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Short summary

To read off geometric information from field theory configs. in string theory,
the notion of wave packet in space of matrix plays an essential role.
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To determine the wave packet in a high-dim space, we compute a quantity

R_(X) := min <max
U a

(U'XU-7Y)

X,Y : Nx N hermitian mat.
U . unitary mat.

which can be translated into an optimization problem.

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider their
extensions to solve this problem numerically.
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Strings and D-branes

String theory : a candidate for theory of quantum gravity

D-branes

(\f : open string

O . closed string
O

: the endpoints of open strings
can attach.

We want to understand the physical properties of D-branes.
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A clue : gauge/gravity duality
conjecture from 2 descriptions of D-branes in string theory;

D-branes & string

O

Effective theory of
open strings on branes

Theory of closed strings
in D-brane geometry

O

QFT

GR in curved spacetime

(Super Yang-Mills theory)

Expected to capture the nonperturbative aspects of string theory
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Position of D-branes & open strings

Effective action (: (p+1)-dim. U(N) gauge theory)

2
dPHy tr lF 2 4 l(D X)? + g—[X X,)? + (fermion terms)
4 Uv 2 wrl 4 D]

X,(x) : Nx N hermitian matrices

N > 1 to satisfy the duality

= Some special cases
X, — N — X : simultaneously diagonal
/ N

diagonal : position of D-branes

off-diagonal : open strings among D-branes
[Witten, (1995)]

) Suppose X; =Y, + X, Y =diag(y;, -, V),
2 _ ij ji i N2 Y |2
tr Y, X)|" = (Y, X, — X,Y)'(Y, X, — XYY > — (y; — y))* | X |

And remember (open string mass) = (string tension) x (string length).
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How to read “geometry” in general?

&__ D-prane configuration

Key; Separation of the classical modes and fluctuation around them

[Polchinski, (1998/1999) / Susskind, (1999) /---]

However, we cannot diagonalize X, simultaneously.

) In the 't Hooft limit,

N {trX?), N<tr X, XJ]2> ~O(NY) = (eigenvalue of X;) ~ O(N°)

When diagonalizing X;, X, are far from diagonal;

o) . . 12 N o y 2
tr [Xp Xp] = D ( {’—X{J)Z‘XJ’J , rX; =) X2+ ) ‘XJJ
L,] ~ O(NO) A ~ l 7]
~ O™ ~ O(N)!!

Need to extract a “classical mode” by dropping open string fluctuations.
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In Hamilton formalism

Let us consider the Matrix Quantum Mechanics (p = 0) for simplicity.

— each matrix element is an operator

N2 N2
X = Z XraTis  Prij= Z Py .7; ¢ : generator of G = U(N)
a=1 a=1
tI'(TaTb) = 5ab
Uncertainty relation Z (clizhy 5ik5jl

[)A(l,aa P sl = 10750,
- Hilbert space;

7 = Span { 1X); X,,1X) = X,,1X) } = Span{ |P); P,,|P) =Py, |P)}
“coordinate basis” “momentum basis”

- Partition function at finite temperature

J dg Tr., ( Ge _H/T) Try <e—ﬁ/T)
G

Z(T) =
() VolG
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Notion of wave packet

In the same meaning of the previous slide,
we cannot use the coordinate (or momentum) eigenstate.

[Hanada (2021)]

) By [X,.. P,,] =i5,,8,, , the eigenstates have infinitely large energy,

containing a lot of quantum fluctuation.

Remember that, in the quantum mechanics,

Closest state to classical state is wave packet.

To identify the geometry, consider the wave packet in dN*>-dim space

) = J 0X | X)(X|®) = J dX O(X)| X)
RAN? RAN? I=12,--.d

and the center of ®(X), Y, (c.f. coherent state)
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Wave packet in color space

[Hanada (2021)]
The center of wave packet Y, determines the location of D-branes!

@) =1Y;0), (@IX|®) =Y, (®|P]P®)=0Q,
: localized around Y; and @, in each basis.

(e.qg., for free matrix QM, it corresponds to the coherent state.)

Affected by gauge transformations

N Y ‘RdNZ
o Crr-1) — ¢ 17—l —. YU Y w
Xpi = (UXIU ) = 2 Up X1 U~ = XEU) g
Y k=1
: . 4_>0 Yy
provides the gauge orbit of Y;, Foom /
- position of the wave packet moves \/tr Y12

& “diagonalizability” of Y

- But shape of the wave packet are unchanged

for free matrix QM
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Determination of wave packet

How to identify the low-energy wave function for generic theory?

Proposal 1 (Hamiltonian formalism) [Hanada (2021)]

ngn(cblﬁlq)) withgiven (@ |X,|®) =Y, (®|P/|®) =0,

Proposal 2 (Path-integral formalism) [Hanada, Kanno, Matsuura, HW, in progress)

. Prepare {X;}, and find a unitary matrix U minimizing R,, with given Yy

R_(X, Y@y := min [ max

(U) __ y(trial)
(% = 1)

U La a rv) o |&d1\72
: L-distance or Chebyshev distance / e
. Vary Y searching min R (X, Y) NG

. Repeat above for different X, and take average

(R (X,Y,:.)) IS gauge invariant
. Variational approaches
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Contents

- Monte Carlo method to the minimization problem

- Basic strategy by Replica-Exchange method
and its extensions

C.f.) Fukuma-san’s afternoon talk;

Applying the Worldvolume Hybrid Monte Carlo method
to dynamical fermion systems

(Several similarities can be found.)
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MCMC & minimization

 Importance sampling realized by Markov-chain Monte Carlo method
Is applicable to generic “potential” F(x), by regarding it as the action S(x)

P(x) o e=® O NN (D IR ) RS '8

 Importance sampling is a powerful tool not only for performing integrals
but also to search the minima of F(x), if “tunneling” effect is enhanced.

F(x) F(x)

N, //L/

—concept of annealing which introduce a “temperature”
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Simulated Annealing (SA

[Kirkpatrick, Gelatt, Vecchi, (1983)]

known also as the tempering, is a method searching global minimum;

p

p . small

p . large

v

> i F(X) : a function to be minimized
M __—— pFX)
. fictitious
P <Pp< <
~ prF () hr<b Pu inverse temp.

scaling the depth of “potential”

Pt ) . At small g, “tunneling” occurs easily.
\ (various region can be reached)
A

. At high g, potential depth grows.

/ —Precision of determining optimized
config. improves.

SA : gradually lowering “temperature”

15/ 31

MCMC | input:x# | MCMC input: x) 1 MCMC
with giF() | = | with ,F(x) | =P = —— | with f,FR) |
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Replica-Exchange Monte Carlo (REMC)

[Swendsen, Wang, (1986) / Geyer, (1991)]

known also as the parallel tempering, is an upgraded method of SA;

p

> X

S : small \\/\/\ — AFW

A

p . large

- REMC enhances more tunneling than SA.

/\ / prF(x)
[\ / Pt (x)
R

« REMC removes an approximation in SA,
coming from finite trials in each p.

16/ 31

Key:
config. exchange among
the simulations of different gs

« Running the simulations of different
“temperature” simultaneously.
(hence, it costs a lot of resource)

. Exchange configurations x, & x,,.,
(m=1,---,M - 1) with weight
(:Metropolis test)

AS = f, (X 1) + Py F (%)
—ﬁmF(x) /Bm+1F( +1)

Still, it was insufficient for us ---
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Further improvements

R_ (X, Y("ay .= min
U

max
La

In our work, (

(U) _ y(trial)
(X = i)

)

« Minimization hits the limit quickly due to stuck in local minima.
- REMC costs much, but we need to repeat it for several configs.

a

Is what we want to compute.

However, we struggled with the following issues;

Therefore,

. “Regularization” of replica action F(U) = R_(U; X)

* Introduction of Replica-Exchange SA (RESA)
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Refinement of replica actions

Still severe to minimize the L_-distance due to the huge #local minima

original problem ~ new problem -
1/p
) _
R0 30 = max |~ 1) [zlx;w—w]
La
. L_-distance R e |
~ . L L, dlstanceJ

[Hanada, Kanno, Matsuura, HW, in progress]

extend by introducing “evaluation function” on each replica

AR
prF(x) fR(x) o e

PoF(x) \/\ /\ Ve ﬂzljg(X) ~_ /\/\/

B F(x) \ /\ / ﬁMRMH(x)\/\ /
s _
J |
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Properties of extended REMC

- MCMC algorithm in each replica — guaranteed it could work

- Different pot. structure among replicas — many minimizing path

) for an X (= X))
Ry(X)>Ry(X)>-->2R_(X)>0 : monotonic series of X

which implies great acceptance for larger p.
But not satisfied
PRy (X) 2 Ps3R3(X) 2 - 2 fyRy(X), P <3<+ <Py

i '\
BR,(X) o N

. Less local minima for smaller p

PrRy(X)
) R(XW),Y,) = \/tr(X](U) — ¥, is gauge inv. ; \/\/\/
PrRui1(X)
. R(X) = R, (X) for sufficiently large p [/v
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Replica-Exchange SA (RESA)

RESA = Annealing of REMC with small replicas

p . small \\_’//M\\Af

p :large /

» XA

PRy (x)

\ /\/\/ PoR3(x)

PrRppy1(X)

[Hanada, Kanno, Matsuura, HW, in progress]

simulation time

B

Sma

>

P
Pht1
Pri-n
| REMC >
Pu

 Drastic reduction of computational resource and time.
- Combination with refined replica actions may create synergy.
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Contents

 Numerical results
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Prep.. Mock-data analysis

Consider the simple setup (I =1 case)

N%—1

t = 59
Z 61 1]’ Xa = 1 o T
] % : SU(N) generator

and prepare the mock data Z by randomly generating the unitary matrices V
Z=vxv-! (Y=0)
We minimize the distance w.r.t. {Z}

R_(U,Z) := max ‘Z(U)

I/p
a —¥ R UX)= (Z | ZY) |ap)
R (U X)=1 a

The searching problem of a unitary matrix U ~ v~!
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Prep.. Mock-data analysis

Demonstration: 4 x 4 matrix in which we know the answer

MC time (iteration)

300°

preliminary

(#replica = 500, (threshold) = 1.025)

. standard REMC
. extended REMC

Relative error

+ 4+

XX XX X X000

relative error

0.001

.| JJ standard sA =]
| [ eRESA, 30 rep. |

_ . eRESA, 50 rep. Preliminary |
MC time

— Minimization by eREMC, eRESA tends faster than standard ones.
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Example: One-matrix model

m? 1
S(X) = Ntr TXZ + ZX4 , / = “dXe_S(X)
:“(0+0)-dim” toy model

and assuming m?* < 0 and trX = 0. “Classical” minima can be described as

C =diag(4+c,-,+c —c,-+,— ) c =\ —m?
\_/ \/
#=N/2 #=N/2

We prepare {X} by MC simulation and minimize the distance w.r.t. X

a

1/p
R, (U,X)=max | XY - C'| =¥ R(UX)= (Z | XO) _ C/|ap)

with changing the ansatz
C':=diag(+c’, -, +c,—c,,=c"), ¢ =\—-m?>+6c
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Result : optimal C

(50 configs. on m? = — 10)

(Reo) (Re)
0.26 Nz e T T T T T T 08 N=4,m?=-2 ——
e N=4 et —
0.24
N=6
0.22 — 1
N — 8 X 0.6  =—— N — 6
0.2
T 8 —
0:8 T % 05 N _ 8
8 oast e
S ko)
% 0.16 ,:'% 04r
%5 o
) il [
S onl _ { g ..l
2 X 0
® X @
012 4 1
| | Vi
i /
01F
j 01F
0.08 |
. \
0.06 L L L L L L L L -4 -2 0 2 4
2.95 3 3.05 341 3.15 3.2 3.25 3.3 3.35 3.4
c+5c N log(R./[average of R,])
=+ —m? (Reo/(Ro))
C = —m* + Oc Nl()g Roo/ Roo

[Left] “Classical” config. minimizes the distance — good candidate for “geometry”

[Right] Histogram of R_(X) shows that width scales by N, as theoretically expected.
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Large-N extrapolation

0.16 T 0.35 T
analysis data —+—1 analysis data —+—1
trapolation data Fk— trapolation data —¥—
0.14
0.12
8 0.1 8
hd hd
) ()]
2 2
U 0.08f ©
—-— —-—
2 L
© ©
© ©
) 0.06 )
(@)] (@)
© ©
— —
g 2
o 004} ®
0.02
0 -
-
_0.02 L 1 1 1 1 1 ~0.05 ¢ 1 1 1 1 1
0 01 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
1AN 1AN 1/ \/N

. Large N extrapolation shows an 1/4/N scaling and convergence to zero,

which is predicted from theoretical side!

u(X, - ¥) =Y | X, -, ~ O(N'2)

a

2
a

a a
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c.f.) Eigenvalue distribution _ ,,_,

200 f 200 |

EEN-s m - —10|

150 150

No distribution in [-2.5, 2.5].
Two bunches are disconnected.

100 100

50 50

“Higgsed” phase

1 1 1 1 ] 1 1 1 1
—3.50 -3.25 -3.00 -2.75 -2.50 2.50 2.75 3.00 3.25 3.50

250 r

N N =8m?= —2

200

150

Two bunches start to connect

100

at m? > m?.

50

Even in this region, we can

extract “center of wave packet”!
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Example(2): Fuzzy sphere matrix model

[Iso, Kimura, Tanaka, Wakatsuki, (2001)]

1 Diu 1 ]

: X;s are not simultaneously diagonalizable

“Classical” minima : Fuzzy sphere solution

chlasswal = ulJj, [JI, JJ] = 1€k J; . N-dim. rep. of SU(2) generator
RO 1 //lz
s S2 R2 = — tI'X2 = _(N2 — 1)
o Now oy
:‘:;‘;;.(:‘2‘- 0.07 [ T T ' " analys i data —+—
4 (R) u =10 |

Minimize the distance w.r.t. U

- preliminary |

R_(U, X) = max |XI(U) — XIFS |
La

1/4/N |

' AN
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Summary

To read off geometric information from field theory configs. in string theory,
the notion of wave packet in space of matrix plays an essential role.

t v, RAN®
o () — | L

O

To determine the wave packet in a high-dim space, we compute a quantity

R_(X) := min <max
U a

(U'XU-7Y)

X,Y : Nx N hermitian mat.
U . unitary mat.

which can be translated into an optimization problem.

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider their
extensions to solve this problem numerically.

30/ 31

BERBINFIRIC S DIHZEREDY 12O R2023



Future directions

- More detailed analysis for (bosonic) fuzzy-sphere three-matrix model

1 2iu 1 ]

- Compare the obtained results with those in Hamiltonian formalism.

. How should we determine better ansatz Y,

< Essential for analyzing (O+1)d models (e.g. BFSS-type model) and so on.

- Further understanding, generalization, application of the extended REMC
- Tuning of the loss function, if we say in the language of ML.

« Combination of ML and RE method?
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