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Introduction
What’s wrong with superstring theory?

The established string theory is merely based on perturbation theory.

 There’re infinitely many candidates of the vacuum, and it’s unpredictable.

“Effective potential”

~
False vacuum

True (or at least our) vacuum

How is our 4D spacetime realised?

* Non-perturbative physics such as black holes and the early universe is
not predictable strictly speaking.

We need non-perturbative formulation
to make it genuinely predictable quantum gravity theory!



Introduction

Non-pert. formulation of 2D critical string theory and

non-critical string theories
... However, this isn’t naively applicable to superstring

1988-1993

1994-1995 Progress in superstring theory

 Dualities between superstring theories

lIB string <—> I[lIAstring <——> M-theory

- D-branes
ey A
0-brane 1-brane 2-brane
1096 Non-pert. formulation of superstring theory
e BFSS matrix model [Banks, Fischler, Shenker, Susskind ’96]
dIKKT matrix mode| [Ishibashi, Kawai, Kitazawa, Tsuchiya '96]

1997 - Gauge/gravity duality [Maldacena '97, ...]



Introduction
How matrices appear in superstring theory

Xy
branes connected by strings

The duality between |IA string and M-theory

# The non-relativistic DO dynamics (BFSS matrix model)
describes the DLCQ M-theory [Banks, Fischler, Shenker, Susskind '96]

... equivalent to the matrix regularisation of supermembrane
[de Wit, Hoppe, Nicolai '88]

# The matrix regularisation of superstring (IKKT matrix model)
describes the type |IB string theory

[Ishibashi, Kawai, Kitazawa, Tsuchiya '96]



Introduction

Quantum corrections in string theory

]
vaw

Feynman diagram string worldsheet

1/N expansion <+—— genus expansion
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Introduction

The IKKT mat[’ix mOde/ [Ishibashi, Kawai, Kitazawa, Tsuchiya '96]

2

X*: bosonic N X N matrices (u = 0,-:-,9) Y: Majorana-Wey! fermionic N X N matrices

I I '
SIX, W] = N (X XX, X, ] + —PIIHX,, V]

This 0-dimensional theory is considered to describe type-IIB superstring
theory non-perturbatively. We believe this because it:

 has supersymmetry identical to that of type-IIB string: A4 = (2,0) in (9+1)D

* reproduces perturbative results
(graviton-exchange potential, scattering amplitudes, etc. )

- can reproduce the light-cone string field theory by the Schwinger-Dyson eq,.
[Fukuma, Kawai, Kitazawa, Tsuchiya '97]
- has potential to dynamically realise (3+1)D space-time at large N

- Dynamics of the diagonal elements of X* forms 4D  [Aoki, Iso Kawai, Kitazawa, Tada "98]

- SSB to 80(3) is observed [Anagnostopoulos, Azuma, lto,
Nishimura, Okubo, Papadoudis '20]



Introduction
Matrix identification of gravity

While there is an interpretation of matrices as the coordinates,
there are interpretations in which gravitons are included as matrix elements.

X, ~ie/'V +

- Hanada-Kawai-Kimura interpretation [Hanada, Kawai, Kimura *06;...]
# The classical E.o.M. gives the Einstein-Hilbert gravity

* Weitzenbock connection interpretation [sperling, Steinacker ’19; Steinacker '20;...]

# The classical E.o.M. gives modified gravity (“pre-gravity”) while

the one-loop correction gives the Einstein-Hilbert gravity.
[Fredenhagen, Steinacker '21; Y.A. Steinacker ’21; Steinacker 21]



Introduction
Matrix identification of gravity

Also, the interpretations seem to give a solution to the naturalness problem.
The quantum corrections in HKK produce a multi-local effective action,

which implies that the coupling constants are dynamically fine-tuned.
[Coleman ’88; Kawai, Okada '11, ’13; Y.A., Kawai, Tsuchiya '12; Hamada, Kawai, Oda ’18;... ]

® Bi(z)

# ddx @I(X) ddy @2()7) — Sint,l Sint,2
y W v W
Bi(x) Ba(y)

w(Si,) = o {Cine it Cipding ding, 7). — J[ dA] w(A) o AiSin,

Very attractive! But how can one be certain about the interpretations of X7
-+ My motivation to revisit its relationship to the perturbative string



Introduction

Problem: How is the 0D theory defined?
The IKKT action:

SIX, w5 G,

J=Ntr |—

up Gyo

X*: bosonic N X N matrlces (=0,

[Ishibashi, Kawai, Kitazawa, Tsuchiya '06]

1
XV, XANXP, X] + oy G IV (XY,

+,9) y: Majorana-Weyl fermionic N X N matrlces

However, we don’t really know how the IKKT action enters in the partition fn.

- j [dX 1[dyr] ™1Vl 2

(1, = diag(= 1,1, 1, )

“Euclidean IKKT model”

—“Lorentzian IKKT model”
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Green-Schwarz formalism

Nambu-Goto-type action j‘) :
O
The following respects target-space supersymmetry. ~ =
embedding X*(o)
1

Sgg = — — [d%{ \/ — det(, JI,ITY) — ie®9, X*(0''T ,0,0" — 6°'T ,0,0%)

27

area of the worldsheet 1 b9l TTm 0a(91 HZTFﬂ %92 }

X*: bosons (position of a string)  0*: Majorana-Weyl fermions (A = 1,2)

worldsheet index: a = 0,1 target space index: u = 0,-:-,9

1" =0 X" —i(0'"T%0 0" + 0*'T*0,67)

SUSY: 594 = e 5 XH = i(e'THO" + e?'T+0?)
(10D type Il SUSY)

[Green, Schwarz ’84]



Green-Schwarz formalism

1 .
Sgg = — o Jd%{ \/ — det(,, JIITY) — ie®9, X*(0''T ,0,0" — 6°'T,0,0%)
hab

7 +&%0'"T%0,6' 0°'T 0,6 }
X*: 10 bosons 94: 32 fermions

— 8 { eft-moving — 8 +8 They match!
right-moving

Gauge symmetries
Reparametrisation symmetry:
§°0% = — 560,0%  S°X* = — 5690, X¥ 2 bosons are redundant

“K symmetry” (local fermionic symmetry):
50l =1 +Dx! 8'0P=0-Dx*> 68Xt =—i6"0"TH0" + 5'67T+6?)

ab
~ E ~ .
(r == r, I, I°= 1) 16 fermions are redundant



Green-Schwarz formalism
Algebra of kappa symmetry

There have been obstacles of quantisation in the G-S formalism.

« K symmetry has an infinite series of gauge symmetry
sl =1+Dx! kl~cl+0-Dx' «l'~x'+@+D)x’!

« K symmetry is not closed off-shell
(6, 8, = 67 + 8¢, + 5; + (E.0.M)

== Batalin-Vilkoviski quantisation w/ an infinite tower of ghosts
[Kallosh ’89;...]



Schild-type action

The Nambu-Goto-type action is equivalent to
the following Schild-type action:

1 1 h -
Sqehilg = — E Jd%{ -5 (e— — eg) — ie"0,X"0''T ,0,0" — 6°'T ,0,0%)
§

+&%0'"T%0,6' 0°'T 0,6 }

e, a Lagrange multiplier or “gauge field”

. 2 _
E.o.M. for €yl €y = h

% Integrating out €, brings this back to the Nambu-Goto action.

Remarkably, the fermionic gauge symmetry is formally enhanced:
§'XH = —i(5'0'"To! + 5'0°'T70%)

4ie§ 2 [ _h
5f€ — _hab + (_1)A+18ab 5f9ATF IT%0 HA
& eZ+h e pranh

8 A=1 8

564 is not projected by %(1 +1). [Y.A. to appear]




Enhanced kappa symmetry
Algebra of the enhanced kappa symmetry

Each sector of the enhanced k symmetry

sl=6ysv  with @==0,+i0) y=-(0—ib)
e
h@a(egﬂa)

2
eg+

Is closed off-shell, with a “trivial” gauge symmetry 5ee, =
(67,871 =87 + 65

(65,001 =6, [60.871=5~6;

9
O,V

b s81 — 58 _ sb fp sg1 — sto g g S871 — S8
[5]) ’ 5/1] - 5,[4/ 55/4"’ [5](‘ ’ 5/4] _ 5]('// + 5/4//, [5 1° 5/,12] _ 5/4_4,,
[Y.A. to appear]

==l BRST quantisation w/o ghosts of ghosts

% Note the algebra is closed even if we take only the area-preserving diffeo. part
S° XH = — £%0,£0_X* instead of 8°. -+ SU(N) trf. after the matrix regularisation



Schild-type action

Gauge-fixing for obtaining the IKKT action

Fixing the gauge by ¢, =¢,(0) = 1 @ =0

one obtains

1 1 1 _
SSChﬂd — 2_ J'dzU Z{Xﬂ, XU}% — 5 + 2il//TFﬂ{X’u, l//}f) + ghOStS

]Z L
/ﬂ 1 ab U N2
h = det(0,X0,X,) = (0, X"0,X")

= {(XF. X"];

Matrix regularisation of this action would give the Lorentzian IKKT.

However, this Poisson bracket is defined on (1+1)D worldsheet...
(matrix reg. wouldn’t be well-defined)



“Derivation” of the IKKT model

Wick rotation

Unlike the Polyakov-type action, we can find a Wick rotation that rigorously
connects the Lorentzian and Euclidean for the Schild-type action:

00 — e—iQGZ, XO — e—i@xl()’ W = ei9/2l/j(E)
2 gab |
Then, {fi.filp=—¢7 ) —0,fi0pf, = 01y, fo} P

ab=1 8

: C o i L vi vz Lo iz L o Ty o T [y
expliSschilg] = €Xp > do’do Z{X,X}IS—E{X,X}IS—E+2H// I'AXS s + 2ip' T X, wip

_ | —ieie .. ie‘ie .
=exp| ——— [daldaz <T<{Xl, XN+ —— (X0 X))

27 _
) . il
. . | ie
T —Dp?0 W(E)TF,-{ X W(E)}(AE) _ D;jpif W(E)Trlo (x10 W(E)}(AE) n >
0 — — B P P p)
2 I 121 (E) 2 (E)T (E) 1 _
— exp | —— |do'do”| —{ X", X"} 7+ 2T A X" P ) + =

271' 4 P 2 (m — 1,,9,10)

We’ve derived the Euclidean path integral by a change of contour.



“Derivation” of the IKKT model

Matrix reqularisation  Hoppe 's2]
Regularisation by a map from a function to a matrix
00 [ N—-1 [
f©@)= 2% 2 Y@ — 2, D fusVindy = J

spherical harmonics

This maps the Poisson bracket and worldsheet integral to

2N 1 1
{ - }<E> - —1-,-], —Jdaldaz — —1r,
l T N

Then the action becomes, with rescaling of X" and l//(E),

1
exp[—S®] =lexp [-Ntr ——Xm X"? — —yBTT X" B 4 —
pl | p < | ] SV ml | AN

We have “derived” the Euclidean weight w/ the Euclidean IKKT action
from the perturbative superstring theory.



“Derivation” of the IKKT model
Wick-rotating back the theory

Actually, the Euclidean IKKT model w/ e is equivalent to
a Lorentzian IKKT model w/ e with natural regulators introduced

By a change of contour X' = eie/4)~(i X1V = — e_3i8/4)20, l//(E) = 6310/81//

exp —Ntr(——[X”” X" — ; BT [Xm,l//(E)]>

e~ . e . 1 ie' .
_ v0 vii2 vi vi12 _ ., T v O T i
=exp [Ntr( ——[X°, X + — (X, X1 -~y Ty[X0 yl + —y T [X, ]

T _
0— —

' - .
— exp iNtr(Z[Xwa] [ XH, X*] + %wTFﬂ[X”, wl + e ((Xl)2 + (X0)2)>

So, we get e
) J [dX [y ™) eV 0] o J[dff Il €/STKwn.

This is a well-defined finite integral for finite V.
[Krauth, Nicolai, Staudacher '98; Austing, Wheater '01]



“Derivation” of the IKKT model

Caveat about the Lorentzian IKKT model

However there is another definition of the Lorentzian IKKT model w/ eiS:

A e

Z, = J[dX][dl//] exp |iNtr <Z[X/“‘, X“? + %(e_ngle — XXV + %yﬂrﬂ[xﬂ, w]>

e—= 0" fory>0, e >0 fory <0

P
e+y

1 o
> [[dX][dl/f(E)] eXp[—N tr< = XX = (e XX + XX )

l
WO, Xy ) > ]

The model w/ y — 0~ is equivalent to the Euclidean model w/ e ™

because Cauchy’s thm. connects them via the change of contour.

But not for y > 0; thus the IKKT model w/ y — 07 is different!

[Y.A., Nishimura, Piensuk, Yamamori;
Y.A., Chou, Nishimura, Piensuk, Tripathi, Yamamori, to appear]

This difference would be interpreted as “different definitions of the vacuum.”



Vertex operators

The BRST transformation on the worldsheet is
SPIXM = = 2iey Ty + €'{c, X"}p, 6" ly =yl 6°Flp=er+efcolp

A BRST inv. vertex: sza ik (XP2igTTHy) [dzaeikﬂxﬂ (momentum-k, mode)

m=dp- | the matrix model, V® = tre®X

This forms a massless multiplet of type 1B SUGRA
by acting the supercharge operator () onto this vertex.

/1TQ ir kX" o ~2T0 _ — tr o'k Xty ke TH A4

= Ve 4+ V‘T’kﬂrm + VB ATTHP) + ...

dilaston ® dilatino®  Bw  gravitino w 9@VIton fu

[Kitazawa ’02; Iso, Terachi, Umetsu '04; Kitazawa, Mizoguchi, Saito '07]



Summary

- We find there is a set of gauge trf. that closes its algebra for the string action
in the Green-Schwarz formalism by rewriting the action to the Schild type.

It allows us to quantise the theory without an infinite tower of ghosts.

- If we assume the IKKT matrix model is derived as a pure matrix regularisation

of the Schild-type action, it is the Euclidean action w/ e o,

. There is a Lorentzian IKKT model w/ e equiv. to the Euclidean one w/ e,

However, since the Lorentzian IKKT partition fn. is conditionally convergent,

there is another Lorentzian IKKT model inequivalent to the Euclidean one.
Probably they share the same structure of the 1/ N expansion, but
the “derivation” cannot tell the correct “definition of the vacuum.”

- A BRST-inv. massless-mode vertex is consistent with the suggested matrix-

model vertex operator tr eX" of a string (or D1), which forms a massless

multiplet of type IIB SUGRA by acting the supercharge operator.

Further analysis should clarify how to construct massive states in the IKKT.



