The Fokker-Planck formalism for closed bosonic strings

Talk at SFT@Cloud Nobuyuki Ishibashi (University of Tsukuba) March 9, 2023

String Field Theory (SFT)

- The amplitudes in string theory are expressed by Feynman diagrams = worldsheets~Riemann surfaces
- In order to construct an SFT, we should define a rule to cut all the worldsheets into propagators and vertices systematically.
 - In general, we need infinitely many vertices to do so.

$$S = \phi K \phi + \phi^3 + \phi^4 + \dots + h \phi + \dots$$

- Such a theory can be studied by using the homotopy algebra methods. (Zwiebach, $\ldots)$

SFT with only three string vertices

We would like to find out a way to construct an SFT as simple as

 $S = \phi K \phi + \phi^3$

• So far, there exist essentially two known rules for which the theory looks like that.

• We would like to find out yet another rule.

SFT with only three string vertices

• SFT's for bosonic strings were constructed using these rules.

$$S = \phi K \phi + \phi^3$$

- Light-cone gauge SFT(Kaku-Kikkawa), $\alpha = p^+$ HIKKO (Kugo-Zwiebach theory), covariantized light-cone
- Witten's SFT
- These rules do not work for superstrings, because of the "spurious singularity" problem.

- A Riemann surface with 2g 2 + n > 0 admits a hyperbolic metric such that the boundaries are geodesics. (cf. Moosavian-Pius, Costello-Zwiebach)
- It can be decomposed into pairs of pants whose boundaries are geodesics.

An SFT based on the pants decomposition?

• We may be able to construct an SFT based on the pants decomposition at least for closed bosonic strings

$$S = \phi K \phi + \phi^3$$

- The SFT will be quite different from the usual ones.
 - The string field $|\phi(L)\rangle$ depends on the length L of the string
 - We may consider $|\phi(L)\rangle$ as an operator from which we can derive various properties of the particles.
 - The kinetic term should be different from the conventional one

 $\langle \phi | Q c_0^+ | \phi \rangle$

$$S = \phi K \phi + \phi^3$$

- This action does not work. (D'Hoker-Gross)
 - One-loop one point amplitudes diverge because the pants decomposition is not unique.

- The decompositions are related by modular transformations.
- Most of the amplitudes diverge in the same way.
- We cannot construct the action.

We should take an alternative approach. — the Fokker-Planck formalism

The Fokker-Planck formalism

• Euclidean field theory: action $S[\phi]$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{\int [d\phi] e^{-S[\phi]} \phi(x_1) \cdots \phi(x_n)}{\int [d\phi] e^{-S[\phi]}}$$

• Fokker-Planck formalism

$$\begin{aligned} \langle \phi(x_1) \cdots \phi(x_n) \rangle &= \lim_{\tau \to \infty} \langle 0| e^{-\tau \hat{H}_{\text{FP}}} \hat{\phi}(x_1) \cdots \hat{\phi}(x_n) | 0 \rangle \\ & \left[\hat{\pi}(x), \hat{\phi}(y) \right] = \delta(x - y), \left[\hat{\pi}, \hat{\pi} \right] = \left[\hat{\phi}, \hat{\phi} \right] = 0 \\ & \langle 0| \hat{\phi}(x) = \hat{\pi}(x) | 0 \rangle = 0 \\ & \hat{H}_{\text{FP}} = -\int dx \left(\hat{\pi}(x) + \frac{\delta S}{\delta \phi(x)} [\hat{\phi}] \right) \hat{\pi}(x) \end{aligned}$$

• path integral: action $I_{\mathrm{FP}}[\phi,\pi]$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{\int [d\pi d\phi] e^{-I_{\rm FP}} \phi(0, x_1) \cdots \phi(0, x_n)}{\int [d\pi d\phi] e^{-I_{\rm FP}}}$$

$$I_{\rm FP} = \int_0^\infty d\tau \left[-\int dx \pi \partial_\tau \phi + H_{\rm FP} \right]$$

In this talk

• I would like to show that it is possible to construct an SFT for closed bosonic strings based on the pants decomposition via the Fokker-Planck formalism.

$$\begin{split} H_{\rm FP}[\phi,\pi,\lambda] \\ &= \int_0^\infty d\tau \left[-\int_0^\infty dL \langle R | \pi_\alpha(\tau,L) \rangle \frac{\partial}{\partial \tau} | \phi^\alpha(\tau,L) \rangle + H(\tau) \right. \\ &+ \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(\tau,L) \rangle | \lambda^{\mathcal{Q}}_\alpha(\tau,L) \rangle + \langle R | \mathcal{T}^\alpha(\tau,L) \rangle | \lambda^{\mathcal{T}}_\alpha(\tau,L) \rangle \right) \right] \end{split}$$

- $\lambda_{\alpha}^{\mathcal{Q}}, \lambda_{\alpha}^{\mathcal{T}}$: auxiliary fields
- This action consists of kinetic terms and three string interaction terms.
- $S[\phi]$ is not well-defined in our setup.

Based on PTEP 2023,023B05 (2023)

This talk

formulation

- 1. Mirzakhani recursion
- 2. A recursion relation for the off-shell amplitudes of closed bosonic strings

- 3. The Fokker-Planck formalism
- 4. BRST invariant formulation
- 5. Conclusions

1. Mirzakhani recursion

 Reviews: Moosavian-Pius, Do arXiv:1103.4674 [math], Huang arXiv:1509.06880 [math.GT] The volume of the moduli space of Riemann surfaces with genus g and n boundaries (2g - 2 + n > 0) whose lengths are L_1, \dots, L_n is given by

$$V_{g,n}(L_1, \cdots, L_n) = \int \prod_s \left[\frac{l_s dl_s d\theta_s}{2\pi} \right]$$

- The moduli space of Riemann surfaces (genus g, n boundaries) is parametrized by the coordinates $(l_s; \theta_s)$ $(s = 1, \dots, 3g 3 + n)$.
 - l_s denotes the length of a nonperipheral boundary and θ_s is the twist angle in a pants decomposition.

$$V_{g,n}(L_1, \dots, L_n) = \int \prod_s \left[\frac{l_s dl_s d\theta_s}{2\pi} \right]$$

- Integrating over $0 < l_s < \infty$, the integral diverges.
 - The pants decomposition is not unique. There are infinitely many pants decomposition related by modular transformations.

$$\int_{0}^{\infty} \int_{0}^{2\pi} \frac{l d l d \theta}{2\pi} = \infty \times \checkmark$$

• We should integrate over the fundamental domain \mathcal{F} , which is very complicated in general.

$$V_{g,n}(L_1, \cdots, L_n) = \int_{\mathcal{F}} \prod_s \left[\frac{l_s dl_s d\theta_s}{2\pi} \right]$$

- McShane identity (1998): for $f(l) = \frac{2}{1+e^l}$ $1 = \sum_{\gamma \in \text{modular group}} f(\gamma \cdot l)$
- $V_{1,1}$ can be calculated multiplying this by $\int_{\mathcal{F}} \frac{ldld\theta}{2\pi}$ (Mirzakhani)

$$\begin{aligned} \mathcal{V}_{1,1}(0) &= \int_{\mathcal{F}} \frac{l dl d\theta}{2\pi} = \int_{\mathcal{F}} \sum_{\gamma} f(\gamma \cdot l) \frac{l dl d\theta}{2\pi} \\ &= \int_{\mathcal{F}} \sum_{\gamma} f(\gamma \cdot l) \frac{\gamma \cdot l d(\gamma \cdot l) d(\gamma \cdot \theta)}{2\pi} = \sum_{\gamma} \int_{\gamma \mathcal{F}} f(l) \frac{l dl d\theta}{2\pi} \\ &= \int \frac{dl d\theta l}{2\pi} \frac{2}{1+e^{l}} = \frac{\pi^{2}}{6} \end{aligned}$$

Generalized McShane identity

• Mirzakhani obtained identities for general g, n with 2g - 2 + n > 0.

$$D_{LL'L''} = 2\left(\log(e^{\frac{L}{2}} + e^{\frac{L'+L''}{2}}) - \log(e^{-\frac{L}{2}} + e^{\frac{L'+L''}{2}})\right)$$
$$T_{LL'L''} = \log\frac{\cosh\frac{L''}{2} + \cosh\frac{L+L'}{2}}{\cosh\frac{L''}{2} + \cosh\frac{L-L'}{2}}$$

Mirzakhani recursion relation

Multiplying

$$L_{1} = \sum_{\{\gamma,\delta\} \in \mathscr{C}_{1}} \mathsf{D}_{L_{1}l\gamma l_{\delta}} + \sum_{a=2}^{n} \sum_{\gamma \in \mathscr{C}_{a}} (\mathsf{T}_{L_{1}L_{a}l_{\gamma}} + \mathsf{D}_{L_{1}L_{a}l_{\gamma}})$$

by $\int_{\mathcal{F}} \prod_{s} \left[\frac{l_{s} dl_{s} d\theta_{s}}{2\pi} \right]$, we get

$$\begin{split} LV_{g,n+1}(L,\mathbf{L}) &= \frac{1}{2} \int_0^\infty dL'L' \int_0^\infty dL''L'' D_{LL'L''} V_{g-1,n+2}(L',L'',\mathbf{L}) \\ &+ \frac{1}{2} \int_0^\infty dL'L' \int_0^\infty dL''L'' D_{LL'L''} \sum_{\text{stable}} V_{g_1,n_1}(L',\mathbf{L}_1) V_{g_2,n_2}(L'',\mathbf{L}_2) \\ &+ \sum_{a=1}^n \int_0^\infty dL'L' \left(T_{L_1L_aL'} + D_{L_1L_aL'} \right) V_{g,n}(L,\mathbf{L}\backslash L_a) \end{split}$$

- One can calculate $V_{g,n}(L_1, \dots, L_n)$ by solving this equation.
 - The right hand side consists of quantities with less 2g 2 + n.

Mirzakhani recursion relation

2. A recursion relation for the off-shell amplitudes of closed bosonic strings

Amplitudes in string theory

• In string theory, the amplitudes are given by integrals over the moduli space of Riemann surfaces

$$A_{g,n} = \int_{\mathcal{F}} \prod_{s} \left[dl_{s} d\theta_{s} \right] \left\langle \prod_{s} \left[b(\partial_{l_{s}}) b(\partial_{\theta_{s}}) \right] V_{i_{1}} \cdots V_{i_{n}} \right\rangle$$

 It is conceivable that we can derive a recursion relation for these amplitudes in the same way as we did for the recursion relation for

$$V_{g,n}(L_1,\dots,L_n) = \int_{\mathcal{F}} \prod_s \left[\frac{l_s dl_s d\theta_s}{2\pi} \right]$$

$$\begin{array}{l} \text{generalized McShane identity} & \int_{\mathcal{F}} \prod_{s} \left[\frac{l_{s}dl_{s}d\theta_{s}}{2\pi} \right] \times \\ L_{1} = \sum_{\{\gamma, \delta\} \in \mathcal{C}_{1}} D_{L_{1}l_{\gamma}l_{\delta}} + \sum_{a=2}^{n} \sum_{\gamma \in \mathcal{C}_{a}} (T_{L_{1}L_{a}l_{\gamma}} + D_{L_{1}L_{a}l_{\gamma}}) & \longrightarrow \\ V_{g,n}(L_{1}, \cdots, L_{n}) = \int_{\mathcal{F}} \prod_{s} \left[\frac{l_{s}dl_{s}d\theta_{s}}{2\pi} \right] \\ & & \int_{\mathcal{F}} \prod_{s} dl_{s}d\theta_{s} \left\langle \prod_{s} \left[b(\partial_{l_{s}})b(\partial_{\theta_{s}}) \right] V_{i_{1}} \cdots V_{i_{n}} \right\rangle \times \\ \text{recursion relation for} \\ A_{g,n}^{i_{1}, \dots, i_{n}} = \int_{\mathcal{F}} \prod_{s} dl_{s}d\theta_{s} \left\langle \prod_{s} \left[b(\partial_{l_{s}})b(\partial_{\theta_{s}}) \right] V_{i_{1}} \cdots V_{i_{n}} \right\rangle \end{array}$$

$$\begin{split} L_1 A_{g,n}^{I_1 \cdots I_n} &= L_1 G^{I_1 I_2} \delta_{g,0} \delta_{n,2} \\ &+ \frac{1}{2} D^{I_1 J'J} G_{JI} G_{J'I'} \left[A_{g-1,n+1}^{II' I_2 \cdots I_n} + \sum{'} \frac{\varepsilon_{\mathcal{I}_1 \mathcal{I}_2}}{(n_1 - 1)! (n_2 - 1)!} A_{g_1,n_1}^{I\mathcal{I}_1} A_{g_2,n_2}^{I'\mathcal{I}_2} \right] \\ &+ \sum_{a=2}^n \varepsilon_a T^{I_1 I_a J} G_{JI} A_{g,n-1}^{II_2 \cdots I_n} \end{split}$$

Details 1: The off-shell amplitudes

 The off-shell amplitudes on Σ can be defined using gr[']_∞Σ. (Costello-Zwiebach)

$$A_{g,n} = \int_{\mathcal{F}} \prod_{s} \left[dl_{s} d\theta_{s} \right] \left\langle \prod_{s} \left[b(\partial_{l_{s}}) b(\partial_{\theta_{s}}) \right] V_{i_{1}} \cdots V_{i_{n}} \right\rangle$$

- We can use the coordinates l_s, θ_s to parameterize the moduli space of the punctured Riemann surface. (Mondello)
- For states $|\varphi^{i_a}\rangle = O_{i_a}(0)|0\rangle$ in the state space of the bosonic string (in any background), satisfying

$$(b_0 - \bar{b}_0)|\varphi^{i_a}\rangle = (L_0 - \bar{L}_0)|\varphi^{i_a}\rangle = 0$$
$$V_{i_a} \sim \underbrace{w_a}_{\varphi^{i_a}} \mathcal{O}_{\varphi^{i_a}}(0)|0\rangle$$

$$A_{g,n} = \int_{\mathcal{F}} \prod_{s} \left[dl_{s} d\theta_{s} \right] \left\langle \prod_{s} \left[b(\partial_{l_{s}}) b(\partial_{\theta_{s}}) \right] V_{i_{1}} \cdots V_{i_{n}} \right\rangle$$

- $b(\partial_{l_s}), b(\partial_{\theta_s})$ are constructed following the standard prescription. (Sen 2015, Erbin's book, ...)
 - They are expressed by the variations of the transition functions between local patches.
 - In our case, we can take the patches to be the pairs of pants.
 - Since a pair of pants- $\mathbb{C} \cup_k D_k$, we take z on \mathbb{C} as the local coordinate.

b-ghost insertions

- The explicit forms of $W_k(z)$ are given in terms of the hypergeometric function (Firat, Hadasz-Jaskolski)
- $b(\partial_l)$ has contributions from two adjacent pairs of pants.

Details 3: The recursion relation

$$\int_{\mathcal{F}} \prod_{s} \left[\frac{l_{s}dl_{s}d\theta_{s}}{2\pi} \right] \langle \cdots \rangle \times$$

$$L_{1} = \sum_{\{\gamma,\delta\} \in \mathcal{C}_{1}} D_{L_{1}l_{\gamma}l_{\delta}} + \sum_{a=2}^{n} \sum_{\underline{\gamma \in \mathcal{C}_{a}}} (T_{L_{1}L_{a}l_{\gamma}} + D_{L_{1}L_{a}l_{\gamma}})$$

$$\int_{\mathcal{F}} \prod_{s} \left[\frac{l_{s}dl_{s}d\theta_{s}}{2\pi} \right] \sum_{\underline{\gamma \in \mathcal{C}_{a}}} (T_{L_{1}L_{a}l_{\gamma}} + D_{L_{1}L_{a}l_{\gamma}}) \times L_{1}$$

$$= \sum_{\underline{\gamma \in \mathcal{C}_{a}}} \int \frac{l_{\gamma}dl_{\gamma}d\theta_{\gamma}}{2\pi} (T_{L_{1}L_{a}l_{\gamma}} + D_{L_{1}L_{a}l_{\gamma}})$$

$$L_{1}$$

$$L_{1}$$

$$L_{1}$$

$$L_{1}$$

$$L_{2}$$

$$L$$

• The string field is labeled by $(i, L, \alpha) \equiv I \ (\alpha = \pm)$

$$\begin{split} A_{g,n}^{I_1\cdots I_n} &= \int_{\mathcal{F}} \prod_s \left[dl_s d\theta_s \right] \langle \prod_s \left[b(\partial_{l_s}) b(\partial_{\theta_s}) \right] B_{\alpha_1} \cdots B_{\alpha_n} V_{i_1} \cdots V_{i_n} \rangle \\ B_{\alpha_a} &\equiv \begin{cases} 1 & \alpha_a = + \\ (b_0^{(a)} - \overline{b}_0^{(a)}) b_{S_a}(\partial_{L_a}) \int_0^{2\pi} \frac{d\theta_a}{2\pi} e^{i\theta_a (L_0^{(a)} - \overline{L}_0^{(a)})} & \alpha_a = - \end{cases} \end{split}$$

$$\begin{split} L_{1}A_{g,n}^{I_{1}\cdots I_{n}} &= L_{1}G^{I_{1}I_{2}}\delta_{g,0}\delta_{n,2} \\ &\quad + \frac{1}{2}D^{I_{1}J'J}G_{JI}G_{J'I'}\left[A_{g-1,n+1}^{II'I_{2}\cdots I_{n}} + \sum' \frac{\varepsilon_{\mathcal{I}_{1}\mathcal{I}_{2}}}{(n_{1}-1)!(n_{2}-1)!}A_{g_{1},n_{1}}^{I\mathcal{I}_{1}}A_{g_{2},n_{2}}^{I'\mathcal{I}_{2}}\right] \\ &\quad + \sum_{a=2}^{n}\varepsilon_{a}T^{I_{1}I_{a}J}G_{JI}A_{g,n-1}^{II_{2}\cdots I_{a}} \\ T^{I_{1}I_{2}I_{3}} &\equiv T_{L_{1}L_{2}L_{3}}\langle B_{\alpha_{1}}B_{\alpha_{2}}B_{\alpha_{3}}V^{i_{1}}V^{i_{2}}V^{i_{3}}\rangle \\ D^{I_{1}I_{2}I_{3}} &\equiv D_{L_{1}L_{2}L_{3}}\langle B_{\alpha_{1}}B_{\alpha_{2}}B_{\alpha_{3}}V^{i_{1}}V^{i_{2}}V^{i_{3}}\rangle \\ G_{I_{1}I_{2}} &\equiv \langle \varphi_{i}^{e_{i}}|\varphi_{i_{2}}^{e_{i}}\rangle(-1)^{n_{\varphi_{i_{2}}}}\delta(L_{1}-L_{2})\delta_{\alpha_{1},-\alpha_{2}}, \end{split}$$

3. The Fokker-Planck formalism

$$\begin{array}{lll} \hat{H}_{\rm FP} & = & -L \hat{\pi}_I \hat{\pi}_{I'} G^{I'I} + L \hat{\phi}^I \hat{\pi}_I \\ & & -\frac{1}{2} g_{\rm s} D^{II'I''} G_{I''K''} G_{I'K''} \hat{\phi}^{K''} \hat{\phi}^{K'} \hat{\pi}_I \\ & & -g_{\rm s} T^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\pi}_I \hat{\pi}_I \end{array}$$

The Fokker-Planck formalism

$$\begin{split} L_1 A_{g,n}^{I_1 \cdots I_n} &= L_1 G^{I_1 I_2} \delta_{g,0} \delta_{n,2} \\ &+ \frac{1}{2} D^{I_1 J' J} G_{JI} G_{J' I'} \left[A_{g-1,n+1}^{II' I_2 \cdots I_n} + \sum' \frac{\varepsilon_{\mathcal{I}_1 \mathcal{I}_2}}{(n_1 - 1)! (n_2 - 1)!} A_{g_1,n_1}^{I \mathcal{I}_1} A_{g_2,n_2}^{J' \mathcal{I}_2} \right] \\ &+ \sum_{a=2}^n \varepsilon_a T^{I_1 I_a J} G_{JI} A_{g,n-1}^{II_2 \cdots I_n} \end{split}$$

- One can derive the amplitudes $A_{g,n}^{I_1 \cdots I_n}$ perturbatively solving this equation.
- This equation can be regarded as the Schwinger-Dyson equation of string theory.
 - We may be able to construct an SFT from this equation.
- This equation can be turned into an SFT in the FP formalism via the method developed by Kawai-NI, Jevicki-Rodrigues, Fukuma-Kawai-Ninomiya-NI, Ikehara-Kawai-Mogami-Nakayama-Sasakura-NI, Ikehara,

• The off-shell amplitudes The Fokker-Planck formalism $\rightarrow \lim_{\tau \to \infty} \langle\!\langle 0 | e^{-\tau \hat{H}_{\rm FP}} \hat{\phi}^{I_1} \cdots \hat{\phi}^{I_n} | 0 \rangle\!\rangle$ $\langle\!\langle \phi^{I_1} \cdots \phi^{I_n} \rangle\!\rangle \checkmark$ $\langle\!\langle \phi^{I_1} \cdots \phi^{I_n} \rangle\!\rangle^{\mathrm{c}} = \sum_{g=0}^{\infty} g_{\mathrm{s}}^{2g-2+n} A_{g,n}^{I_1 \cdots I_n}$ $[\hat{\pi}_I, \hat{\phi}^K] = \delta_I^K$ $[\hat{\pi}_{I}, \hat{\pi}_{K}] = [\hat{\phi}^{I}, \hat{\phi}^{K}] = 0$ $\langle\!\langle 0|\hat{\phi}^I=\hat{\pi}_I|0\rangle\!\rangle=0$ * SD equation * The recursion relation $\mathcal{T}^{I} \equiv -LG^{I'I}J_{I'} + L\frac{\delta}{\delta L}$ $\lim_{\tau \to \infty} \partial_{\tau} \langle\!\langle 0 | e^{-\tau \hat{H}_{\rm FP}[\hat{\phi}, \hat{\pi}]} \hat{\phi}^{I_1} \cdots \hat{\phi}^{I_n} | 0 \rangle\!\rangle = 0$ $-\frac{1}{2}g_{s}D^{II'I''}G_{I''K''}G_{I'K'}\frac{\delta^{2}}{\delta I_{s''}\delta I_{s''}}$ $-g_s T^{II'I''} G_{I''K''} J_{I'} \frac{\delta}{\delta I_{sur}} (-1)^{|I||I'|},$

$$\hat{H}_{\rm FP} = \hat{T}^I \hat{\pi}_I$$

$$\begin{split} \hat{H}_{\rm FP} &= \hat{T}^{I} \hat{\pi}_{I} \\ &= -L \hat{\pi}_{I} \hat{\pi}_{I'} G^{I'I} + L \hat{\phi}^{I} \hat{\pi}_{I} \\ &- \frac{1}{2} g_{\rm s} D^{II'I''} G_{I''K''} G_{I'K'} \hat{\phi}^{K''} \hat{\phi}^{K'} \hat{\pi}_{I} \\ &- g_{\rm s} T^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\pi}_{I'} \hat{\pi}_{I} \\ \hat{T}^{I} &= -L \hat{\pi}_{I'} G^{II'} + L \hat{\phi}^{I} \\ &- \frac{1}{2} g_{\rm s} D^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\phi}^{K'} \hat{\phi}^{K'} \\ &- g_{\rm s} T^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\pi}_{I'} \\ \langle \langle \phi^{I_{1}} \cdots \phi^{I_{n}} \rangle \rangle = \lim_{T \to \infty} \langle \langle 0 | e^{-\tau \hat{H}_{\rm FP}} \hat{\phi}^{I_{1}} \cdots \hat{\phi}^{I_{n}} | 0 \rangle \rangle \end{split}$$

• The Hamiltonian consists of the kinetic terms and the three string interaction terms.

• It is possible to (formally) define the action $S[\phi]$.

$$\frac{e^{-S[\phi]}}{\int [d\phi]e^{-S[\phi]}} = \lim_{\tau \to \infty} \langle\!\langle 0|e^{-\tau\hat{H}}\delta(\phi - \hat{\phi})|0\rangle\!\rangle$$
$$\frac{\int [d\phi]e^{-S[\phi]}\phi^{I_1}...\phi^{I_n}}{\int [d\phi]e^{-S[\phi]}}$$
$$= \lim_{\tau \to \infty} \langle\!\langle 0|e^{-\tau\hat{H}}\int [d\phi]\delta(\phi - \hat{\phi})\phi^{I_1}...\phi^{I_n}|0\rangle\!\rangle$$
$$= \lim_{\tau \to \infty} \langle\!\langle 0|e^{-\tau\hat{H}}\hat{\phi}^{I_1}...\hat{\phi}^{I_n}|0\rangle\!\rangle$$

• One can calculate $S[\phi^I]$ perturbatively.

$$\begin{split} S[\phi^{I}] &= \frac{1}{2} G_{IJ} \phi^{I} \phi^{J} - \frac{g_{\rm s}}{6} A_{0,3}^{II'I''} G_{IJ} G_{I'J'} G_{I''J''} \phi^{J''} \phi^{J'} \phi^{J} \\ &+ \frac{g_{\rm s}}{L} T^{II'I''} G_{I'I''} G_{IJ} \phi^{J} + \mathcal{O}(g_{\rm s}^{2}) \\ [LG^{IJ} + g_{\rm s} T^{IJI'} G_{I'J'} \phi^{J'}] \frac{\delta S}{\delta \phi^{J}} \\ &= L \phi^{I} - \frac{1}{2} g_{\rm s} D^{II'I''} G_{I'J'} G_{I''J''} \phi^{J''} \phi^{J''} \phi^{J'} + g_{\rm s} T^{II'I''} G_{I'I''} \end{split}$$

The action $S[\phi]$

• $S[\phi^I]$ is divergent and ill defined.

• The 1 loop 1 point amplitude

$$A = \infty \times (\bigcirc) -(\infty - 1) \times (\bigcirc) = (\bigcirc)$$

- + $S[\phi^I]$ includes infinitely many divergent counterterms.
- FP formalism breaks the modular invariance.

4. BRST invariant formulation

4. BRST invariant formulation

BRST symmetry on the worldsheet

 We need the worldsheet BRST symmetry to define the physical states with positive norm.

$$Q|\text{phys.}\rangle = 0$$

 $|\rangle \sim |\rangle + Q|\rangle'$

• In order to discuss this symmetry, we change the notation

$$\begin{split} |\phi^{\alpha}(L)\rangle &\equiv \sum_{i} \hat{\phi}^{I} |\varphi_{i}^{c}\rangle \\ |\pi_{\alpha}(L)\rangle &\equiv \sum_{i} |\varphi_{i}\rangle \hat{\pi}_{I} \end{split}$$

$$\hat{\mathcal{H}}_{\rm FP} = \int_0^\infty dLL \left[\langle R | \phi^\alpha(L) \rangle | \pi_\alpha(L) \rangle - \langle R | \pi_\alpha(L) \rangle | \pi_{-\alpha}(L) \rangle \right]$$

$$-g_{\rm s} \int dL_1 dL_2 dL_3 \langle T_{L_2 L_3 L_1} | B_{-\alpha_1}^1 B_{\alpha_2}^2 B_{\alpha_3}^3 | \phi^{\alpha_1}(L_1) \rangle_1 | \pi_{\alpha_2}(L_2) \rangle_2 | \pi_{\alpha_3}(L_3) \rangle_3$$

$$-\frac{1}{2} g_{\rm s} \int dL_1 dL_2 dL_3 \langle D_{L_3 L_1 L_2} | B_{-\alpha_1}^1 B_{-\alpha_2}^2 B_{\alpha_3}^3 | \phi^{\alpha_1}(L_1) \rangle_1 | \phi^{\alpha_2}(L_2) \rangle_2 | \pi_{\alpha_3}(L_3) \rangle_3$$

• The BRST transformation

$$\begin{aligned} \delta_{\epsilon}|\phi^{+}(L)\rangle &= \frac{1}{2}\epsilon c_{0}^{-}b_{0}^{-}PQ|\phi^{+}(L)\rangle & \delta_{\epsilon}|\pi_{+}(L)\rangle &= \epsilon Q|\pi_{+}(L)\rangle - \epsilon b_{0}^{-}P\partial_{L}|\pi_{-}(L)\rangle \\ \delta_{\epsilon}|\phi^{-}(L)\rangle &= \epsilon Q|\phi^{-}(L)\rangle - \epsilon b_{0}^{-}P\partial_{L}|\phi^{+}(L)\rangle & \delta_{\epsilon}|\pi_{-}(L)\rangle &= \frac{1}{2}\epsilon c_{0}^{-}b_{0}^{-}PQ|\pi_{-}(L)\rangle \end{aligned}$$

\hat{H} is not BRST invariant

- $\hat{{\it H}}_{\rm FP}$ is not BRST invariant.
 - If it were, FP formalism would be modular invariant
 - Let \hat{Q} be the generator of the BRST transformation

$$\delta \hat{H}_{\rm FP} = [\hat{Q}, \hat{H}_{\rm FP}] = \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(L) \rangle | \pi_\alpha(L) \rangle + \langle R | \mathcal{T}^\alpha(L) \rangle [\hat{Q}, |\pi_\alpha(L) \rangle] \right)$$

$$\hat{H}_{\rm FP} = \int_0^\infty dL \langle R | \mathcal{T}^{\alpha}(L) \rangle | \pi_{\alpha}(L) \rangle$$
$$| \mathcal{Q}^{\alpha}(L) \rangle \equiv [\hat{Q}, | \mathcal{T}^{\alpha}(L) \rangle]$$

• The amplitudes are invariant, because $|Q^{\alpha}(L)\rangle, |T^{\alpha}(L)\rangle$ are "null quantities" satisfying

$$\begin{bmatrix} \lim_{\tau \to \infty} \langle \! \langle 0 | e^{-\tau \hat{H}_{\rm FP}} \end{bmatrix} | \mathcal{T}^{\alpha}(L) \rangle = 0$$
$$\begin{bmatrix} \lim_{\tau \to \infty} \langle \! \langle 0 | e^{-\tau \hat{H}_{\rm FP}} \end{bmatrix} | \mathcal{Q}^{\alpha}(L) \rangle = 0$$

and do not contribute in $\lim_{\tau \to \infty} \langle\!\langle 0 | e^{-\tau \hat{H}_{\rm FP}} \hat{\phi}^{I_1} \cdots \hat{\phi}^{I_n} | 0 \rangle\!\rangle.$

• We can modify the Hamiltonian by introducing the auxiliary fields $|\lambda^Q_{\alpha}(L)\rangle, |\lambda^{T}_{\alpha}(L)\rangle$ so that it becomes BRST invariant and still yields the correct amplitudes.

$$\hat{H}_{\rm FP} \to \hat{H}_{\rm FP} + \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(L) \rangle | \lambda_\alpha^{\mathcal{Q}}(L) \rangle + \langle R | \mathcal{T}^\alpha(L) \rangle | \lambda_\alpha^{\mathcal{T}}(L) \rangle \right)$$

$$\delta \hat{H}_{\rm FP} = \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(L) \rangle | \pi_\alpha(L) \rangle + \langle R | \mathcal{T}^\alpha(L) \rangle [\hat{Q}, |\pi_\alpha(L) \rangle] \right)$$

• The action

$$I_{\rm FP} = \int_0^\infty d\tau \left[-\int_0^\infty dL \langle R | \pi_\alpha(\tau,L) \rangle \frac{\partial}{\partial \tau} | \phi^\alpha(\tau,L) \rangle + H(\tau) \right. \\ \left. + \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(\tau,L) \rangle | \lambda_\alpha^{\mathcal{Q}}(\tau,L) \rangle + \langle R | \mathcal{T}^\alpha(\tau,L) \rangle | \lambda_\alpha^{\mathcal{T}}(\tau,L) \rangle \right) \right]$$

- This action is invariant under the BRST transformation.
- It consists of kinetic terms and three string interaction terms.

5. Conclusions

5. Conclusions

$$\begin{split} I_{\rm FP}[\phi,\pi,\lambda] \\ &= \int_0^\infty d\tau \left[-\int_0^\infty dL \langle R | \pi_\alpha(\tau,L) \rangle \frac{\partial}{\partial \tau} | \phi^\alpha(\tau,L) \rangle + H(\tau) \right. \\ &+ \int_0^\infty dL \left(\langle R | \mathcal{Q}^\alpha(\tau,L) \rangle | \lambda^{\mathcal{Q}}_\alpha(\tau,L) \rangle + \langle R | \mathcal{T}^\alpha(\tau,L) \rangle | \lambda^{\mathcal{T}}_\alpha(\tau,L) \rangle \right) \right] \end{split}$$

- We have constructed an SFT for closed bosonic strings based on the pants decomposition via the Fokker-Planck formalism.
 - The action consists of kinetic terms and three string interaction terms.
 - It is manifestly invariant under a nilpotent BRST transformation and we can define the physical states using it.
- How can one interpret the procedure to select the physical states in terms of the 2nd quantized language?
- SFT for superstrings?