筑波大学素粒子論研究室セミナー 2002 年 11 月 15 日

Born-Again Braneworld

Sugumi Kanno, Misao Sasaki & Jiro Soda

- S. Kanno, M. Sasaki & J. Soda, [hep-th/0210250]
- S. Kanno & J. Soda, [hep-th/0207029]. PRD66, 083506 (2002)
- S. Kanno & J. Soda, [hep-th/0205188]. PRD66, 043526 (2002)

- $\S1$. Introduction
- §2. Effective Action
- §3. Born-Again Braneworld
- $\S4.$ Observational Implication
- §5. Summary

§1. Introduction

Historical Notes

RS Two-Brane Cosmological Scenario

§2. Effective Action

5D Action

$$egin{aligned} S &= rac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left(\mathcal{R} + rac{12}{l^2}
ight) \ &- \sum_{i=\oplus,\ominus} \sigma_i \int d^4 x \sqrt{-g^i_{ ext{brane}}} + \sum_{i=\oplus,\ominus} \int d^4 x \sqrt{-g^i_{ ext{brane}}} \, \mathcal{L}^i_{ ext{matter}} \end{aligned}$$

Goal : Brane Effective Theory for $\frac{
ho}{\sigma} \sim \ell^2 R \ll 1$

Valid Regime :

* Energy Scale
$$\leq 10^{15} \text{GeV} \left(\frac{10^{-24} \text{cm}}{\ell}\right)^{1/2}$$

* Gravitational Radius $\geq 10^{-29} \text{km} \left(\frac{\ell}{10^{-24} \text{cm}}\right)$

Geometry

Vacuum Brane:

 $ds^2=dy^2+\Omega^2(y)\eta_{\mu
u}dx^\mu dx^
u\,.$ $\Omega^2=\exp[-2rac{y}{\ell}]$: Warp Factor

Brane with Matter:

$$egin{aligned} ds^2 &= dy^2 \ &+ \left(\Omega^2(y) h_{\mu
u}(x) + \delta g_{\mu
u}(y,x^\mu)
ight) dx^\mu dx^
u \,. \end{aligned}$$

 $h_{\mu
u}$: induced metric on the brane $\delta g_{\mu
u}(y=0,x^\mu)=0$

General Formalism

5D Einstein Equations:

$$G^{(5)}_{AB} = rac{6}{\ell^2} g_{AB} + rac{\delta(y)}{\ell^2} 8 \pi G_N \ell (-\sigma g_{\mu
u} + T_{\mu
u}) \delta^\mu_A \delta^
u_B \;, \quad A = (y,\mu)$$

• Bulk equation:

$$\delta K^{\mu}{}_{
u}=-rac{1}{2}\delta(g^{\mulpha}g_{lpha
u,y})\equiv\delta\Sigma^{\mu}{}_{
u}+rac{1}{4}\delta^{\mu}{}_{
u}\delta K\;,\quad\delta\Sigma^{\mu}{}_{\mu}=0$$

Hamiltonian Constraint:

$$\delta K = -rac{\ell}{6} \left[rac{3}{4} \delta K^2 - \delta \Sigma^{\mu}{}_{
u} \delta \Sigma^{
u}{}_{\mu} - rac{4}{R}
ight]$$

Momentum Constraint:

$$abla_\lambda\delta{\Sigma^\lambda}_\mu-rac{3}{4}
abla_\mu\delta K=0$$

Evolution Equation:

$$rac{1}{\Omega^4} \left[\Omega^4 \delta \Sigma^\mu{}_
u
ight]_{,y} = \delta K \delta \Sigma^\mu{}_
u - \left[egin{matrix} {}^{(4)} \ R^\mu{}_
u
ight]_{ ext{traceless}}$$

• Junction condition:

$$rac{2}{\ell}\left[\delta\Sigma^{\mu}{}_{
u}-rac{3}{4}\delta^{\mu}_{
u}\delta K
ight]\left|_{y=0}=8\pi G_{N}T^{\mu}_{\
u}
ight.$$

$$egin{aligned} &rac{2}{\ell}\left[\delta\Sigma^{\mu}{}_{
u}-rac{3}{4}\delta^{\mu}_{
u}\delta K
ight]&=-rac{\chi^{\mu}{}_{
u}}{\Omega^{4}}-rac{2}{\ell\Omega^{4}}\int^{y}_{\infty}dy\Omega^{4}\left[R^{\mu}{}_{
u}^{\mu}-rac{1}{4}\delta^{\mu}_{
u}{}^{(4)}_{R}-\delta K\delta\Sigma^{\mu}{}_{
u}
ight.\ &-rac{1}{4}\delta^{\mu}_{
u}{}^{(4)}_{R}+rac{1}{4}\delta^{\mu}_{
u}\left[rac{3}{4}\delta K^{2}-\delta\Sigma^{lpha}{}_{eta}\delta\Sigma^{eta}{}_{lpha}
ight]\ &=-rac{\chi^{\mu}{}_{
u}(x)}{\Omega^{4}(y)}+G^{\mu}{}_{
u}\left(\Omega^{2}(y)h_{\mu
u}(x)
ight)+\mathcal{O}(\ell^{4}R^{2}) \end{aligned}$$

$$\overset{(4)}{G^{\mu}}_{
u}(\Omega^2_{y=0}h_{\mu
u})=8\pi G_N T^{\mu}{}_{
u}+rac{\chi^{\mu}{}_{
u}}{\Omega^4_{y=0}}$$

··· Brane Effective Theory

 $\chi^{\mu}{}_{
u}\cdots$ Integration constant. $\chi^{\mu}{}_{\mu}=\chi^{\mu}{}_{
u|\mu}=0$

FIG. 1: S^1/Z_2 orbifold spacetime with positive tension brane and negative tension brane at the fixed points.

Radion

$$d(x) = e^{\phi(x)}\ell \Longrightarrow \Omega^2 = \exp[-2rac{d(x)}{\ell}] \ \cdots$$
 Warp Factor

Effective Equation

• Positive tension brane

$$\stackrel{(4)}{G^{\mu}}_{
u}(h_{\mu
u})=rac{\kappa^2}{\ell}\,T^{\oplus}_{
u}+\ell^2\chi^{\mu}_{
u}$$

• Negative tension brane

$$\stackrel{(4)}{G^{\mu}}_{
u}(\Omega^{2}h_{\mu
u})=-rac{\kappa^{2}}{\ell}\,T^{\ominus}_{
u}+rac{\ell^{2}}{\Omega^{4}}\chi^{\mu}_{
u}$$

Each Eq. holds irrespective of the existence of the other brane. We can eliminate $\chi^{\mu}{}_{\nu}$ or $G^{\mu}{}_{\nu}(h)$ from the above two equations. Eliminating $\chi_{\mu
u}$ and introducing a new field $\Psi=1-\Omega^2$,

$$egin{aligned} G^{\mu}_{
u}(h) &= rac{\kappa^2}{l\Psi} T^{\oplus\mu}_{
u} + rac{\kappa^2(1-\Psi)^2}{l\Psi} T^{\ominus\mu}_{
u} + rac{1}{\Psi} \left(\Psi^{|\mu}_{\phantom{|
u}|
u} - \delta^{\mu}_{
u} \Psi^{|lpha}_{|lpha}
ight) \ &+ rac{\omega(\Psi)}{\Psi^2} \left(\Psi^{|\mu} \Psi_{|
u} - rac{1}{2} \delta^{\mu}_{
u} \Psi^{|lpha} \Psi_{|lpha}
ight) \end{aligned}$$

Coupling Function

$$\omega(\Psi)=rac{3}{2}rac{\Psi}{1-\Psi}$$

Eliminating $G^{\mu}_{
u}(h)$,

$$egin{aligned} \chi^{\mu}_{
u} &= -rac{\kappa^2(1-\Psi)}{2\Psi} \left(T^{\oplus\mu}_{
u} + (1-\Psi)T^{\ominus\mu}_{
u}
ight) \ &-rac{l}{2\Psi} \left[\left(\Psi^{|\mu}_{\phantom{|
u}
u} - \delta^{\mu}_{
u}\Psi^{|lpha}_{
ight) + rac{\omega(\Psi)}{\Psi} \left(\Psi^{|\mu}\Psi_{|
u} - rac{1}{2}\delta^{\mu}_{
u}\Psi^{|lpha}\Psi_{|lpha}
ight)
ight] \end{aligned}$$

The traceless condition $\chi^{\mu}_{\,\,\mu}=0$ gives

$$\Box \Psi = rac{\kappa^2}{l} rac{T^\oplus + (1-\Psi)T^\ominus}{2\omega+3} - rac{1}{2\omega+3} rac{d\omega}{d\Psi} \Psi^{|\mu} \Psi_{|\mu}$$

 \cdots Quasi-Scalar-Tensor gravity (from \oplus -tension brane's point of view)

· $\chi_{\mu\nu}$ is an auxiliary field which is determined only after Ψ is solved.

 \cdot Effective theory from $\ominus\text{-tension}$ brane's point of view is also obtained.

Effective Action on the Positive Tension Brane

$$egin{aligned} S_\oplus &= rac{l}{2\kappa^2} \int d^4x \sqrt{-h} \left[\Psi R(h) - rac{3}{2(1-\Psi)} \Psi^{|lpha} \Psi_{|lpha}
ight] \ &+ \int d^4x \sqrt{-h} \mathcal{L}^\oplus + \int d^4x \sqrt{-h} \left(1-\Psi
ight)^2 \mathcal{L}^\ominus \end{aligned}$$

Intrducing a new field: $\Phi = rac{1}{\Omega^2} - 1$

Effective Action on the Negative Tension Brane

$$egin{aligned} S_{\ominus} &= rac{l}{2\kappa^2} \int d^4x \sqrt{-f} \left[\Phi R(f) + rac{3}{2(1+\Phi)} \Phi^{;lpha} \Phi_{;lpha}
ight] \ &+ \int d^4x \sqrt{-f} \mathcal{L}^{\ominus} + \int d^4x \sqrt{-f} (1+\Phi)^2 \mathcal{L}^{\oplus} \end{aligned}$$

where $f_{\mu
u}=\Omega^2 h_{\mu
u}$.

Coupling Function

$$\omega(\Phi)=-rac{3}{2}rac{\Phi}{1+\Phi}$$

§3. Born-Again Braneworld

Jordan-Frame Effective Action ($\mathcal{L}^{\oplus} = -\delta\sigma^{\oplus}, \quad \mathcal{L}^{\ominus} = -\delta\sigma^{\ominus}$)

$$egin{aligned} S_\oplus &= rac{l}{2\kappa^2} \int d^4x \sqrt{-h} \left[\Psi R - rac{\omega(\Psi)}{\Psi} \Psi^{|lpha} \Psi_{|lpha}
ight] \ &- \delta \sigma^\oplus \int d^4x \sqrt{-h} - \delta \sigma^\oplus \int d^4x \sqrt{-h} \left(1-\Psi
ight)^2 \ &\omega(\Psi) &= rac{3}{2} rac{\Psi}{1-\Psi} \end{aligned}$$

··· Quasi-Scalar-Tensor gravity

Einstein-frame Effective Action

Conformal transformation : $h_{\mu
u} = rac{1}{\Psi}g_{\mu
u}$ Introducing a new field :

$$\eta = -\log \left| rac{\sqrt{1-\Psi}-1}{\sqrt{1-\Psi}+1}
ight.$$

$$S_\oplus = rac{l}{2\kappa^2}\int d^4x \sqrt{-g}\left[R(g)-rac{3}{2}\eta^{;lpha}\eta_{;lpha}
ight] - \int d^4x \sqrt{-g}\,\,V(\eta)$$

This action is also obtained starting from the effective action on the \ominus -tension brane

Conformal transformation : $h_{\mu\nu} = \frac{1}{\Phi}g_{\mu\nu}$ A new field :

$$\eta = -\log \left| \frac{\sqrt{\Phi + 1} - 1}{\sqrt{\Phi + 1} + 1} \right|$$

Potential

$$egin{array}{c|c|c|c|c|c|c|} \Psi & -\infty & \cdots & \mathbf{0} & \cdots & \mathbf{1} \ \eta & \mathbf{0} & \cdots & \infty & \cdots & \mathbf{0} \end{array}$$

In the case of $0<\Psi<1$

$$V(\eta) = \delta \sigma^\oplus \left[\ \cosh^4 rac{\eta}{2} + eta \sinh^4 rac{\eta}{2} \
ight], \qquad eta = rac{\delta \sigma^\ominus}{\delta \sigma^\oplus}$$

When $\beta < -1(\delta \sigma^{\oplus} + \delta \sigma^{\ominus} < 0)$, maximum at $\Psi_c = 1 + \frac{1}{\beta}$. Two branes would collide, provided that

 $\Psi < \Psi_c$

What happens to us if the two branes collide?

After Collision

Effective Action on the \oplus -tension brane after collision . (replacing Ψ as $\Psi \longrightarrow -\tilde{\Psi}$)

$$egin{aligned} -S_\oplus &= rac{\ell}{2\kappa^2} \int d^4x \sqrt{-h} \left[egin{aligned} ilde{\Psi} R(h) + rac{3}{2} rac{1}{1+ ilde{\Psi}} ilde{\Psi}_{|lpha} \
ight] \ &+ \int d^4x \sqrt{-h} (-\mathcal{L}^\oplus) + \int d^4x \sqrt{-h} \left(1+ ilde{\Psi}
ight)^2 (-\mathcal{L}^\oplus) \end{aligned}$$

Comparing with the action on the \ominus -tension brane

 \oplus -tension brane \implies \ominus -tension brane The sign in front of the matter Lagrangians also changes

We were initially on the \ominus -tension brane before the collision!?

Cosmological Evolution

EOM for a Vacuum Brane

Spatially isotropic and homogeneous metric (K=0 flat)

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

Inflation: $p=ho, \quad
ho^\oplus=\delta\sigma^\oplus, \quad
ho^\ominus=\delta\sigma^\ominus$

$$egin{aligned} -3H^2&=-rac{\kappa^2}{\ell}rac{1}{\Phi}\delta\sigma^{\ominus}-rac{\kappa^2}{\ell}rac{(1+\Phi)^2}{\Phi}\delta\sigma^{\oplus}+3Hrac{\dot{\Phi}}{\Phi}+rac{3}{4}rac{\dot{\Phi}^2}{\Phi(1+\Phi)},\ -2\dot{H}-3H^2&=-rac{\kappa^2}{\ell}rac{1}{\Phi}\delta\sigma^{\ominus}-rac{\kappa^2}{\ell}rac{(1+\Phi)^2}{\Phi}\delta\sigma^{\oplus}+rac{\ddot{\Phi}}{\Phi}+2Hrac{\dot{\Phi}}{\Phi}-rac{3}{4}rac{\dot{\Phi}^2}{\Phi(1+\Phi)}\,,\ \ddot{\Phi}+3H\dot{\Phi}&=rac{4\kappa^2}{3\ell}(1+\Phi)\left[\delta\sigma^{\ominus}+(1+\Phi)\delta\sigma^{\oplus}
ight]+rac{1}{2}rac{1}{1+\Phi}\dot{\Phi}^2\,. \end{aligned}$$

Friedmann equation with the dark radiation

$$H^2+rac{K}{a^2}=-rac{\kappa^2}{3\ell}\delta\sigma^\ominus+rac{C}{a^4},$$

Relation between the radion and the dark radiation

$$rac{\kappa^2\delta\sigma^\ominus}{3\ell}rac{1+\Phi}{\Phi}\left[1+rac{(1+\Phi)}{eta}
ight]-Hrac{\dot{\Phi}}{\Phi}-rac{1}{4}rac{1}{1+\Phi}rac{\dot{\Phi}^2}{\Phi}=rac{C}{a^4}$$

•

Does the Born-Again Braneworld scenario realize?

Numerical solution of Φ

 Φ passes through zero smoothly and approaches -1Analitic solution around the time of collision

$$\Phi = -2(1 - \sqrt{\gamma})H_c(t - t_c); \quad \gamma = 1 - rac{H_*^2}{H_c^2}\left(1 + rac{1}{eta}
ight)$$
 $H_* = \kappa^2/3\ell(-\delta\sigma^B)$
 $H_c:$ Hubble constant at the time of collision $t = t_c$.

 Φ behaves perfectly smoothly around the time of collision

Einstein frame

The relation: Einstein frame \Leftrightarrow Jordan frame

$$egin{aligned} ds_E^2 &= -dt_E^2 + b^2(t_E)\delta_{ij}dx^idx^j \ &= |\Phi|\left[-dt_J^2 + a(t_J)^2\delta_{ij}dx^idx^j
ight], \ &\Longrightarrow b &= \sqrt{|\Phi|}\,a, \quad dt_E &= \sqrt{|\Phi|}\,dt_J \end{aligned}$$

Hubble parameter in the Einstein frame around the collision

$$rac{\dot{b}(t_E)}{b(t_E)} = rac{1}{3t_E} + rac{H_c}{ig(3(1-\sqrt{\gamma})H_c|t_E|ig)^{1/3}}\,.$$

$t_E = 0$: collision time in the Einstein frame

Einstein frame : Big-Bang Singularity. Jordan frame : Pre-Big-Bang phase ⇔ Post-Big-Bang phase

FIG. 2: The evolution of the Hubble constant in the Jordan frame. The solution rapidly approaches to the de-Sitter spacetime. We also ploted the pre-big-bang solution in the Einstein frame.

§4. Observational implication

Cosmological perturbations are generated from quantum (vacuum) fluctuations of the inflaton ϕ and the metric $g_{\mu\nu}$

Results of Standard Inflation

FRW Metric (K=0):

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j \ = a^2(\eta)\left[-d\eta^2 + \delta_{ij}dx^i dx^j
ight]$$

 η : conformal time

• Canonical quantization

Canonical Action:

$$S=\int d^3x d\eta \left[rac{1}{2}\psi'^2-rac{1}{2}\partial_i\psi\partial^i\psi+rac{a''}{2a}\psi^2
ight.$$

 $\psi = a \delta \phi$: canonical variable

Equation of Motion

$$\psi^{\prime\prime}-rac{a^{\prime\prime}}{a}\psi-\partial^i\partial_i\psi=0$$

Canonical momentum & commutation relation :

$$\pi(ec x,\eta)=\psi'\,,\qquad [\psi(ec x,\eta),\pi(ec x',\eta)]=i\delta(ec x-ec x')$$

Mode Expansion :

$$\psi(ec{x},\eta) = rac{1}{(2\pi)^{rac{3}{2}}}\int d^{3}k \left[u_{ec{k}}(\eta) e^{iec{k}\cdotec{x}} a_{ec{k}} + u_{ec{k}}^{*}(\eta) e^{-iec{k}\cdotec{x}} a_{ec{k}}^{\dagger}
ight]$$

Creation Anihilation Operator & Normalization :

$$\left[a_{ec k},a^\dagger_{ec k'}
ight]=\delta(ec k-ec k')\,,\quad (u_{ec k},u_{ec k})=i\left(u^*_{ec k}\partial_\eta u_{ec k}-u_{ec k}\partial_\eta u^*_{ec k}
ight)=1$$

De-Sitter Inflation: $a(\eta) = -\frac{1}{H\eta}$

$$\Rightarrow u_k = rac{\sqrt{\pi}}{2} \sqrt{-\eta} H^{(1)}_{3/2}(-k\eta) egin{cases} & -k\eta o \infty & rac{1}{\sqrt{2k}} e^{-ik\eta} \ & -k\eta o 0 & rac{H}{\sim} & rac{1}{\sqrt{2k}} a(\eta) \end{cases}$$

Bunch-Davies vacuum

Power spectrum : P(k)

$$egin{split} &< 0 | \left(\delta \phi (ec x, \eta)
ight)^2 | 0 > \ &= rac{1}{(2 \pi)^3 a^2} \int d^3 k \int d^3 k' < 0 | \left\{ u_k (\eta) a_k
ight\} \left\{ u_{k'}^* (\eta) a_{k'}^\dagger
ight\} | 0 > \ &\equiv \int rac{dk}{k} P(k) \end{split}$$

 $\Rightarrow P(k) = \frac{k^3}{2\pi^2 a^2} |u_k|^2 \rightarrow \left(\frac{H}{2\pi}\right)^2 \quad \text{for} \quad k\eta \rightarrow 0 \text{ (super-horizon)}$

Spectrum Index : $P(k) \propto k^{n-1}$

$$n = 1 + rac{d\log P(k)}{d\log k} = 1$$

··· scale-invariant (Harrison-Zeldovich) spectrum

Large-angle CMB anisotropy

$$<rac{\delta T}{T}(ec{n})rac{\delta T}{T}(ec{n}')>=rac{1}{4\pi}\sum_\ell(2\ell+1)C_\ell P_\ell(ec{n}\cdotec{n}')$$

 $\frac{\delta T}{T} = \frac{1}{3} \Phi \sim \mathcal{H} \frac{\delta \phi}{\phi'} \quad \text{valid for} \quad \ell \ll 100 \left(\text{Sachs-Wolfe formula} \right)$

Relation between inflation and CMB

$$C_\ell = rac{2}{\pi} \int rac{dk}{k} < rac{1}{9} |\Phi|^2 > k^3 j_\ell^2 (k(\eta_0 - \eta))$$

COBE v.s. Harrison-Zeldovich spectrum (n=1)

$$rac{\ell(\ell+1)C_\ell}{2\pi} \propto \ell(\ell+1) rac{\Gamma\left(\ell+rac{n-1}{2}
ight)}{\Gamma\left(\ell+rac{5-n}{2}
ight)} = {\sf const.}$$

Consistent with scale invariant spectrum (n=1)

Primordial Gravitational Wave

Action for GW:

$$S_{GW} = rac{1}{8\pi G}\int d^3x d\eta a^2(\eta) \sum_{A=\oplus,\otimes} \left[rac{1}{2}h_A^{\prime 2} - rac{1}{2}\partial_i h_A \partial^i h_A
ight]$$

 $egin{aligned} &h_A\ \hline \sqrt{8\pi G} = ext{massless scalar}\ \Rightarrow h_A \sim rac{H}{ ext{M}_{ ext{Pl}}} \cdots n = 1 \ : \ ext{Harrison-Zeldovich spectrum} \end{aligned}$

Born-Again Braneworld Scenario

Primordial Gravitational Wave

$$ds^2 = b^2(au) \left[-d au^2 + (\delta_{ij} + h_{ij}) dx^i dx^j
ight], \quad h_{ij}{}^{,j} = h^i{}_i = 0 \ \cdots$$
 metric perturbation in the Einstein frame

Gravitational tensor perturbations (Amplitude)

$$egin{aligned} h_k''+2rac{b'}{b}h_k'+k^2h_k&=0\ ,\ b&=|H_* au|^{1/2}. \end{aligned}$$

where $\mathcal{H}=b'/b\,,\quad b=|H_* au|^{1/2}.$

Positive frequency modes

$$h_k = rac{\pi \kappa^2}{6 H_* \ell} \, H^{(1)}_0(-k au) \, ,$$
 $h_k = rac{k^3}{2 \pi^2} |h_k|^2 \sim rac{k^3}{H_* M_{pl}^2} \, ,$

Spectrum : $P_{h_k}(k) = rac{\pi}{2\pi^2}$ where $M_{pl}^2 = \kappa^2/\ell.$

Spectrum is very blue

Spectral index: n = 4

Observationally testable in near future!!

Wait for Advanced LIGO or LISA

Inflaton perturbation

Inflaton does not couple with the radion field, \Rightarrow the spectrum is the conventional flat spectrum. \therefore Harrison-Zeldovich spectrum n=1

Consistent with COBE results

§5. Summary

- 4D Effective Action
- Born-Again Braneworl
- Inflation + Pre-Big-Bang
 - **\star** Possible Blue spectrum for Primordial GW \Rightarrow LISA
 - **★** Standard CMB fluctuations

Future Work

- Inflaton dynamics
- Evolution of fluctuations $\Rightarrow \frac{\delta T}{T}$ (all scales)