The Causality Road from DT to QG that describes our Universe

Y. Watabiki

Talk @ Discrete Approaches to the Dynamics of Fields and Space-Time held at Univ of Tsukuba on 12/9/2023

Strategy

 We walk on the causality road from DT to QG that describes our Universe.

Conclusion

- The topology of universe is **3D** torus.
- Accelerating expansion of universe is caused by Porcupinefish spacetime, not by Dark Energy.

CONTENTS1

1. Introduction

- a. Determinism in Physics (Laplace's Demon)
- b. Overview of Quantum Gravity (QG)
- 2. Causality Road
 - a. Creation of Our Universe from Emptiness
 - b. Several proposals to Solve the Problems in QG
 - c. Strategy for QG Describing Our Universe
- 3. 2d Euclidean Gravity 力学的単体分割
 - a. c = 0 non-critical SFT (DT Version)
 - b. The Appearance of Reduced W Algebra
- 4. 2d Causal Gravity 因果力学的単体分割
 - a. c = 0 non-critical SFT (CDT Version)
 - b. The Appearance of W Algebra
 - c. The Appearance of Jordan Algebra

CONTENTS2

5. Basic of Theory

- a. Definition of our Theory
- b. From the birth of universe to Big Bang Dimension Enhancement Vanishing Cosmological Constant

6. Modified Friedmann Equation

- a. Expansion of our Universe
- b. Accelerating expansion of Universe
- 7. Change of Vacuum and Birth of Time
- 8. Overview (Cosmic Age Division)

研

究 会

'17

1. Introduction

- **a.** Determinism in Physics (Laplace's demon)
 - How to determine $\mathcal{X}(x,t) \stackrel{\text{\tiny def}}{=} \{\psi_{\alpha}(x,t), A_{\mu}(x,t), g_{\mu\nu}(x,t)\}.$

In classical theory, $\mathcal{X}(\forall x, \forall t)$ is determined by $\mathcal{X}(\forall x, \exists t_0)$.

However, how is $\mathcal{X}(\forall x, \exists t_0)$ chosen?

In quantum theory, the wave function $\Psi(\mathcal{X}(\forall x, \forall t), \forall t)$ is determined by $\Psi(\mathcal{X}(\forall x, \exists t_0), \exists t_0)$ and $\mathcal{X}(x, t)$ is probabilistically determined by $\Psi(\mathcal{X}(x, t), t)$. However, how is $\Psi(\mathcal{X}(\forall x, \exists t_0), \exists t_0)$ chosen? • How to determine $\mathcal{X}(x,t) \stackrel{\text{\tiny def}}{=} \{\psi_{\alpha}(x,t), A_{\mu}(x,t), g_{\mu\nu}(x,t)\}.$

 \Rightarrow If the universe starts from a point,

all states $\mathcal{X}(\forall x, \forall t)$ are determined by the quantum theory because $\mathcal{X}(x, t = 0)$ is unique.

(Note that the point state is prohibited in classical theory because of its determinism mechanism.)

But, new questions arise.

What was the state of the universe before it was a point?

Was the universe born from nothing?

b. Overview of Quantum Gravity (QG)

Partition Function

The partition function of QG is defined

by summing up all possible configurations as

 $[\mathcal{T} \text{ represents the topology of spacetime.}]$

 $Z = \sum_{\mathcal{T}} C_{\mathcal{T}} \int \mathcal{D} \mathcal{X} \exp\{i \int d^d x \, dt \, \mathcal{L}[\mathcal{X}(x,t)]\}.$

Problems:

 $\mathcal{X}(x,t) \stackrel{\text{\tiny def}}{=} \left\{ \psi_{\alpha}(x,t), A_{\mu}(x,t), g_{\mu\nu}(x,t) \right\}$

1. How to define $\mathcal{L}[\mathcal{X}(x,t)]$.

2. How to define $C_{\mathcal{T}}$ and perform the path-integral $\int \mathcal{DX}$.

 \Rightarrow As far as we know, only 2D QG (= non-critical string theory)

allows us to perform the above-mentioned path integral.

2. Causality Road

a. Creation of our Universe from Emptiness

- Our Universe is mathematics with causality _{般若心経}
 The Buddhist Heart Sutra is "Form is emptiness, emptiness is form."
 In this statement the causality, which is a central teaching of Buddhism,
 is an inevitable idea. But, what is the emptiness? On the other hand,
 Mathematics has no substance and exists independently of our universe.
 - \Rightarrow We identify the emptiness as one of the mathematics with causality,

that is, our world is one of the mathematics with causality (*)

Let us use "time" as a coordinate specifying causality.

"time" becomes "normal time" when Lorentz symmetry exist.

Mathematics of QG is simple and extremal

Mathematics complex enough to describe our universe is the mathematics that we physicists seek.

String theory is not only a candidate for QG, but also the theory

that we human beings know best in terms of mathematical depth.

 \Rightarrow Critical string theory (which has c = 26) will be the real QG.

Let us take not only "simplicity" but also "extremity" $\frac{1}{5}$ as clues for logical leaps.

 \Rightarrow Physics is a simple and extreme theory of mathematics.

D. Proposals to solve the Problems in QG

• Our universe starts from a point state

Problem of initial conditions of $\Psi(X(x, t = 0), t = 0)$.

 \Rightarrow This problem is solved because the point state at t = 0 is unique.

However, the following new problems arise.

Problem of the singularity [If a conserved quantity exists,

the point-state universe becomes a state with a matter memory.

If there exists such singularity, those appear everywhere.]

Problem of the topology of the Universe [We need the

mechanism to determine C_T , i.e. the topology of universe

after t = 0.]

• The causal time axis is placed outside spacetime

Let us abandon the Lorentz symmetry for a while.

Then, the following problem arise.

Problem of the Lorentz symmetry.

Problem of the birth from emptiness [If a conserved quantity exists,

2- b

the point-state universe has a matter charge and

we need to produce it when the point-state universe was born.]

On the other hand, the following problem is solved.

Problem of time-closed loop [This picture rules out the existence

of time-closed loop, meaning there are no time machines.]

• Our Universe started as a one-dimensional space

Assuming that the universe initially occurs from emptiness as a 1D space and has changed to a high dimensional space during the expansion, the following problems are solved. **Problem of the singularity of spacetime** [The conservation law cannot go back to the period when it was 1D space.] **Problem of the topology of the Universe** [1D closed space] is unique.]

 \Rightarrow The knitting mechanism appears and

this leads to the toroidal topology.

• The emergence of critical string theory

If our theory is equivalent to the critical string theory,

the following problems are solved.

Problem of Lorentz symmetry

[The Lorentz symmetry recovers.]

Problem of the gauge symmetry of Standard Model

[The gauge symmetry appears.]

Problem of background metric independence

[We need the theory which is independent of the background.]

C. Strategy for QG that describes our Universe

We treat the following two points important.

 2D Euclidean QG, i.e. non-critical string theory is *currently* the only QG theory that has succeeded in calculating the path integral.

But, there is no concept of time because the metric is Euclidean.

 critical string theory [c=26] has Lorentz symmetry and includes the graviton, so this theory is a candidate of QG that describes our universe.

But, so far the string theory cannot describe the birth of universe.

In both cases the "time" looks the key word. \Rightarrow "causal time" (*)

We start from DT to QG which describes our universe as

pure DT \Rightarrow pure CDT \Rightarrow CDT with 26 central charge [c = 0] [c = 0] [c = 26]

• Preparation

"pure" means no matter fields.

2D QG \sim Liouville gravity \sim non-critical string theory

~ Matrix Model ~ Dynamical Triangulation (DT)

• Pure DT by non-critical string field theory (SFT)

DT is expressed by non-critical SFT

• Pure DT by W operators

non-critical SFT is expressed by W operator.

Pure CDT by non-critical SFT

The geodesic distance is replaced by the causal time.

Pure CDT by W operators

 \Rightarrow The phenomena of the birth of universe appear naturally.

CDT with matter by W operators

 \Rightarrow The Jordan algebra appears naturally.

Basic properties of CDT with matter

 \Rightarrow The inflation starts after the birth of universe.

The dimension enhancement by the knitting mechanism

The vanishing cosmo constant by the Coleman mechanism

Phenomenological predictions by CDT with matter

 \Rightarrow The accelerating expansion occurs.

We can predict how our universe will come to an end.

5. Basic of Theory

- **a.** Definition of W and Jordan algebra gravity
 - Transfer Operator

The partition fun. is derived by the expectation value of Θ^* .

Our model is described by the transfer operator Θ^{\star}

$$\Theta^{\star} \stackrel{\text{def}}{=} e^{W_{-2}^{(3)}} \qquad W_n^{(3)} \stackrel{\text{def}}{=} \frac{1}{3} \sum_{k+l+m=n} \operatorname{Tr} : \alpha_k \alpha_l \alpha_m :$$
$$\alpha_n \stackrel{\text{def}}{=} \sum_{\mu} E_{\mu} \alpha_n^{\mu} \qquad [\alpha_m^{\mu}, \alpha_n^{\nu}] = m \delta_{m+n,0} \delta^{\mu,\nu}$$

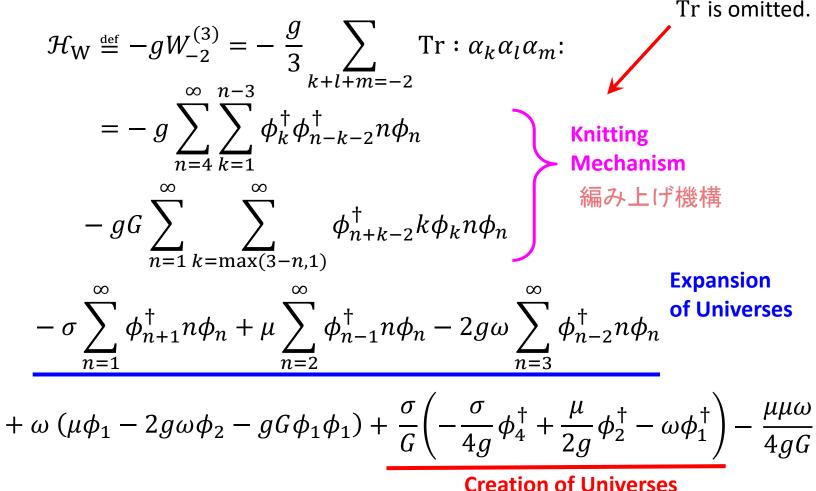
where E_{μ} is the 3 × 3 octonian Hermitian matrices. (*m*, *n* are modes [*m*, *n* \in **Z**], μ , ν are flavors [μ , $\nu = 0$, 1, ..., 26].)

• The emergence of time

We shift α_n and introduce ϕ_n^{\dagger} and ϕ_n as

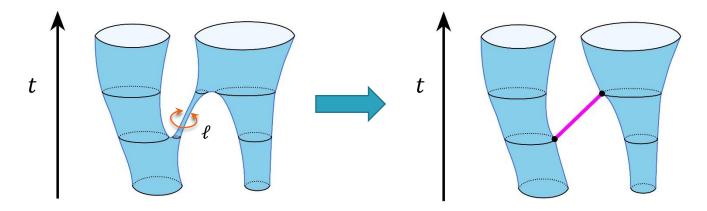
$$(\alpha_{-n})^{*} = 3\lambda_{3}\delta_{n,3} + \lambda_{1}\delta_{n,1} + n\sqrt{G}\phi_{n} \qquad (\alpha_{n})^{*} = \frac{1}{\sqrt{G}}\phi_{n}^{\dagger}$$
$$3\lambda_{3} = \frac{\sigma}{2g\sqrt{G}} \quad \lambda_{1} = -\frac{\mu}{2g\sqrt{G}} \qquad (\alpha_{0})^{*} = \frac{\omega}{\sqrt{G}} \qquad \alpha_{0} \text{ is commutative with all operators.}$$
Physical vacuum |vac⟩ is a coherent state,

$$\phi_n |\text{vac}\rangle = 0$$
 $[\phi_m, \phi_n^{\dagger}] = \delta_{m,n}$ $[m, n \in N]$

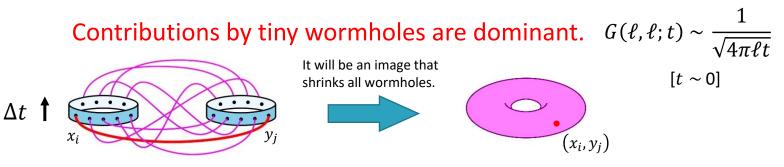

Under the physical vacuum, the scale symmetry is broken!

$$\alpha_n \rightarrow (gt)^{-n/2} \alpha_n$$
 leads to $W_{-2}^{(3)} \rightarrow gt W_{-2}^{(3)}$

 \implies t appears in front of $W_{-2}^{(3)}$ and starts to play the role of time.


b. From the birth of universes to Big Bang

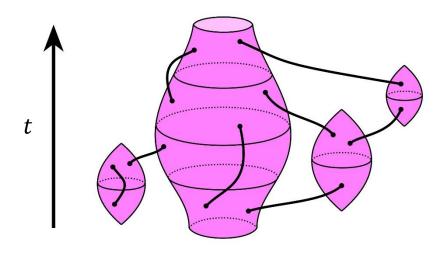
Hamiltonian


18

• Knitting mechanism (Dimension Enhancement) 編み上げ機構

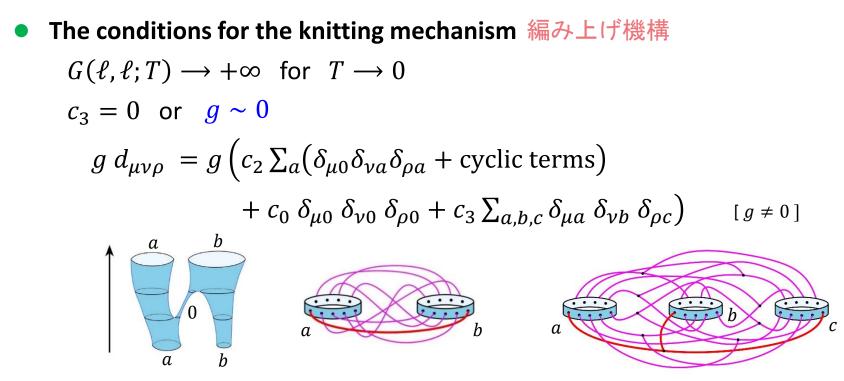
(A wormhole with small ℓ is shown by purple line.)

High-dimensional space is formed after the birth of space.

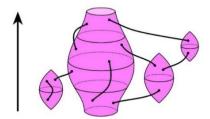


(The set of tiny wormholes gives a torus topology.)

• Coleman mechanism (Vanishing cosmo const.) 大爆発機構


Connection by wormholes with finite t will give

vanishing the cosmological constant μ .


Vanishing the cosmological constant μ will give the Big Bang energy and will deny the existence of dark energy.

The conditions for the Coleman mechanism 大爆発機構

 $G(\ell, \ell; T) \longrightarrow$ finite for $T \longrightarrow +\infty$

6. Modified Friedmann Equation

a. Expansion of our Universe

Derivation of Modified Friedman equation

$$\mathcal{H}_{kin} = -\sum \phi_{n+1}^{\dagger} n \phi_n + \mu \sum \phi_{n-1}^{\dagger} n \phi_n - 2g \sum \phi_{n-2}^{\dagger} n \phi_n$$

leads to the classical Hamiltonian ${}^{\{L,\Pi\}=1}$

$$\mathcal{H}_{c} = L\left(\pm(\Pi^{2} - \mu) + \frac{2g}{\Pi}\right)$$
Cosmo const μ is replaced by
the matter energy ρ_{m} by
Coleman mechanism.

$$4\mu \rightarrow \frac{\kappa\rho_{m}}{3}$$

$$H^{2} = \frac{\kappa\rho_{m}}{3} + \frac{B}{H}\frac{1 + 3F(x)}{(F(x))^{2}}$$

$$B \stackrel{\text{def}}{=} -8g$$
This eq. is invariant under

$$H \stackrel{\text{def}}{=} \frac{\dot{L}}{L} \quad (F(x))^{2} - (F(x))^{3} = x \qquad x \stackrel{\text{def}}{=} \frac{B}{H^{3}}$$

$$(4B)^{1/3}H \leftrightarrow \frac{\kappa\rho_{m}}{3}$$

• The geometrical meaning of $-2g\phi_0^{\dagger}\sum\phi_{n-2}^{\dagger}n\phi_n$

This term comes from the leading term of disk amplitude F(L) $(\phi_0^{\dagger} = 1)$

$$F(L) = \delta(V) + \cdots \qquad \widehat{F}(\xi) = \langle \widetilde{\Psi}^{\dagger} \rangle = \xi^{-1} + \cdots = \frac{1}{\xi + \sqrt{\mu}}$$

$$\left(\widetilde{\Psi}^{\dagger} = \sum_{n=0}^{\infty} \xi^{-1-n} \phi_n^{\dagger} \right)$$
The creation of one baby universe
$$t \qquad \qquad The creation of one baby universe$$

$$t \qquad \qquad F^{(baby)} = \delta(V)$$

$$g = -\frac{B}{8} < 0$$

Porcupinefish spacetime

Negative g gives the accelerating expansion of Universe.

This term is the quantum effect of quantum gravity!

VO

b. The accelerating expansion of Universe

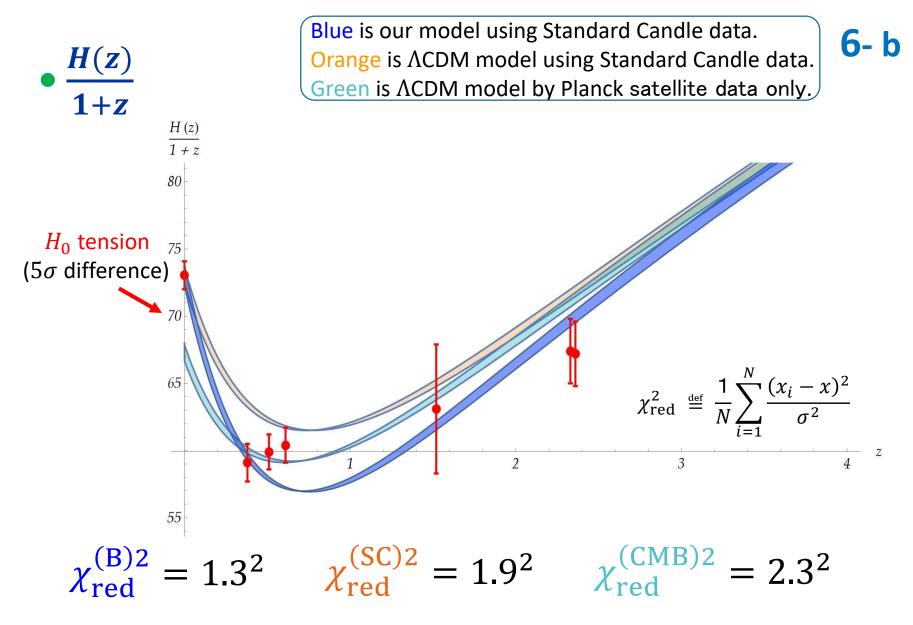
• H_0 tension (problem) and S_8 tension

$$H_0 \stackrel{\text{\tiny def}}{=} H(t_0), \quad S_8 \stackrel{\text{\tiny def}}{=} \sigma_8(t_0) \sqrt{\Omega_{\rm m}(t_0)/0.3}, \quad \Omega_{\rm m} \stackrel{\text{\tiny def}}{=} \frac{\kappa \rho_{\rm m}}{3H^2}$$

Data from Planck satellite (Early Universe w/ ACDM model)

$$H_0^{(CMB)} = 67.3 \pm 0.6 \text{ [km/sec/Mpc]}$$

 $S_8^{(CMB)} = 0.835 \pm 0.014$
Data from Standard candles (Late Universe)
 $H_0^{(SC)} = 73.0 \pm 1.0 \text{ [km/sec/Mpc]}$
 $(ArXiv:2112.04510)$
 $S_8^{(SC)} = 0.769 \pm 0.005$


Boundary Condition 1 (CDM is assumed)

Data from Planck satellite $t_0^{(CMB)} = 13.8 \times 10^9$ [year] $H_0^{(\text{CMB})} = 67.3 \pm 0.6 \, [\text{km/sec/Mpc}]$ $z_{\rm LS}^{\rm (CMB)} = 1089.95$ $\frac{a_{\Lambda^{(CMB)}}(t_0^{(CMB)})}{a_{\Lambda^{(CMB)}}(t_{LS}^{(CMB)})} = 1 + z_{LS}^{(CMB)} \qquad H_{\Lambda^{(CMB)}}(t_0^{(CMB)}) = H_0^{(CMB)}$ $t_{\rm LS}^{\rm (CMB)}$ and $\Lambda^{\rm (CMB)}$ are determined. (These are hidden information in CMB observed by Planck satellite.)

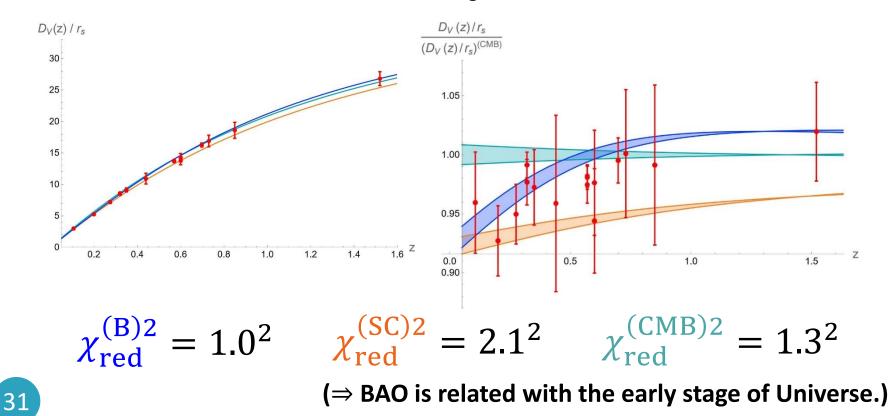
• **Boundary Condition 2** (CDM is assumed)

Data from Standard candles

 $H_0^{(SC)} = 73.0 \pm 1.0 \, [\text{km/sec/Mpc}]$ No difference between We also use $t_{LS}^{(CMB)}$ and $z_{LS}^{(CMB)}$. \leftarrow ACDM model and our model before $t_{IS}^{(CMB)}$ $\frac{a_{A}^{(SC)}\left(t_{0}^{(SC)}\right)}{a_{A}^{(SC)}\left(t_{LS}^{(CMB)}\right)} = 1 + z_{LS}^{(CMB)} \qquad H_{A}^{(SC)}\left(t_{0}^{(SC)}\right) = H_{0}^{(SC)}$ $\frac{a_B(t_0^{(B)})}{a_B(t_{LS}^{(CMB)})} = 1 + z_{LS}^{(CMB)} \qquad H_B(t_0^{(B)}) = H_0^{(SC)}$ $t_0^{(SC)}, A^{(SC)}, t_0^{(B)}, B$ are determined. 13.3[Gyr] $\frac{2.2}{t_0^{(SC)2}}$ 13.9[Gyr] $\frac{0.15}{t_0^{(B)3}}$

(\Rightarrow Standard Candle data represents the accel. expansion well.)

Blue is our model using Standard Candle data. Orange is Λ CDM model using Standard Candle data. Green is Λ CDM model by Planck satellite data only.



 $r_{\rm S}^{(\rm B)} \sim r_{\rm S}^{(\rm SC)} \sim r_{\rm S}^{(\rm CMB)} = 147.05 \pm 0.30 \,[{
m Mpc}]$ Data from Planck satellite

 $r_{\rm s}$ is the sound horizon at $z = z_{\rm drag}$

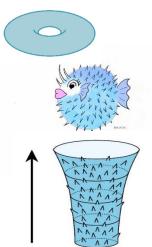
 $\frac{D_V(z)}{r_s}$

(BAO)

Blue is our model using Standard Candle data. Orange is ΛCDM model using Standard Candle data. Green is ΛCDM model by Planck satellite data only.

$$\sigma_8^{(B)}(0) \sim \sigma_8^{(SC)}(0) \sim \sigma_8^{(CMB)}(0) = 0.8120 \pm 0.0073$$

 $f_m(z) \sigma_8(z)$ Data from Planck satellite 0.7 0.6 $(\Rightarrow$ Error bars are large.) 0.5 0.5 1.0 1.5 $\chi_{\rm red}^{\rm (B)2} = 0.70^2$ $\chi_{\rm red}^{\rm (SC)2} = 0.51^2$ $\chi_{\rm red}^{\rm (CMB)2} = 0.54^2$ • $S_8 \stackrel{\text{\tiny def}}{=} \sigma_8(0) \sqrt{\Omega_{\rm m}(0)/0.3}$ S_8 tension $\chi_{\rm red}^{(B)2} = 0.75^2$ $\chi_{\rm red}^{(\rm SC)2} = 0.75^2$ $\chi_{\rm red}^{(\rm CMB)2} = 3.35^2$ $(\Rightarrow S_8 \text{ looks related with the late stage of Universe.})$


7. Conclusions

a. Emergence of space

- High-dimensional space is formed
 by the direct product of several 1D loop spaces S¹.
- The topology of our universe is 3D torus. Therefore, the spacetime is flat. (K = 0)

b. Identity of Dark energy

- Accelerating expansion of Universe is caused by Porcupinefish spacetime.
- No tensions appear in $(H_0, BA0, f_m \sigma_8, S_8)$.
- Dark energy does not exist. (because of Coleman mechanism)

- **C.** Destiny of our Universe
 - There exist two scales:

$$t_{\mu} \stackrel{\text{\tiny def}}{=} |\mu|^{-1/2}, \ t_{g} \stackrel{\text{\tiny def}}{=} |g|^{-1/3}$$

- We need to neglect the interaction of 3-universes. The condition is $t_0 \leq t_g \sim 3.8 t_0 \sim 52$ [Gyr]
- **(l.** The anthropic principle 人間原理
 - If we assume the anthropic principle, we human beings encounters the era t₀ ~ t_g and we human beings cannot survive beyond t_g.

8. Overview

- **a.** Change of Vacuum and Birth of Time
 - We need the change of vacuum in order to birth the time.

 $|0\rangle \rightarrow |vac\rangle$

This transition looks a sudden change.

Is it possible to incorporate the concept of SSB?

b. Cosmic age division

- Pre- and Post-world
- Cosmic dawn age
 - Space-birth period
 - Wormhole period
- Cosmic growth age
 - Big-bang period
 - Transition period
- Cosmic dusk age
 - Chaos period
 - Doomsday period

 $[t \lesssim 0]$ $[0 \lesssim t \lesssim t_{\mu}]$

$$\left[t_{\mu} \lesssim t \lesssim t_{g}\right]$$

 $\left[t_g \lesssim t \lesssim t_{\rm c}\right]$

C. Further problems

• Why
$$\frac{t_g}{t_{\text{planck}}} \sim 3 \times 10^{61}$$
 is so large?

- Our model is equivalent to the string theory?
 Only the conformal dimensions coincide.
- What happens beyond t_c ?