Perturbative superstring theory and the IKKT Matrix Model

Yuhma Asano (University of Tsukuba)
Sep. 14, 2023 @Risan 2023 at U. Tsukuba

Introduction

What's wrong with superstring theory?

The established string theory is merely based on perturbation theory.

- There're infinitely many candidates of the vacuum, and it's unpredictable.

How is our 4D spacetime realised?

- Non-perturbative physics such as black holes and the early universe is not predictable strictly speaking.

We need non-perturbative formulation to make it genuinely predictable quantum gravity theory!

Introduction

1988-1993

1994-1995

1996

1997

Non-pert. formulation of 2D critical string theory and non-critical string theories
... However, this isn't naively applicable to superstring
Progress in superstring theory

- Dualities between superstring theories

$$
\text { IIB string } \longleftrightarrow \text { IIA string } \longleftrightarrow \text { M-theory }
$$

- D-branes

0-brane
Non-pert. formulation of superstring theory

- BFSS matrix model [Banks, Fischler, Shenker, Susskind '96]
- IKKT matrix model
[Ishibashi, Kawai, Kitazawa, Tsuchiya '96]
- Gauge/gravity duality
[Maldacena '97, ...]

Introduction

How matrices appear in superstring theory

The duality between IIA string and M-theory

The non-relativistic D0 dynamics (BFSS matrix model) describes the DLCQ M-theory [Banks, Fischler, Shenker, Susskind '96]
... equivalent to the matrix regularisation of supermembrane
[de Wit, Hoppe, Nicolai '88]
The matrix regularisation of superstring (IKKT matrix model)
describes the type IIB string theory

Introduction

Quantum corrections in string theory
Matrix model

Feynman diagram
$1 / N$ expansion \longleftrightarrow genus expansion

$$
F=N^{2} F_{0}+F_{1}+\frac{1}{N^{2}} F_{2}+\cdots=\sum_{g=0}^{\infty} N^{2-2 g} F_{g}
$$

Introduction

The IKKT matrix model

$$
S[X, \Psi]=N \operatorname{tr}\left[\frac{1}{4}\left[X^{\mu}, X^{\nu}\right]\left[X_{\mu}, X_{\nu}\right]+\frac{1}{2} \Psi^{T} \Gamma^{\mu}\left[X_{\mu}, \Psi\right]\right]
$$

X^{μ} : bosonic $N \times N$ matrices $(\mu=0, \cdots, 9) \quad \Psi$: Majorana-Weyl fermionic $N \times N$ matrices
This 0-dimensional theory is considered to describe type-IIB superstring theory non-perturbatively. We believe this because it:

- has supersymmetry identical to that of type-IIB string: $\mathcal{N}=(2,0)$ in $(9+1) \mathrm{D}$
- reproduces perturbative results (graviton-exchange potential, scattering amplitudes, etc.)
- can reproduce the light-cone string field theory by the Schwinger-Dyson eq. [Fukuma, Kawai, Kitazawa, Tsuchiya '97]
- has potential to dynamically realise (3+1)D space-time at large N
- Dynamics of the diagonal elements of X^{μ} forms 4D
- SSB to SO(3) is observed
[Aoki, Iso Kawai, Kitazawa, Tada '98]
[Anagnostopoulos, Azuma, Ito, Nishimura, Okubo, Papadoudis

Introduction

Matrix identification of gravity

While there is an interpretation of matrices as the coordinates, there are interpretations in which gravitons are included as matrix elements.

$$
X_{a} \sim i e_{a}{ }^{\mu} \nabla_{\mu}+\cdots
$$

- Hanada-Kawai-Kimura interpretation [Hanada, Kawai, Kimura '06;...]
\longrightarrow The classical E.o.M. gives the Einstein-Hilbert gravity
- Weitzenböck connection interpretation [Sperling, Steinacker '19; Steinacker '20;...]
\longrightarrow The classical E.o.M. gives modified gravity ("pre-gravity") while the one-loop correction gives the Einstein-Hilbert gravity.
[Fredenhagen, Steinacker '21; Y.A. Steinacker '21; Steinacker '21]

Introduction

Matrix identification of gravity

Also, the interpretations seem to give a solution to the naturalness problem.
The quantum corrections in HKK produce a multi-local effective action, which implies that the coupling constants are dynamically fine-tuned.
[Coleman '88; Kawai, Okada '11, '13; Y.A., Kawai, Tsuchiya '12; Hamada, Kawai, Oda '18;...]

Very attractive! But how can one be certain about the interpretations of X ?
... My motivation to revisit its relationship to the perturbative string

Introduction

Problem: How is the OD theory defined?

The IKKT action:
[Ishibashi, Kawai, Kitazawa, Tsuchiya '96]

$$
S\left[X, \psi ; G_{\mu \nu}\right]=N \operatorname{tr}\left[\frac{1}{4} G_{\mu \rho} G_{\nu \sigma}\left[X^{\mu}, X^{\nu}\right]\left[X^{\rho}, X^{\sigma}\right]+\frac{1}{2} \psi^{T} G_{\mu \nu} \Gamma^{\mu}\left[X^{\nu}, \psi\right]\right]
$$

$$
X^{\mu} \text { : bosonic } N \times N \text { matrices }(\mu=0, \cdots, 9) \quad \psi \text { : Majorana-Weyl fermionic } N \times N \text { matrices }
$$

However, we don't really know how the IKKT action enters in the partition fn.

$$
Z=\int[d X][d \psi] e^{i S\left[X, \psi ; \eta_{\mu \nu}\right]} ? \quad\left(\eta_{\mu \nu}=\operatorname{diag}(-1,1, \cdots, 1)_{\mu \nu}\right)
$$

Table of contents

1. Introduction
2. Green-Schwarz formalism

- Schild-type action
- Enhanced kappa symmetry

3. "Derivation" of the IKKT model

- Vertex operators

4. Summary

Green-Schwarz formalism

Nambu-Goto-type action
The following respects target-space supersymmetry.

$$
S_{\mathrm{GS}}=-\frac{1}{2 \pi} \int d^{2} \sigma\{\underbrace{\left\{\sqrt{-\operatorname{det}\left(\eta_{\mu \nu} \Pi_{a}^{\mu} \Pi_{b}^{\nu}\right)}-i \varepsilon^{a b} \partial_{a} X^{\mu}\left(\theta^{1 T} \Gamma_{\mu} \partial_{b} \theta^{1}-\theta^{2 T} \Gamma_{\mu} \partial_{b} \theta^{2}\right)\right.}_{\text {area of the worldsheet }} \begin{array}{l}
\left.+\varepsilon^{a b} \theta^{1 T} \Gamma^{\mu} \partial_{a} \theta^{1} \theta^{2 T} \Gamma_{\mu} \partial_{b} \theta^{2}\right\}
\end{array}
$$

X^{μ} : bosons (position of a string) $\quad \theta^{A}$: Majorana-Weyl fermions $(A=1,2)$
worldsheet index: $a=0,1 \quad$ target space index: $\mu=0, \cdots, 9$
$\Pi_{a}^{\mu}=\partial_{a} X^{\mu}-i\left(\theta^{1 T} \Gamma^{\mu} \partial_{a} \theta^{1}+\theta^{2 T} \Gamma^{\mu} \partial_{a} \theta^{2}\right)$
SUSY: $\quad \delta^{\mathrm{s}} \theta^{A}=\epsilon^{A} \quad \delta^{\mathrm{s}} X^{\mu}=i\left(\epsilon^{1 T} \Gamma^{\mu} \theta^{1}+\epsilon^{2 T} \Gamma^{\mu} \theta^{2}\right)$
(10D type II SUSY)

Green-Schwarz formalism

$$
S_{\mathrm{GS}}=-\frac{1}{2 \pi} \int d^{2} \sigma\left\{\sqrt{-\frac{\operatorname{det}\left(\eta_{\mu \nu} \Pi_{a}^{\mu} \Pi_{b}^{\nu}\right)}{h_{a b}}}-i \varepsilon^{a b} \partial_{a} X^{\mu}\left(\theta^{1 T} \Gamma_{\mu} \partial_{b} \theta^{1}-\theta^{2 T} \Gamma_{\mu} \partial_{b} \theta^{2}\right)\right.
$$

$X^{\mu}: 10$ bosons $\quad \theta^{A}: 32$ fermions

$$
\rightarrow 8\left\{\begin{array}{l}
\text { left-moving } \\
\text { right-moving }
\end{array}\right.
$$

$$
\rightarrow 8+8 \quad \text { They match! }
$$

Gauge symmetries
Reparametrisation symmetry:

$$
\delta^{\mathrm{b}} \theta^{A}=-\delta \sigma^{a} \partial_{a} \theta^{A} \quad \delta^{\mathrm{b}} X^{\mu}=-\delta \sigma^{a} \partial_{a} X^{\mu} \quad 2 \text { bosons are redundant }
$$

" κ symmetry" (local fermionic symmetry):

$$
\begin{array}{lr}
\delta^{\mathrm{f}} \theta^{1}=(\mathbf{1}+\tilde{\Gamma}) \kappa^{1} & \delta^{\mathrm{f}} \theta^{2}=(\mathbf{1}-\tilde{\Gamma}) \kappa^{2}
\end{array} \delta^{\mathrm{f}} X^{\mu}=-i\left(\delta^{\mathrm{f}} \theta^{1 T} \Gamma^{\mu} \theta^{1}+\delta^{\mathrm{f}} \theta^{2 T} \Gamma^{\mu} \theta^{2}\right) .
$$

Green-Schwarz formalism

Algebra of kappa symmetry
There have been obstacles of quantisation in the G-S formalism.

- κ symmetry has an infinite series of gauge symmetry

$$
\delta^{\mathrm{f}} \theta^{1}=(\mathbf{1}+\tilde{\Gamma}) \kappa^{1} \quad \kappa^{1} \sim \kappa^{1}+(\mathbf{1}-\tilde{\Gamma}) \kappa^{1} \quad \kappa^{\prime 1} \sim \kappa^{\prime 1}+(\mathbf{1}+\tilde{\Gamma}) \kappa^{\prime \prime 1} \quad \cdots
$$

- κ symmetry is not closed off-shell

$$
\left[\delta_{\kappa_{1}}^{\mathrm{f}}, \delta_{\kappa_{2}}^{\mathrm{f}}\right]=\delta_{v_{3}}^{\mathrm{b}}+\delta_{\kappa_{3}}^{\mathrm{f}}+\delta_{\lambda_{3}}^{\lambda}+\text { (E.o.M.) }
$$

Batalin-Vilkoviski quantisation w/ an infinite tower of ghosts

Schild-type action

The Nambu-Goto-type action is equivalent to the following Schild-type action:

$$
\begin{array}{r}
S_{\text {Schild }}=-\frac{1}{2 \pi} \int d^{2} \sigma\left\{\begin{array}{r}
-\frac{1}{2}\left(\frac{h}{e_{g}}-e_{g}\right)
\end{array}-i \varepsilon^{a b} \partial_{a} X^{\mu}\left(\theta^{1 T} \Gamma_{\mu} \partial_{b} \theta^{1}-\theta^{2 T} \Gamma_{\mu} \partial_{b} \theta^{2}\right)\right. \\
\left.+\varepsilon^{a b} \theta^{1 T} \Gamma^{\mu} \partial_{a} \theta^{1} \theta^{2 T} \Gamma_{\mu} \partial_{b} \theta^{2}\right\}
\end{array}
$$

e_{g} : a Lagrange multiplier or "gauge field"
E.o.M. for e_{g} : $\quad e_{g}^{2}=-h$

* Integrating out e_{g} brings this back to the Nambu-Goto action.

Remarkably, the fermionic gauge symmetry is formally enhanced:

$$
\begin{aligned}
& \delta^{\mathrm{f}} X^{\mu}=-i\left(\delta^{\mathrm{f}} \theta^{1 T} \Gamma^{\mu} \theta^{1}+\delta^{\mathrm{f}} \theta^{2 T} \Gamma^{\mu} \theta^{2}\right) \\
& \delta^{\mathrm{f}} e_{g}=\frac{4 i e_{g}^{2}}{e_{g}^{2}+h} \sum_{A=1}^{2}\left(\frac{-h}{e_{g}} h^{a b}+(-1)^{A+1} \varepsilon^{a b}\right) \delta^{\mathrm{f}} \theta^{A T} \Gamma_{\mu} \Pi_{a}^{\mu} \partial_{b} \theta^{A}
\end{aligned}
$$

$\delta^{\mathrm{f}} \theta^{A}$ is not projected by $\frac{1}{2}(\mathbf{1} \pm \tilde{\Gamma})$.

Enhanced kappa symmetry

Algebra of the enhanced kappa symmetry
Each sector of the enhanced κ symmetry

$$
\delta^{\mathrm{f}}=\delta^{\mathrm{f} \varphi}+\delta^{\mathrm{f} \mu} \quad \text { with } \quad \varphi=\frac{1}{2}\left(\theta_{1}+i \theta_{2}\right) \quad \psi=\frac{1}{2}\left(\theta_{1}-i \theta_{2}\right)
$$

is closed off-shell, with a "trivial" gauge symmetry $\delta^{g} e_{g}=\frac{e_{g}^{2}}{e_{g}^{2}+h} \partial_{a}\left(e_{g} \mu^{a}\right)$

$$
\begin{aligned}
& {\left[\delta_{\kappa_{1}}^{\mathrm{f} \varphi}, \delta_{\kappa_{2}}^{\mathrm{f} \varphi}\right]=\delta_{k_{3}}^{\mathrm{f} \varphi}+\delta_{\mu_{3}}^{\mathrm{g}}} \\
& {\left[\delta_{v_{1},}^{\mathrm{b}}, \delta_{v_{2}}^{\mathrm{b}}\right]=\delta_{v_{3},}^{\mathrm{b}} \quad\left[\delta_{v}^{\mathrm{b}}, \delta_{\kappa^{\prime}}^{\mathrm{f} \varphi}\right]=\delta_{\kappa^{\prime}}^{\mathrm{f} \varphi}-\delta_{\delta_{k^{\prime}}}^{\mathrm{b}},} \\
& {\left[\delta_{v}^{\mathrm{b}}, \delta_{\mu}^{\mathrm{g}}\right]=\delta_{\mu^{\prime}}^{\mathrm{g}}-\delta_{\delta_{\mu} \nu^{\prime}}^{\mathrm{b}} \quad\left[\delta_{\kappa}^{\mathrm{f} \varphi}, \delta_{\mu}^{\mathrm{g}}\right]=\delta_{k^{\prime \prime}}^{\mathrm{f} \varphi}+\delta_{\mu^{\prime \prime}}^{\mathrm{g}}, \quad\left[\delta_{\mu_{1}}^{\mathrm{g}}, \delta_{\mu_{2}}^{\mathrm{g}}\right]=\delta_{\mu_{3}}^{\mathrm{g}},}
\end{aligned}
$$

\longrightarrow BRST quantisation w/o ghosts of ghosts
※ Note the algebra is closed even if we take only the area-preserving diffeo. part $\delta^{\mathrm{b}^{\prime}} X^{\mu}=-\varepsilon^{a b} \partial_{b} \xi \partial_{a} X^{\mu}$ instead of $\delta^{\mathrm{b}} . \cdots \mathrm{SU}(\mathrm{N})$ trf. after the matrix regularisation

Schild-type action

Gauge-fixing for obtaining the IKKT action
Fixing the gauge by $\quad e_{g}=\hat{e}_{g}(\sigma)=1 \quad \varphi=0$
one obtains

$$
\begin{gathered}
S_{\text {Schild }}=\frac{1}{2 \pi} \int d^{2} \sigma\left[\frac{1}{4}\left\{X^{\mu}, X^{\nu}\right\}_{\hat{\mathrm{P}}}^{2}\right. \\
\left.C_{h}=\operatorname{det}\left(\partial_{a} X^{\mu} \partial_{b} X_{\mu}\right)=\frac{1}{2}+2 i \psi^{T} \Gamma_{\mu}\left\{X^{\mu}, \psi\right\}_{\hat{\mathrm{P}}}^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu}\right)^{2} \\
=:\left\{X^{\mu}, X^{\nu}\right\}_{\hat{\mathrm{P}}}
\end{gathered}
$$

Matrix regularisation of this action would give the Lorentzian IKKT.
However, this Poisson bracket is defined on (1+1)D worldsheet...
(matrix reg. wouldn't be well-defined)

"Derivation" of the IKKT model

Wick rotation

Unlike the Polyakov-type action, we can find a Wick rotation that rigorously connects the Lorentzian and Euclidean for the Schild-type action:

$$
\sigma^{0}=e^{-i \theta} \sigma^{2}, \quad X^{0}=e^{-i \theta} X^{10}, \quad \psi=e^{i \theta / 2} \psi^{(\mathrm{E})}
$$

Then, $\quad\left\{f_{1}, f_{2}\right\}_{\mathrm{P}}=-e^{i \theta} \sum_{a, b=1}^{2} \frac{\varepsilon^{a b}}{e_{g}} \partial_{a} f_{1} \partial_{b} f_{2}=:-e^{i \theta}\left\{f_{1}, f_{2}\right\}_{\mathrm{P}}^{(\mathrm{E})}$

$$
\begin{align*}
\exp \left[i S_{\text {Schild }}\right] & =\exp \left[\frac{i}{2 \pi} \int d \sigma^{0} d \sigma^{1}\left(\frac{1}{4}\left\{X^{i}, X^{j}\right\}_{\hat{\mathrm{P}}}^{2}-\frac{1}{2}\left\{X^{0}, X^{i}\right\}_{\hat{\mathrm{P}}}^{2}-\frac{1}{2}+2 i \psi^{T} \Gamma_{i}\left\{X^{i}, \psi\right\}_{\hat{\mathrm{P}}}+2 i \psi^{T} \Gamma_{0}\left\{X^{0}, \psi\right\}_{\hat{\mathrm{P}}}\right)\right] \\
& =\exp \left[-\frac{1}{2 \pi} \int d \sigma^{1} d \sigma^{2}\left(\frac{-i e^{i \theta}}{4}\left(\left\{X^{i}, X^{j}\right\}_{\hat{\mathrm{P}}}^{(\mathrm{E})}\right)^{2}+\frac{i e^{-i \theta}}{2}\left(\left\{X^{10}, X^{i}\right\}_{\hat{\mathrm{P}}}^{(\mathrm{E})}\right)^{2}\right.\right. \\
\theta & \rightarrow \frac{\pi}{2} \\
& \longrightarrow \exp \left[-\frac{1}{2 \pi} \int d \sigma^{1} d \sigma^{2}\left(\frac{1}{4}\left\{X^{m}, X^{n}\right\}_{\hat{\mathrm{P}}}^{(\mathrm{E}) 2}+2 \psi^{(\mathrm{E}) T} \Gamma_{m}\left\{X^{m}, \psi^{(\mathrm{E})}\right\}_{\hat{\mathrm{P}}}+\frac{1}{2}\right)\right] \quad(m=1, \cdots, 9,10)
\end{align*}
$$

We've derived the Euclidean path integral by a change of contour.

"Derivation" of the IKKT model

Matrix regularisation [Hoppe '82]
Regularisation by a map from a function to a matrix

$$
f(\sigma)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l m} \underbrace{Y_{l m}(\sigma)}_{\text {spherical harmonics }} \longrightarrow \sum_{l=0}^{N-1} \sum_{m=-l}^{l} f_{l m}\left(Y_{l m}\right)_{i j}=f_{i j}
$$

This maps the Poisson bracket and worldsheet integral to

$$
\{\cdot, \cdot\}_{\hat{\mathrm{P}}}^{(\mathrm{E})} \rightarrow \frac{2 N}{i}[\cdot, \cdot], \quad \frac{1}{\pi} \int d \sigma^{1} d \sigma^{2} \rightarrow \frac{1}{N} \operatorname{tr},
$$

Then the action becomes, with rescaling of X^{m} and $\psi^{(\mathrm{E})}$,

$$
\exp \left[-S^{(\mathrm{E})}\right]=\exp \left[-N \operatorname{tr}\left(-\frac{1}{4}\left[X^{m}, X^{n}\right]^{2}-\frac{i}{2} \psi^{(\mathrm{E}) T} \Gamma_{m}\left[X^{m}, \psi^{(\mathrm{E})}\right]+\frac{1}{4 N}\right)\right]
$$

We have "derived" the Euclidean weight w/ the Euclidean IKKT action from the perturbative superstring theory.

"Derivation" of the IKKT model

Wick-rotating back the theory

Actually, the Euclidean IKKT model w/ e^{-S} is equivalent to a Lorentzian IKKT model $\mathrm{w} / e^{i S}$ with natural regulators introduced
By a change of contour $\quad X^{i}=e^{i \theta / 4} \tilde{X}^{i}, \quad X^{10}=-e^{-3 i \theta / 4} \tilde{X}^{0}, \quad \psi^{(\mathrm{E})}=e^{3 i \theta / 8} \psi$

$$
\begin{aligned}
& \exp \left[-N \operatorname{tr}\left(-\frac{1}{4}\left[X^{m}, X^{n}\right]^{2}-\frac{i}{2} \psi^{(\mathrm{E}) T} \Gamma_{m}\left[X^{m}, \psi^{(\mathrm{E})}\right]\right)\right] \\
& =\exp \left[N \operatorname{tr}\left(\frac{e^{-i \theta}}{2}\left[\tilde{X}^{0}, \tilde{X}^{i}\right]^{2}+\frac{e^{i \theta}}{4}\left[\tilde{X}^{i}, \tilde{X}^{j}\right]^{2}-\frac{1}{2} \psi^{T} \Gamma_{0}\left[\tilde{X}^{0}, \psi\right]+\frac{i e^{i \theta}}{2} \psi^{T} \Gamma_{\Gamma}\left[\tilde{X}^{i}, \psi\right]\right)\right] \\
& \theta \rightarrow \frac{\pi}{2} \\
& \longrightarrow \exp \left[i N \operatorname{tr}\left(\frac{1}{4}\left[\tilde{X}_{\mu}, \tilde{X}_{\nu}\right]\left[\tilde{X}^{\mu}, \tilde{X}^{\nu}\right]+\frac{i}{2} \psi^{T} \Gamma_{\mu}\left[\tilde{X}^{\mu}, \psi\right]+i \varepsilon\left(\left(X^{i}\right)^{2}+\left(X^{0}\right)^{2}\right)\right)\right]
\end{aligned}
$$

So, we get

$$
Z=\int[d X]\left[d \psi^{(\mathrm{E})}\right] e^{-S\left[X, \psi^{(\mathrm{E})} ; \delta_{\mu \nu}\right]} \propto \int[d \tilde{X}][d \psi] e^{i S\left[\tilde{X}, \psi ; \eta_{\mu \nu}\right]}
$$

This is a well-defined finite integral for finite N.

"Derivation" of the IKKT model

Caveat about the Lorentzian IKKT model

However there is another definition of the Lorentzian IKKT model w/ $e^{i S}$:

$$
\begin{aligned}
& Z_{\gamma}=\int[d \tilde{X}][d \psi] \exp \left[i N \operatorname { t r } \left(\frac{1}{4}\left[\tilde{X}^{\mu}, \tilde{X}^{\nu}\right]^{2}+\frac{\frac{\gamma}{2}\left(e^{-i \varepsilon} \tilde{X}^{i} \tilde{X}^{i}-e^{i \varepsilon} \tilde{X}^{0} \tilde{X}^{0}\right)}{\left.\left.\varepsilon \rightarrow 0^{+} \text {for } \gamma>0, \quad \frac{i}{2} \psi^{T} \Gamma^{\mu}\left[\tilde{X}_{\mu}, \psi\right]\right)\right]} \begin{array}{r}
\varepsilon \rightarrow \text { for } \gamma<0
\end{array}\right.\right. \\
& \rightarrow \int[d X]\left[d \psi^{(\mathrm{E})}\right] \exp \left[-N \operatorname{tr}\left(-\frac{1}{4}\left[X^{m}, X^{n}\right]^{2}-\frac{e^{\frac{\pi i}{4}} \gamma}{2}\left(e^{-i \varepsilon} X^{i} X^{i}+e^{i \varepsilon} X^{10} X^{10}\right)\right.\right. \\
&\left.\left.-\frac{i}{2} \psi^{(\mathrm{E}) T} \Gamma_{m}\left[X^{m}, \psi^{(\mathrm{E})}\right]\right)\right]
\end{aligned}
$$

The model $\mathrm{w} / \gamma \rightarrow 0^{-}$is equivalent to the Euclidean model w / e^{-S} because Cauchy's thm. connects them via the change of contour.

But not for $\gamma>0$; thus the IKKT model w/ $\gamma \rightarrow 0^{+}$is different!
[Y.A., Nishimura, Piensuk, Yamamori;
Y.A., Chou, Nishimura, Piensuk, Tripathi, Yamamori, to appear]

This difference would be interpreted as "different definitions of the vacuum."

Vertex operators

The BRST transformation on the worldsheet is
$\delta^{\mathrm{BRST}} X^{\mu}=-2 i \epsilon \gamma^{T} \Gamma^{\mu} \psi+\epsilon^{\prime}\left\{c, X^{\mu}\right\}_{\hat{\mathrm{P}}}, \quad \delta^{\mathrm{BRST}} \psi=\epsilon^{\prime}\{c, \psi\}_{\hat{\mathrm{P}}}, \quad \delta^{\mathrm{BRST}} \varphi=\epsilon \gamma+\epsilon^{\prime}\{c, \varphi\}_{\hat{\mathrm{P}}}$,
A BRST inv. vertex: $\int d^{2} \sigma e^{i k_{\mu}\left(X^{\mu}+2 i \varphi^{T} \Gamma^{\mu} \psi\right)} \rightarrow \int d^{2} \sigma e^{i k_{\mu} X^{\mu}} \quad$ (momentum- k_{μ} mode)
\longrightarrow In the matrix model, $\quad V^{\Phi}=\operatorname{tr} e^{i k_{\mu} X^{\mu}}$
This forms a massless multiplet of type IIB SUGRA
by acting the supercharge operator Q onto this vertex.

$$
\begin{aligned}
e^{\lambda^{T} Q} \operatorname{tr} e^{i k_{\mu} X^{\mu}} e^{-\lambda^{T} Q} & =\operatorname{tr} e^{i k_{\mu} X^{\mu}+\psi^{T} k_{\mu} \Gamma^{\mu} \lambda+\cdots} \\
& =V^{\Phi}+V^{\tilde{\Phi}} k_{\mu} \Gamma^{\mu} \lambda+V_{\mu \nu}^{B} k_{\rho} \lambda^{T} \Gamma^{\mu \nu \rho} \lambda+\cdots
\end{aligned}
$$

λ^{0}	λ^{1}	λ^{2}	λ^{3}	λ^{4}	\ldots
dilaton Φ	dilatino $\tilde{\Phi}$	$B_{\mu \nu}$	gravitino Ψgraviton $h_{\mu \nu}$ $\& A_{\mu \nu \rho \sigma}$	\ldots	

[Kitazawa '02; Iso, Terachi, Umetsu '04; Kitazawa, Mizoguchi, Saito ’07]

Summary

- We find there is a set of gauge trf. that closes its algebra for the string action in the Green-Schwarz formalism by rewriting the action to the Schild type. It allows us to quantise the theory without an infinite tower of ghosts.
- If we assume the IKKT matrix model is derived as a pure matrix regularisation of the Schild-type action, it is the Euclidean action w / e^{-S}.
- There is a Lorentzian IKKT model $\mathrm{w} / e^{i S}$ equiv. to the Euclidean one w / e^{-S}. However, since the Lorentzian IKKT partition fn. is conditionally convergent, there is another Lorentzian IKKT model inequivalent to the Euclidean one. Probably they share the same structure of the $1 / N$ expansion, but the "derivation" cannot tell the correct "definition of the vacuum."
- A BRST-inv. massless-mode vertex is consistent with the suggested matrixmodel vertex operator $\operatorname{tr} e^{i k_{\mu} X^{\mu}}$ of a string (or D1), which forms a massless multiplet of type IIB SUGRA by acting the supercharge operator. Further analysis should clarify how to construct massive states in the IKKT.

