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Short summary

2

R∞(X) := min
U (max

a
(U†XU − Y)a )

To determine the wave packet in a high-dim space, we compute a quantity

which can be translated into an optimization problem.

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider their 
extensions to solve this problem numerically.

 :  hermitian mat.   
 : unitary mat.

X, Y N × N

U

( )XI = ⋱

ℝdN2YI,a

To read off geometric information from field theory configs. in string theory, 
the notion of wave packet in space of matrix plays an essential role.
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Strings and D-branes
String theory : a candidate for theory of quantum gravity 

: open string 

: closed string

D-branes

: the endpoints of open strings  
  can attach. 

We want to understand the physical properties of D-branes.
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A clue : gauge/gravity duality
conjecture from 2 descriptions of D-branes in string theory;

D-branes & string

Theory of closed strings 
in D-brane geometry

Effective theory of  
open strings on branes

QFT 
(Super Yang-Mills theory)

GR in curved spacetime

Expected to capture the nonperturbative aspects of string theory
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Position of D-branes & open strings
xμ

xν xI
μ, ν = 0,⋯, p
I, J = p + 1,⋯,9

∫ dp+1x tr ( 1
4 F 2

μν + 1
2 (DμXI)2 + g2

4 [XI, XJ]2 + (fermion terms))
 :  hermitian matrices 

         to satisfy the duality
XI(x) N × N

N ≫ 1

[Witten, (1995)]

Effective action (: (p+1)-dim. U(N) gauge theory)

diagonal : position of D-branes 
off-diagonal : open strings among D-branes

( )XI = ⋱

Some special cases 
→ X : simultaneously diagonal 

tr [YI, XJ]2 = (YIXJ − XIYJ)ij(YIXJ − XIYJ) ji ⊃ − (yi
I − yj

I)
2 |Xij

I |2

 Suppose ,∵ ) XI = YI + X̃I, Y = diag(y1, ⋯, yN)

And remember (open string mass) = (string tension) ⨉ (string length). 
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How to read “geometry” in general?
D-brane configuration

XI = YI + X̃I [Polchinski, (1998/1999) / Susskind, (1999) /…]

Key; Separation of the classical modes and fluctuation around them

However, we cannot diagonalize  simultaneously.XI

tr [X1, XJ≠1]2 = ∑
i, j

(Xii
1 − Xjj

1 )2 Xij
J

2
, tr X2

J = ∑
i

(Xii
J )2 + ∑

i≠j
Xij

J

2

∼ O(N0) ∼ O(N−1) ∼ O(N )!!

 In the ’t Hooft limit,∵ )

N ⟨tr X2
I ⟩, N ⟨tr [XI, XJ]2⟩ ∼ O(N2) ⇒ (eigenvalue of XI) ∼ O(N0)

When diagonalizing ,  are far from diagonal; X1 XJ≠1

Need to extract a “classical mode” by dropping open string fluctuations.
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ℋ = Span { |X⟩; X̂I,a |X⟩ = XI,a |X⟩} = Span { |P⟩; ̂PI,a |P⟩ = PI,a |P⟩}

X̂I,ij =
N2

∑
a=1

X̂I,aτa
ij, ̂PI,ij =

N2

∑
a=1

̂PI,aτa
ij  : generator of τa G = U(N )

[X̂I,a, ̂PJ,b] = iδIJδab

Z(T ) = 1
VolG ∫G

dg Trℋ ( ̂g e−Ĥ/T) = Trℋinv (e−Ĥ/T)

Let us consider the Matrix Quantum Mechanics ( ) for simplicity.  

→ each matrix element is an operator
p = 0

• Hilbert space;

“coordinate basis” “momentum basis”

Uncertainty relation

tr(τaτb) = δab

∑
a

(τij
a τkl

a ) = 1
N

δikδ jl

• Partition function at finite temperature

In Hamilton formalism
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Notion of wave packet
[Hanada (2021)]

In the same meaning of the previous slide, 
  we cannot use the coordinate (or momentum) eigenstate.

 By  , the eigenstates have infinitely large energy, 
     containing a lot of quantum fluctuation.
∵ ) [X̂I,a, ̂PJ,b] = iδIJδab

|Φ⟩ = ∫ℝdN2
dX |X⟩⟨X |Φ⟩ = ∫ℝdN2

dX Φ(X) |X⟩

To identify the geometry, consider the wave packet in -dim spacedN2

and the center of ,Φ(X) YI,a (c.f. coherent state)

✔
I = 1,2,⋯, d

Remember that, in the quantum mechanics, 

Closest state to classical state is wave packet.
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Wave packet in color space
[Hanada (2021)]

X̂I,ij → (UX̂IU−1)ij
=

N

∑
k,l=1

UikX̂I,klU−1
lj =: X̂(U)

I,ij

Affected by gauge transformations

provides the gauge orbit of YI,a

ℝdN2

tr Y2
I

YI,ij

Y (U)
I,ij

Y (U′ )
I,ij

• position of the wave packet moves 
⇔ “diagonalizability” of  

• But shape of the wave packet are unchanged
Y

O(N0)

The center of wave packet  determines the location of D-branes!YI

|Φ⟩ = |Y; Q⟩, ⟨Φ | X̂I |Φ⟩ = YI, ⟨Φ | ̂PI |Φ⟩ = QI

(e.g., for free matrix QM, it corresponds to the coherent state.)

: localized around  and  in each basis.YI QI

for free matrix QM
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Determination of wave packet

[Hanada (2021)]

⟨Φ | X̂I |Φ⟩ = YI, ⟨Φ | ̂PI |Φ⟩ = QI, ⋯min
Φ

⟨Φ | Ĥ |Φ⟩

How to identify the low-energy wave function for generic theory?

with given 

Proposal 1 (Hamiltonian formalism)

[Hanada, Kanno, Matsuura, HW, in progress]

R∞(X, Y (trial)) := min
U (max

I,a (X(U)
I − Y (trial)

I )a )
• Prepare , and find a unitary matrix  minimizing  with given {XI} U R∞ Y (trial)

I

• Vary  searching   

• Repeat above for different  and take average 

Y (trial)
I min

Y
R∞(X, Y )

XI

Proposal 2 (Path-integral formalism)

ℝdN 2

tr Y 2
I

YI,a

Y (U )
I,a

Y (U′ )
I,a

 is gauge invariant ⟨R∞(X, Ymin)⟩

: -distance or Chebyshev distanceL∞

: Variational approaches
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• Monte Carlo method to the minimization problem 

• Basic strategy by Replica-Exchange method  
and its extensions 

12

Contents

C.f.) Fukuma-san’s afternoon talk; 
Applying the Worldvolume Hybrid Monte Carlo method  
to dynamical fermion systems

(Several similarities can be found.)
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MCMC & minimization

P(x) ∝ e−F(x)

• Importance sampling realized by Markov-chain Monte Carlo method  
is applicable to generic “potential” , by regarding it as the action  F(x) S(x)

• Importance sampling is a powerful tool not only for performing integrals 
but also to search the minima of , if “tunneling” effect is enhanced.F(x)

F(x)

xi
❌  hard

F(x)

xi
xtrial

i

✔ easy

xmin
i

x(0) → x(1) → x(2) → ⋯ → x(Ns)

→concept of annealing which introduce a “temperature”
14
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Simulated Annealing (SA)

15

[Kirkpatrick, Gelatt, Vecchi, (1983)]

β1F(x)

β2F(x)

βMF(x)

⋮

 : a function to be minimizedF(X )

known also as the tempering, is a method searching global minimum;
β

 : smallβ

 : largeβ

xi

β1 < β2 < ⋯ < βM

• At small , “tunneling” occurs easily. 
(various region can be reached) 
  

• At high , potential depth grows. 
→Precision of determining optimized  
   config. improves.

β

β

SA : gradually lowering “temperature”

: fictitious  
  inverse temp.

scaling the depth of “potential”

MCMC 
with β1F(x)

MCMC 
with β2F(x)

input: x(β1)
min MCMC 

with βMF(x)
input: x(βM−1)

min…
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Replica-Exchange Monte Carlo (REMC)

16

[Swendsen, Wang, (1986) / Geyer, (1991)]

known also as the parallel tempering, is an upgraded method of SA;

β1F(x)

β2F(x)

βMF(x)

⋮

β

 : smallβ

 : largeβ

xi

• Exchange configurations  &  
( ) with weight

xm xm+1

m = 1,⋯, M − 1

ΔS := βmF(xm+1) + βm+1F(xm)
−βmF(xm) − βm+1F(xm+1)

(:Metropolis test)

Key: 
 config. exchange among  
the simulations of different sβ

• Running the simulations of different  
“temperature” simultaneously. 
(hence, it costs a lot of resource)

• REMC enhances more tunneling than SA. 
• REMC removes an approximation in SA,  
coming from finite trials in each .β

Still, it was insufficient for us …
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Further improvements

• “Regularization” of replica action  

• Introduction of Replica-Exchange SA (RESA)

F(U) = R∞(U; X)

In our work, 
R∞(X, Y (trial)) := min

U (max
I,a (X(U)

I − Y (trial)
I )a )

is what we want to compute. 

Therefore,

However, we struggled with the following issues;

•Minimization hits the limit quickly due to stuck in local minima. 
• REMC costs much, but we need to repeat it for several configs.
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Refinement of replica actions

18

extend by introducing “evaluation function” on each replica 

β1R2(x)

β2R3(x)

βMRM+1(x)

⋮

Rp(U, X ) = ∑
I,a

|X(U)
I − YI |

p
a

1/p

Still severe to minimize the -distance due to the huge #local minimaL∞

R∞(U, X) = max
I,a

|X(U)
I − YI |a

original problem new problem

β1F(x)

β2F(x)

βMF(x)

⋮

: -distanceL∞ : -distanceLp

[Hanada, Kanno, Matsuura, HW, in progress]
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Properties of extended REMC

19

•MCMC algorithm in each replica → guaranteed it could work  

• Different pot. structure among replicas → many minimizing path 
∵) for an  
 
   which implies great acceptance for larger . 
But not satisfied 
 

• Less local minima for smaller  

∵)     is gauge inv. 

•  for sufficiently large  

X (:= X(U))

p

p

R2(X(U), YI) = tr(X(U)
I − YI)2

Rp(X) ≈ Rp+1(X) p

R2(X) ≥ R3(X) ≥ ⋯ ≥ R∞(X) ≥ 0 : monotonic series of X

β1R2(X )

β2R3(X )

βMRM+1(X )

⋮

β2R2(X) ≥ β3R3(X) ≥ ⋯ ≥ βMRM(X), β2 < β3 < ⋯ < βM
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Replica-Exchange SA (RESA)

20

RESA = Annealing of REMC with small replicas 

β

 : smallβ

 : largeβ

xi

β1R2(x)

β2R3(x)

βMRM+1(x)

⋮

simulation time

β1

βh

β2

βh+1

βM−h

βM

…

small REMC

• Drastic reduction of computational resource and time. 
• Combination with refined replica actions may create synergy.

[Hanada, Kanno, Matsuura, HW, in progress]
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Prep.: Mock-data analysis

22

Consider the simple setup (  case) I = 1

Xij =
N2−1

∑
a=1

Xaτa
ij, Xa = 1 tr τaτb = δab

 :  generatorτa SU(N )

Z = VXV−1

and prepare the mock data  by randomly generating the unitary matrices Z V

R∞(U, Z) := max
a

Z(U)
a

R∞(U, X) = 1

(Y = O)

Rp(U, X) = (∑
a

|Z(U) | p
a )

1/p

We minimize the distance w.r.t. {Z} 

The searching problem of a unitary matrix U ≈ V−1
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Prep.: Mock-data analysis

23

Demonstration:  matrix in which we know the answer4 × 4

preliminary
standard REMC
extended REMC

MC time (iteration)

(#replica = 500, (threshold) = 1.025)

→ Minimization by eREMC, eRESA tends faster than standard ones.
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Example: One-matrix model

24

S(X) = N tr ( m2

2 X2 + 1
4 X4), Z = ∫ dX e−S(X)

C = diag (+c, ⋯, + c − c, ⋯, − c)

and assuming  and . “Classical” minima can be described as m2 < 0 trX = 0

:“(0+0)-dim” toy model

c = −m2

# = N/2 # = N/2

C′ := diag(+c′ , ⋯, + c′ , − c′ , ⋯, − c′ ), c′ = −m2 + δc

Rp(U, X) = (∑
a

|X(U) − C′ | p
a )

1/p

R∞(U, X) = max
a

|X(U) − C′ |a

We prepare {X} by MC simulation and minimize the distance w.r.t. X 

with changing the ansatz
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Result : optimal C

25

c′ = −m2 + δc

⟨R∞⟩
N = 4
N = 6
N = 8

preliminary
preliminary

N log(R∞/⟨R∞⟩)

N = 4
N = 6
N = 8

(50 configs. on )m2 = − 10
⟨R∞⟩

[Left] “Classical” config. minimizes the distance → good candidate for “geometry” 
[Right] Histogram of  shows that width scales by , as theoretically expected.R∞(X ) N
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Large-N extrapolation

26

⟨R∞⟩ ⟨R∞⟩

1/ N

preliminary

• Large N extrapolation shows an  scaling and convergence to zero,  
which is predicted from theoretical side!

1/ N

preliminary

m2 = − 10 m2 = − 2

tr(XI − YI)2 = ∑
a

XI − YI a

2 ∼ O(N ), R∞ ∼ max
a

XI − YI a
∼ O(N−1/2)
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c.f.) Eigenvalue distribution

27

N = 8

m2 = − 10

m2 = − 2

No distribution in [-2.5, 2.5]. 
Two bunches are disconnected.

Two bunches start to connect  
at .m2 ≥ m2

c

“Higgsed” phase

Even in this region, we can  
extract “center of wave packet”!

e.g.)
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Example(2): Fuzzy sphere matrix model

28

S(X1, X2, X3, ψ) = Ntr (− 1
4 [XI, XJ]2 + 2iμ

3 ϵIJK XI XJXK + 1
2 ψ̄σ I[XI, ψ] + μψ̄ ψ)

“Classical” minima : Fuzzy sphere solution

Xclassical
I = μJI, [JI, JJ] = iϵIJKJK  : -dim. rep. of SU(2) generatorJI N

1/ N

⟨R∞⟩

R∞(U, X) = max
I,a

|X(U)
I − XFS

I |a

Minimize the distance w.r.t. U

[Iso, Kimura, Tanaka, Wakatsuki, (2001)]

N → ∞ S2 R2
FS = 1

N
tr X2

I = μ2

4 (N2 − 1)

: s are not simultaneously diagonalizableXI

preliminary
μ = 10
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Summary

30

R∞(X) := min
U (max

a
(U†XU − Y)a )

To determine the wave packet in a high-dim space, we compute a quantity

which can be translated into an optimization problem.

We employ the Replica-Exchange Monte Carlo methods (REMC) and consider their 
extensions to solve this problem numerically.

 :  hermitian mat.   
 : unitary mat.

X, Y N × N

U

( )XI = ⋱

ℝdN2YI,a

To read off geometric information from field theory configs. in string theory, 
the notion of wave packet in space of matrix plays an essential role.
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Future directions

31

• Compare the obtained results with those in Hamiltonian formalism. 

• How should we determine better ansatz  
← Essential for analyzing (0+1)d models (e.g. BFSS-type model) and so on.

YI

• Further understanding, generalization, application of the extended REMC  

• Tuning of the loss function, if we say in the language of ML. 

• Combination of ML and RE method?

• More detailed analysis for (bosonic) fuzzy-sphere three-matrix model

S(X1, X2, X3, ψ) = Ntr (− 1
4 [XI, XJ]2 + 2iμ

3 ϵIJK XI XJ XK + 1
2 ψ̄σ I[XI, ψ] + μψ̄ ψ)


