2}-1\right)!} A_{g_{1}, n_{1}}^{I \mathcal{I}_{1}} A_{g_{2}, n_{2}}^{I^{\prime} \mathcal{I}_{2}}\right] \\
& +\sum_{a=2}^{n} \varepsilon_{a} T^{I_{1} I_{a} J} G_{J I} A_{g, n-1}^{I I_{2} \cdots \hat{I}_{a} \cdots I_{n}}
\end{aligned}
$$

- One can derive the amplitudes $A_{g, n}^{I_{1} \cdots I_{n}}$ perturbatively solving this equation.
- This equation can be regarded as the Schwinger-Dyson equation of string theory.
- We may be able to construct an SFT from this equation.
- This equation can be turned into an SFT in the FP formalism via the method developed by Kawai-NI, Jevicki-Rodrigues, Fukuma-Kawai-Ninomiya-NI, Ikehara-Kawai-Mogami-Nakayama-Sasakura-NI, Ikehara,

The Fokker-Planck formalism for closed bosonic strings

- The off-shell amplitudes
- The Fokker-Planck formalism

$$
\begin{aligned}
& \left.\left\langle\left\langle\phi^{I_{1}} \cdots \phi^{I_{n}}\right\rangle\right\rangle \longleftrightarrow \lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{\phi}^{I_{1}} \cdots \hat{\phi}^{I_{n}} \mid 0\right\rangle\right\rangle \\
& \left\langle\left\langle\phi^{I_{1}} \cdots \phi^{I_{n}}\right\rangle\right\rangle^{\mathrm{c}}=\sum_{g=0}^{\infty} g_{\mathrm{s}}^{2 g-2+n} A_{g, n}^{I_{1} \cdots I_{n}} \\
& {\left[\hat{\pi}_{I}, \hat{\phi}^{K}\right]=\delta_{I}{ }^{K}} \\
& {\left[\hat{\pi}_{I}, \hat{\pi}_{K}\right]=\left[\hat{\phi}^{I}, \hat{\phi}^{K}\right]=0} \\
& \left.\left\langle\langle 0| \hat{\phi}^{I}=\hat{\pi}_{I} \mid 0\right\rangle\right\rangle=0 \\
& \text { * The recursion relation } \\
& \text { * SD equation } \\
& \left.\mathcal{T}^{I}\left\langle\left\langle e^{J_{I} \phi^{I}}\right\rangle\right\rangle=0 \underset{H_{\mathrm{FP}}\left[\frac{\delta}{\delta J}, J\right]=J_{I} \mathcal{T}^{I}}{\rightleftarrows} H_{\mathrm{FP}}\left[\frac{\delta}{\delta J}, J\right] \lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} e^{J_{I} \hat{\phi}^{I}} \mid 0\right\rangle\right\rangle=0 \\
& \mathcal{T}^{I} \equiv-L G^{I^{\prime} I} J_{I^{\prime}}+L \frac{\delta}{\delta J_{I}} \\
& -\frac{1}{2} g_{\mathrm{s}} D^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime}} K^{\prime \prime} G_{I^{\prime} K^{\prime}} \frac{\delta^{2}}{\delta J_{K^{\prime \prime}} \delta J_{K^{\prime}}} \\
& -g_{\mathrm{s}} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} J_{I^{\prime}} \frac{\delta}{\delta J_{K^{\prime \prime}}}(-1)^{|I|\left|I^{\prime}\right|}, \\
& \left.\lim _{\tau \rightarrow \infty} \partial_{\tau}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}[\hat{\phi}, \hat{\pi}]} \hat{\phi}^{I_{1}} \cdots \hat{\phi}^{I_{n}} \mid 0\right\rangle\right\rangle=0
\end{aligned}
$$

$$
\hat{H}_{\mathrm{FP}}=\hat{T}^{I} \hat{\pi}_{I}
$$

The Fokker-Planck formalism for closed bosonic strings

$$
\begin{aligned}
& \hat{H}_{\mathrm{FP}}= \hat{T}^{I} \hat{\pi}_{I} \\
&=-L \hat{\pi}_{I} \hat{\pi}_{I^{\prime}} G^{I^{\prime} I}+L \hat{\phi}^{I} \hat{\pi}_{I} \\
&-\frac{1}{2} g_{\mathrm{s}} D^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} G_{I^{\prime} K^{\prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\phi}^{K^{\prime}} \hat{\pi}_{I} \\
&-g_{\mathrm{s}} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\pi}_{I^{\prime}} \hat{\pi}_{I} \\
& \hat{T}^{I}=-L \hat{\pi}_{I^{\prime}} G^{I I^{\prime}}+L \hat{\phi}^{I} \\
&-\frac{1}{2} g_{\mathrm{s}} D^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} G_{I^{\prime} K^{\prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\phi}^{K^{\prime}} \\
&-g_{\mathrm{s}} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime \prime} K^{\prime \prime}} \hat{\phi}^{K^{\prime \prime}} \hat{\pi}_{I^{\prime}} \\
&\left\langle\left\langle\phi^{I_{1} \cdots} \phi^{I_{n}}\right\rangle=\lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{\phi}^{I_{1}} \cdots \hat{\phi}^{I_{n}} \mid 0\right\rangle\right\rangle
\end{aligned}
$$

- The Hamiltonian consists of the kinetic terms and the three string interaction terms.

The action $S[\phi]$

- It is possible to (formally) define the action $S[\phi]$.

$$
\begin{aligned}
& \left.\frac{e^{-S[\phi]}}{\int[d \phi] e^{-S[\phi]}}=\lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}} \delta(\phi-\hat{\phi}) \mid 0\right\rangle\right\rangle \\
& \frac{\int[d \phi] e^{-S[\phi]} \phi^{I_{1}} \ldots \phi^{I_{n}}}{\int[d \phi] e^{-S[\phi]}} \\
& \quad=\lim _{\tau \rightarrow \infty}\langle 0| e^{-\tau \hat{H}} \int[d \phi] \delta(\phi-\hat{\phi}) \phi^{\left.I_{1} \ldots \phi^{I_{n}}|0\rangle\right\rangle} \\
& \quad=\lim _{\tau \rightarrow \infty}\langle 0| e^{-\tau \hat{H}} \hat{\phi}^{I_{1}} \ldots \hat{\phi}^{I_{n}}|0\rangle
\end{aligned}
$$

- One can calculate $S\left[\phi^{I}\right]$ perturbatively.

$$
\begin{aligned}
& S\left[\phi^{I}\right]=\frac{1}{2} G_{I J} \phi^{I} \phi^{J}-\frac{g_{\mathrm{s}}}{6} A_{0,3}^{I I^{\prime} I^{\prime \prime}} G_{I J} G_{I^{\prime} J^{\prime}} G_{I^{\prime \prime} J^{\prime \prime}} \phi^{J^{\prime \prime}} \phi^{J^{\prime}} \phi^{J} \\
&+\frac{g_{\mathrm{s}}}{L} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime} I^{\prime \prime}} G_{I J} \phi^{J}+\mathcal{O}\left(g_{\mathrm{s}}^{2}\right) \\
& {\left[L G^{I J}+g_{\mathrm{s}} T^{I J I^{\prime}} G_{I^{\prime} J^{\prime}} \phi^{J^{\prime}}\right] \frac{\delta S}{\delta \phi^{J}} } \\
&=L \phi^{I}-\frac{1}{2} g_{\mathrm{s}} D^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime} J^{\prime}} G_{I^{\prime \prime} J^{\prime \prime}} \phi^{J^{\prime \prime}} \phi^{J^{\prime}}+g_{\mathrm{s}} T^{I I^{\prime} I^{\prime \prime}} G_{I^{\prime} I^{\prime \prime}}
\end{aligned}
$$

The action $S[\phi]$

- $S\left[\phi^{I}\right]$ is divergent and ill defined.
- The 1 loop 1 point amplitude

- $S\left[\phi^{I}\right]$ includes infinitely many divergent counterterms.
- FP formalism breaks the modular invariance.

4. BRST invariant formulation

4. BRST invariant formulation

BRST symmetry on the worldsheet

- We need the worldsheet BRST symmetry to define the physical states with positive norm.

$$
\begin{aligned}
Q \mid \text { phys. }\rangle & =0 \\
\rangle & \sim\rangle+Q|\rangle^{\prime}
\end{aligned}
$$

- In order to discuss this symmetry, we change the notation

$$
\begin{aligned}
&\left|\phi^{\alpha}(L)\right\rangle \equiv \sum_{i} \hat{\phi}^{I}\left|\varphi_{i}^{c}\right\rangle \\
&\left|\pi_{\alpha}(L)\right\rangle \equiv \sum_{i}\left|\varphi_{i}\right\rangle \hat{\pi}_{I} \\
& \hat{H}_{\mathrm{FP}}=\quad \int_{0}^{\infty} d L L\left[\left\langle R \mid \phi^{\alpha}(L)\right\rangle\left|\pi_{\alpha}(L)\right\rangle-\left\langle R \mid \pi_{\alpha}(L)\right\rangle\left|\pi_{-\alpha}(L)\right\rangle\right] \\
&-g_{\mathrm{s}} \int d L_{1} d L_{2} d L_{3}\left\langle T_{\left.L_{2} L_{3} L_{1}\left|B_{-\alpha_{1}}^{1} B_{\alpha_{2}}^{2} B_{\alpha_{3}}^{3}\right| \phi^{\alpha_{1}}\left(L_{1}\right)\right\rangle_{1}\left|\pi_{\alpha_{2}}\left(L_{2}\right)\right\rangle_{2}\left|\pi_{\alpha_{3}}\left(L_{3}\right)\right\rangle_{3}}^{-\frac{1}{2} g_{\mathrm{s}} \int d L_{1} d L_{2} d L_{3}\left\langle D_{L_{3} L_{1} L_{2}}\right| B_{-\alpha_{1}}^{1} B_{-\alpha_{2}}^{2} B_{\alpha_{3}}^{3}\left|\phi^{\alpha_{1}}\left(L_{1}\right)\right\rangle_{1}\left|\phi^{\alpha_{2}}\left(L_{2}\right)\right\rangle_{2}\left|\pi_{\alpha_{3}}\left(L_{3}\right)\right\rangle_{3}}\right.
\end{aligned}
$$

- The BRST transformation

$$
\begin{array}{ll}
\delta_{\epsilon}\left|\phi^{+}(L)\right\rangle=\frac{1}{2} \epsilon c_{0}^{-} b_{0}^{-} P Q\left|\phi^{+}(L)\right\rangle & \delta_{\epsilon}\left|\pi_{+}(L)\right\rangle=\epsilon Q\left|\pi_{+}(L)\right\rangle-\epsilon b_{0}^{-} P \partial_{L}\left|\pi_{-}(L)\right\rangle \\
\delta_{\epsilon}\left|\phi^{-}(L)\right\rangle=\epsilon Q\left|\phi^{-}(L)\right\rangle-\epsilon b_{0}^{-} P \partial_{L}\left|\phi^{+}(L)\right\rangle & \delta_{\epsilon}\left|\pi_{-}(L)\right\rangle=\frac{1}{2} \epsilon c_{0}^{-} b_{0}^{-} P Q\left|\pi_{-}(L)\right\rangle
\end{array}
$$

- \hat{H}_{FP} is not BRST invariant.
- If it were, FP formalism would be modular invariant
- Let \hat{Q} be the generator of the BRST transformation

$$
\begin{aligned}
& \delta \hat{H}_{\mathrm{FP}}=\left[\hat{Q}, \hat{H}_{\mathrm{FP}}\right]=\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(L)\right\rangle\left|\pi_{\alpha}(L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(L)\right\rangle\left[\hat{Q},\left|\pi_{\alpha}(L)\right\rangle\right]\right) \\
& \hat{H}_{\mathrm{FP}}=\int_{0}^{\infty} d L\left\langle R \mid \mathcal{T}^{\alpha}(L)\right\rangle\left|\pi_{\alpha}(L)\right\rangle \\
&\left|\mathcal{Q}^{\alpha}(L)\right\rangle \equiv\left[\hat{Q},\left|\mathcal{T}^{\alpha}(L)\right\rangle\right]
\end{aligned}
$$

- The amplitudes are invariant, because $\left|\mathcal{Q}^{\alpha}(L)\right\rangle,\left|\mathcal{T}^{\alpha}(L)\right\rangle$ are "null quantities" satisfying

$$
\begin{aligned}
& {\left[\lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}}\right]\left|\mathcal{T}^{\alpha}(L)\right\rangle=0\right.} \\
& {\left[\lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}}\right]\left|\mathcal{Q}^{\alpha}(L)\right\rangle=0\right.}
\end{aligned}
$$

and do not contribute in $\left.\lim _{\tau \rightarrow \infty}\left\langle\langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{\phi}^{I_{1}} \ldots \hat{\phi}^{I_{n}} \mid 0\right\rangle\right\rangle$.

BRST invariant formulation

- We can modify the Hamiltonian by introducing the auxiliary fields $\left|\lambda_{\alpha}^{\mathcal{Q}}(L)\right\rangle,\left|\lambda_{\alpha}^{\mathcal{T}}(L)\right\rangle$ so that it becomes BRST invariant and still yields the correct amplitudes.

$$
\begin{gathered}
\hat{H}_{\mathrm{FP}} \rightarrow \hat{H}_{\mathrm{FP}}+\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{Q}}(L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{T}}(L)\right\rangle\right) \\
\delta \hat{H}_{\mathrm{FP}}=\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(L)\right\rangle\left|\pi_{\alpha}(L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(L)\right\rangle\left[\hat{Q},\left|\pi_{\alpha}(L)\right\rangle\right]\right)
\end{gathered}
$$

- The action

$$
\begin{aligned}
I_{\mathrm{FP}}=\int_{0}^{\infty} d \tau[& -\int_{0}^{\infty} d L\left\langle R \mid \pi_{\alpha}(\tau, L)\right\rangle \frac{\partial}{\partial \tau}\left|\phi^{\alpha}(\tau, L)\right\rangle+H(\tau) \\
& \left.+\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{Q}}(\tau, L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\tau}(\tau, L)\right\rangle\right)\right]
\end{aligned}
$$

- This action is invariant under the BRST transformation.
- It consists of kinetic terms and three string interaction terms.

5. Conclusions

5. Conclusions

$$
\begin{aligned}
& I_{\mathrm{FP}}[\phi, \pi, \lambda] \\
& \qquad \begin{aligned}
=\int_{0}^{\infty} d \tau[- & \int_{0}^{\infty} d L\left\langle R \mid \pi_{\alpha}(\tau, L)\right\rangle \frac{\partial}{\partial \tau}\left|\phi^{\alpha}(\tau, L)\right\rangle+H(\tau) \\
& \left.+\int_{0}^{\infty} d L\left(\left\langle R \mid \mathcal{Q}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{Q}}(\tau, L)\right\rangle+\left\langle R \mid \mathcal{T}^{\alpha}(\tau, L)\right\rangle\left|\lambda_{\alpha}^{\mathcal{T}}(\tau, L)\right\rangle\right)\right]
\end{aligned}
\end{aligned}
$$

- We have constructed an SFT for closed bosonic strings based on the pants decomposition via the Fokker-Planck formalism.
- The action consists of kinetic terms and three string interaction terms.
- It is manifestly invariant under a nilpotent BRST transformation and we can define the physical states using it.
- How can one interpret the procedure to select the physical states in terms of the 2 nd quantized language?
- SFT for superstrings?

