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String Field Theory (SFT)

• The amplitudes in string theory are expressed by Feynman diagrams =
worldsheets∼Riemann surfaces

• In order to construct an SFT, we should define a rule to cut all the
worldsheets into propagators and vertices systematically.

• In general, we need infinitely many vertices to do so.

S = φKφ + φ3 + φ4 +⋯ + h̵φ +⋯

• Such a theory can be studied by using the homotopy algebra methods.
(Zwiebach, ...)
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SFT with only three string vertices

We would like to find out a way to construct an SFT as simple as

S = φKφ + φ3

• So far, there exist essentially two known rules for which the theory looks
like that.

• We would like to find out yet another rule.
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SFT with only three string vertices

• SFT’s for bosonic strings were constructed using these rules.

S = φKφ + φ3

• Light-cone gauge SFT(Kaku-Kikkawa), α = p+ HIKKO (Kugo-Zwiebach
theory), covariantized light-cone

• Witten’s SFT

• These rules do not work for superstrings, because of the “spurious
singularity” problem.
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The pants decomposition

• A Riemann surface with 2g−2+n > 0 admits a hyperbolic metric such that
the boundaries are geodesics. (cf. Moosavian-Pius, Costello-Zwiebach)

• It can be decomposed into pairs of pants whose boundaries are geodesics.
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An SFT based on the pants decomposition?

• We may be able to construct an SFT based on the pants decomposition at
least for closed bosonic strings

S = φKφ + φ3

• The SFT will be quite different from the usual ones.
• The string field ∣φ(L)⟩ depends on the length L of the string

• We may consider ∣φ(L)⟩ as an operator from which we can derive various
properties of the particles.

• The kinetic term should be different from the conventional one

⟨φ∣Qc+0 ∣φ⟩
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An SFT based on the pants decomposition?

S = φKφ + φ3

• This action does not work. (D’Hoker-Gross)
• One-loop one point amplitudes diverge because the pants decomposition is

not unique.

• The decompositions are related by modular transformations.
• Most of the amplitudes diverge in the same way.

• We cannot construct the action.
We should take an alternative approach.Ð→the Fokker-Planck formalism
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The Fokker-Planck formalism

• Euclidean field theory: action S[φ]

⟨φ(x1)⋯φ(xn)⟩ =
∫ [dφ]e

−S[φ]φ(x1)⋯φ(xn)

∫ [dφ]e−S[φ]

• Fokker-Planck formalism

⟨φ(x1)⋯φ(xn)⟩ = lim
τ→∞

⟨0∣e
−τĤFP φ̂(x1)⋯φ̂(xn)∣0⟩

[π̂(x), φ̂(y)] = δ(x − y) , [π̂, π̂] = [φ̂, φ̂] = 0

⟨0∣φ̂(x) = π̂(x)∣0⟩ = 0

ĤFP = −∫ dx(π̂(x) +
δS

δφ(x)
[φ̂]) π̂(x)

• path integral: action IFP[φ,π]

⟨φ(x1)⋯φ(xn)⟩ =
∫ [dπdφ]e

−IFPφ(0, x1)⋯φ(0, xn)

∫ [dπdφ]e
−IFP

IFP = ∫
∞

0
dτ [−∫ dxπ∂τφ +HFP]
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In this talk

• I would like to show that it is possible to construct an SFT for closed
bosonic strings based on the pants decomposition via the Fokker-Planck
formalism.

IFP[φ,π,λ]

= ∫
∞

0
dτ [−∫

∞

0
dL⟨R∣πα(τ,L)⟩

∂

∂τ
∣φ
α
(τ,L)⟩ +H(τ)

+∫
∞

0
dL (⟨R∣Q

α
(τ,L)⟩∣λ

Q

α (τ,L)⟩ + ⟨R∣T
α
(τ,L)⟩∣λ

T

α (τ,L)⟩) ]

• λQα , λ
T
α : auxiliary fields

• This action consists of kinetic terms and three string interaction terms.
• S[φ] is not well-defined in our setup.

Based on PTEP 2023,023B05 (2023)
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This talk

10 / 39



Plan of the talk

1. Mirzakhani recursion

2. A recursion relation for the off-shell amplitudes of closed bosonic strings

3. The Fokker-Planck formalism

4. BRST invariant formulation

5. Conclusions
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1. Mirzakhani recursion



1. Mirzakhani recursion

• Reviews: Moosavian-Pius, Do arXiv:1103.4674 [math], Huang
arXiv:1509.06880 [math.GT]
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Mirzakhani recursion

The volume of the moduli space of Riemann surfaces with genus g and n
boundaries (2g − 2 + n > 0) whose lengths are L1,⋯, Ln is given by

Vg,n(L1,⋯, Ln) = ∫ ∏
s

[ lsdlsdθs
2π

]

• The moduli space of Riemann surfaces (genus g, n boundaries) is
parametrized by the coordinates (ls; θs) (s = 1,⋯,3g − 3 + n).

• ls denotes the length of a nonperipheral boundary and θs is the twist angle
in a pants decomposition.
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Modular invariance

Vg,n(L1,⋯, Ln) = ∫ ∏
s

[ lsdlsdθs
2π

]

• Integrating over 0 < ls <∞, the integral diverges.
• The pants decomposition is not unique. There are infinitely many pants

decomposition related by modular transformations.

• We should integrate over the fundamental domain F , which is very
complicated in general.

Vg,n(L1,⋯, Ln) = ∫
F
∏
s

[ lsdlsdθs
2π

]
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McShane identity (g = n = 1, L = 0)

• McShane identity (1998): for f(l) = 2
1+el

1 = ∑
γ∈modular group

f(γ ⋅ l)

• V1,1 can be calculated multiplying this by ∫F
ldldθ
2π

(Mirzakhani)

V1,1(0) = ∫
F

ldldθ

2π
= ∫

F

∑
γ

f(γ ⋅ l)
ldldθ

2π

= ∫
F

∑
γ

f(γ ⋅ l)
γ ⋅ ld(γ ⋅ l)d(γ ⋅ θ)

2π
=∑
γ
∫
γF

f(l)
ldldθ

2π

= ∫
dldθl

2π

2

1 + el
=
π2

6
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Generalized McShane identity

• Mirzakhani obtained identities for general g, n with 2g − 2 + n > 0.
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Mirzakhani recursion relation

Multiplying

L1 = ∑
{γ,δ}∈C1

DL1lγ lδ
+
n

∑
a=2

∑
γ∈Ca

(TL1Lalγ
+DL1Lalγ

)

by ∫F ∏s [
lsdlsdθs

2π
], we get

• One can calculate Vg,n(L1,⋯, Ln) by solving this equation.
• The right hand side consists of quantities with less 2g − 2 + n.
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Mirzakhani recursion relation

18 / 39



2. A recursion relation for the off-shell
amplitudes of closed bosonic strings



2. A recursion relation for the off-shell amplitudes of closed bosonic strings
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Amplitudes in string theory

• In string theory, the amplitudes are given by integrals over the moduli
space of Riemann surfaces

Ag,n = ∫
F
∏
s

[dlsdθs] ⟨∏
s

[b(∂ls)b(∂θs)]Vi1⋯Vin⟩

• It is conceivable that we can derive a recursion relation for these
amplitudes in the same way as we did for the recursion relation for

Vg,n(L1,⋯, Ln) = ∫
F
∏
s

[ lsdlsdθs
2π

]
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The recursion relation
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Details 1:The off-shell amplitudes

• The off-shell amplitudes on Σ can be defined using gr′∞Σ.
(Costello-Zwiebach)

Ag,n = ∫
F
∏
s

[dlsdθs] ⟨∏
s

[b(∂ls)b(∂θs)]Vi1⋯Vin⟩

• We can use the coordinates ls, θs to parameterize the moduli space of the
punctured Riemann surface. (Mondello)

• For states ∣ϕia ⟩ = Oia(0)∣0⟩ in the state space of the bosonic string (in any
background), satisfying

(b0 − b̄0)∣ϕia ⟩ = (L0 − L̄0)∣ϕia ⟩ = 0
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Details 2: b-ghost insertions

Ag,n = ∫
F
∏
s

[dlsdθs] ⟨∏
s

[b(∂ls)b(∂θs)]Vi1⋯Vin⟩

• b(∂ls), b(∂θs) are constructed following the standard prescription. (Sen
2015, Erbin’s book, ...)

• They are expressed by the variations of the transition functions between
local patches.

• In our case, we can take the patches to be the pairs of pants.
• Since a pair of pants∼ C − ∪kDk, we take z on C as the local coordinate.
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b-ghost insertions

• The explicit forms of Wk(z) are given in terms of the hypergeometric
function (Fırat, Hadasz-Jaskolski)

• b(∂l) has contributions from two adjacent pairs of pants.
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Details 3: The recursion relation
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The recursion relation

• The string field is labeled by (i,L,α) ≡ I (α = ±)
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3. The Fokker-Planck formalism



3. The Fokker-Planck formalism
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The Fokker-Planck formalism

• One can derive the amplitudes AI1⋯Ing,n perturbatively solving this equation.
• This equation can be regarded as the Schwinger-Dyson equation of string

theory.
• We may be able to construct an SFT from this equation.

• This equation can be turned into an SFT in the FP formalism via the
method developed by Kawai-NI, Jevicki-Rodrigues,
Fukuma-Kawai-Ninomiya-NI,
Ikehara-Kawai-Mogami-Nakayama-Sasakura-NI , Ikehara, .....
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The Fokker-Planck formalism for closed bosonic strings

ĤFP = T̂ I π̂I
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The Fokker-Planck formalism for closed bosonic strings

ĤFP = T̂ I π̂I

= −Lπ̂I π̂I′GI
′I +Lφ̂I π̂I

−1

2
gsD

II′I′′GI′′K′′GI′K′ φ̂K
′′

φ̂K
′

π̂I

−gsT II
′I′′GI′′K′′ φ̂K

′′

π̂I′ π̂I

T̂ I = −Lπ̂I′GII
′

+Lφ̂I

−1

2
gsD

II′I′′GI′′K′′GI′K′ φ̂K
′′

φ̂K
′

−gsT II
′I′′GI′′K′′ φ̂K

′′

π̂I′

⟨⟨φI1⋯φIn⟩⟩ = lim
τ→∞

⟨⟨0∣e−τĤFP φ̂I1⋯φ̂In ∣0⟩⟩

• The Hamiltonian consists of the kinetic terms and the three string
interaction terms.
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The action S[φ]

• It is possible to (formally) define the action S[φ].

e−S[φ]

∫ [dφ]e−S[φ]
= lim
τ→∞

⟪0∣e−τĤδ(φ − φ̂)∣0⟫

∫ [dφ]e
−S[φ]φI1⋯φIn

∫ [dφ]e−S[φ]

= lim
τ→∞

⟪0∣e
−τĤ

∫ [dφ]δ(φ − φ̂)φ
I1⋯φ

In ∣0⟫

= lim
τ→∞

⟪0∣e
−τĤ

φ̂
I1⋯φ̂

In ∣0⟫

• One can calculate S[φI] perturbatively.

S[φI] = 1

2
GIJφ

IφJ − gs
6
AII

′I′′

0,3 GIJGI′J′GI′′J′′φ
J′′φJ

′

φJ

+ gs
L
T II

′I′′GI′I′′GIJφ
J +O(g2s )

[LGIJ + gsT IJI
′

GI′J′φ
J′] δS

δφJ

= LφI − 1

2
gsD

II′I′′GI′J′GI′′J′′φ
J′′φJ

′

+ gsT II
′I′′GI′I′′
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The action S[φ]

• S[φI] is divergent and ill defined.
• The 1 loop 1 point amplitude

• S[φI] includes infinitely many divergent counterterms.

• FP formalism breaks the modular invariance.
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4. BRST invariant formulation



4. BRST invariant formulation
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BRST symmetry on the worldsheet

• We need the worldsheet BRST symmetry to define the physical states with
positive norm.

Q∣phys.⟩ = 0

∣ ⟩ ∼ ∣ ⟩ +Q∣ ⟩
′

• In order to discuss this symmetry, we change the notation
∣φ
α
(L)⟩ ≡ ∑

i

φ̂
I
∣ϕ
c
i ⟩

∣πα(L)⟩ ≡ ∑
i

∣ϕi⟩π̂I

ĤFP = ∫
∞

0
dLL [⟨R∣φα(L)⟩∣πα(L)⟩ − ⟨R∣πα(L)⟩∣π−α(L)⟩]

−gs ∫ dL1dL2dL3⟨TL2L3L1
∣B1
−α1

B
2
α2
B

3
α3

∣φα1 (L1)⟩1 ∣πα2
(L2)⟩2 ∣πα3

(L3)⟩3

−
1

2
gs ∫ dL1dL2dL3⟨DL3L1L2

∣B1
−α1

B
2
−α2

B
3
α3

∣φα1 (L1)⟩1 ∣φα2 (L2)⟩2 ∣πα3
(L3)⟩3

• The BRST transformation
δε∣φ

+
(L)⟩ = 1

2 εc
−

0b
−

0PQ∣φ+(L)⟩ δε∣π+(L)⟩ = εQ∣π+(L)⟩ − εb−0P∂L∣π−(L)⟩

δε∣φ
−
(L)⟩ = εQ∣φ−(L)⟩ − εb−0P∂L∣φ

+
(L)⟩ δε∣π−(L)⟩ = 1

2 εc
−

0b
−

0PQ∣π−(L)⟩
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Ĥ is not BRST invariant

• ĤFP is not BRST invariant.
• If it were, FP formalism would be modular invariant
• Let Q̂ be the generator of the BRST transformation

δĤFP = [Q̂, ĤFP] = ∫
∞

0
dL (⟨R∣Qα(L)⟩∣πα(L)⟩ + ⟨R∣T α(L)⟩[Q̂, ∣πα(L)⟩])

ĤFP = ∫
∞

0
dL⟨R∣T

α
(L)⟩∣πα(L)⟩

∣Q
α
(L)⟩ ≡ [Q̂, ∣T

α
(L)⟩]

• The amplitudes are invariant, because ∣Qα(L)⟩, ∣T α(L)⟩ are “null
quantities” satisfying

[ lim
τ→∞

⟪0∣e−τĤFP] ∣T α(L)⟩ = 0

[ lim
τ→∞

⟪0∣e−τĤFP] ∣Qα(L)⟩ = 0

and do not contribute in limτ→∞⟨⟨0∣e−τĤFP φ̂I1⋯φ̂In ∣0⟩⟩.
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BRST invariant formulation

• We can modify the Hamiltonian by introducing the auxiliary fields
∣λQα (L)⟩, ∣λTα (L)⟩ so that it becomes BRST invariant and still yields the
correct amplitudes.

ĤFP → ĤFP + ∫
∞

0
dL (⟨R∣Q

α
(L)⟩∣λ

Q

α (L)⟩ + ⟨R∣T
α
(L)⟩∣λ

T

α (L)⟩)

δĤFP = ∫
∞

0
dL (⟨R∣Q

α
(L)⟩∣πα(L)⟩ + ⟨R∣T

α
(L)⟩[Q̂, ∣πα(L)⟩])

• The action

IFP = ∫
∞

0
dτ [−∫

∞

0
dL⟨R∣πα(τ,L)⟩

∂

∂τ
∣φ
α
(τ,L)⟩ +H(τ)

+∫
∞

0
dL (⟨R∣Q

α
(τ,L)⟩∣λ

Q

α (τ,L)⟩ + ⟨R∣T
α
(τ,L)⟩∣λ

T

α (τ,L)⟩) ]

• This action is invariant under the BRST transformation.
• It consists of kinetic terms and three string interaction terms.
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5. Conclusions



5. Conclusions

IFP[φ,π,λ]

= ∫
∞

0
dτ [−∫

∞

0
dL⟨R∣πα(τ,L)⟩

∂

∂τ
∣φ
α
(τ,L)⟩ +H(τ)

+∫
∞

0
dL (⟨R∣Q

α
(τ,L)⟩∣λ

Q

α (τ,L)⟩ + ⟨R∣T
α
(τ,L)⟩∣λ

T

α (τ,L)⟩) ]

• We have constructed an SFT for closed bosonic strings based on the pants
decomposition via the Fokker-Planck formalism.

• The action consists of kinetic terms and three string interaction terms.
• It is manifestly invariant under a nilpotent BRST transformation and we can

define the physical states using it.

• How can one interpret the procedure to select the physical states in terms
of the 2nd quantized language?

• SFT for superstrings?
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