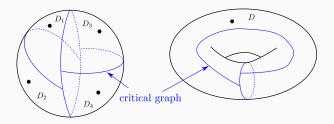
# Strebel differentials and string field theory

International Workshop on String Field Theory and Related Aspects Nobuyuki Ishibashi (University of Tsukuba) 27 March 2025

## Summary

- On punctured Riemann surfaces (~worldsheets for string amplitudes), one can define quadratic differentials called Strebel differentials.
- Via Strebel differentials, to any punctured Riemann surface one can associate a critical graph (~local interaction vertex of strings).



 We propose an SFT (for closed bosonic strings) based on such descriptions of Riemann surfaces. (PTEP 2024 (2024) 7, 073B02)

#### Summary

- We need to employ the Fokker-Planck formalism to construct such a theory.
- The Fokker-Planck Hamiltonian is given by

$$\begin{split} \hat{H}_{\mathrm{FP}} &= -L\hat{\pi}_I\hat{\pi}_{I'}G^{I'I} + L\hat{\phi}^I\hat{\pi}_I \\ &-\frac{1}{2}g_{\mathrm{s}}V^{II'I''}G_{I''K''}\hat{\phi}^{K''}\hat{\phi}^{K''}\hat{\phi}^{K''}\hat{\pi}_I \\ &-g_{\mathrm{s}}W^{II'I''}G_{I''K''}\hat{\phi}^{K'''}\hat{\pi}_{I'}\hat{\pi}_I \\ &\hat{\phi}^I,\hat{\pi}_I: \text{ string fields} \end{split}$$

#### Remarks

- The theory given in this talk looks very weird from the physical point of view.
- Unlike the conventional SFT, our theory may not give a formulation from which important physical properties of string theory (unitarity, UV finiteness, background independence etc.) can easily be derived.
- The theory should be considered as a machinery for computing correlation functions of string theory.
- The method used here may be useful in studying the vertices of conventional SFTs.

# Outline

| -1         | Strebel | 1.00      |        |
|------------|---------|-----------|--------|
|            | STranai | ditterer  | שוכודו |
| <b>_</b> . | JUICDCI | uniticici | lliais |

2. Pants decomposition

3. Schwinger-Dyson equation for strings

4. The Fokker-Planck formalism

5. Conclusions and outlook

# 1. Strebel differentials

#### 1. Strebel differentials

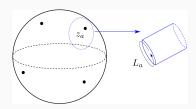
- $\bullet$  On a punctured Riemann surface let us consider a quadratic differential  $\phi(z)dz^2$  such that
  - near punctures  $(z \sim z_a \ (a = 1, \cdots n))$

$$\phi(z)dz^2 \sim -\left(\frac{L_a}{2\pi}\right)^2 \frac{dz^2}{(z-z_a)^2}$$

with  $L_a > 0$  and holomorphic for  $z \neq z_a$ 

• A locally flat metric

$$ds^{2} = |\phi(z)| dz d\bar{z} = dw d\bar{w}$$
$$w = \int^{z} dz' \sqrt{\phi(z')}$$

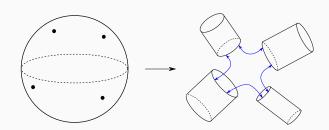


#### Strebel's theorem

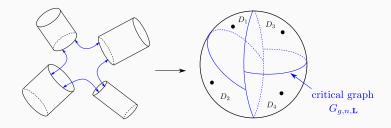
- Given a punctured Riemann surface (2g-2+n>0) and positive numbers  $L_1, \dots, L_n$ , there exists the unique quadratic differential  $\phi(z)dz^2$  (Strebel differential) such that
  - for  $z \sim z_a$ ,  $\phi(z)dz^2 \sim -\left(\frac{L_a}{2\pi}\right)^2 \frac{dz^2}{(z-z_a)^2}$
  - holomorphic for  $z \neq z_a$
  - with the metric

$$ds^{2} = |\phi(z)| dz d\bar{z} = dw d\bar{w}$$
$$w = \int^{z} dz' \sqrt{\phi(z')}$$

the surface looks like



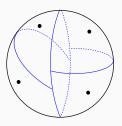
## Strebel differentials

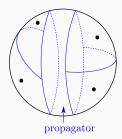


- To any punctured Riemann surface, one can associate a graph called critical graph.
- Moduli spaces of punctured Riemann surfaces can be parametrized by the lengths of the edges of the critical graphs (combinatorial moduli space  $\mathcal{M}_{g,n}(\mathbf{L})$ ).
- Such a description plays important roles in
  - Kontsevich's proof of Witten conjecture
  - studying gauge/string duality (Gopakumar, Razamat, ..., Gopakumar-Mazenc, Gopakumar-Koushik-Komatsu-Mazenc-Sarkar,...)

# Strebel differentials and string field theory

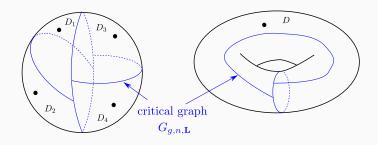
- The critical graphs look like local interaction vertices of closed strings.
- Strebel's theorem implies that any punctured Riemann surface can be described by such an interaction vertex.
- Such a description is not compatible with conventional SFT.





 Strebel differentials were used to construct the interaction vertices of a closed bosonic string field theory in Saadi-Zwiebach, Kugo-Kunitomo-Suehiro.

# Strebel differentials and string field theory



$$A_{g,n}^{i_1\cdots i_n}(\mathbf{L}) \sim \int_{\mathcal{M}_{g,n}(\mathbf{L})} \langle G_{g,n,\mathbf{L}} | B_{6g-6+2n} | i_1 \rangle \cdots | i_n \rangle$$

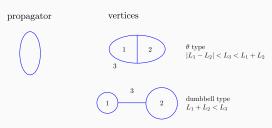
- If Strebel differentials are really important in understanding gauge/string duality, it may be worthwhile to construct an SFT from which the amplitudes in this form are reproduced\*.
  - string fields will be labeled by (i, L)  $(0 < L < \infty)$
- How can one construct such an SFT?

# 2. Pants decomposition

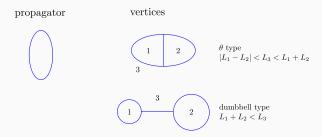
# 2. Pants decomposition



- The critical graphs can be decomposed into three string vertices.
- This coincides with the "pants decomposition" defined by Andersen et al..
- We may be able to construct a theory with



#### SFT action



• We may be able to construct an SFT action starting from these:

$$S[\phi] = \frac{1}{2} \sum_{i} \int_{0}^{\infty} dL \phi^{i}(L) \phi^{i}(L)$$

$$+ \frac{g_{s}}{6} \sum_{i_{1}, i_{2}, i_{3}} \int d^{3}L V_{i_{1} i_{2} i_{3}}(L_{1}, L_{2}, L_{3}) \phi^{i_{1}}(L_{1}) \phi^{i_{2}}(L_{2}) \phi^{i_{3}}(L_{3})$$

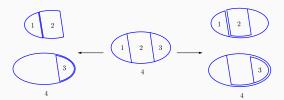
$$+ \cdots$$

... are fixed so that the amplitudes are reproduced correctly.

# Tree level four point amplitude



- This integral diverges because the moduli space is covered infinitely many times.
  - The pants decomposition of a critical graph is not unique.
  - Different decompositions are transformed to each other by action of the mapping class group.



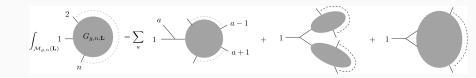
## The action is not well-defined

$$S[\phi] = \frac{1}{2} \sum_{i} \int_{0}^{\infty} dL \phi^{i}(L) \phi^{i}(L) + \frac{g_{s}}{6} \sum_{i_{1}, i_{2}, i_{3}} \int d^{3}L V_{i_{1} i_{2} i_{3}}(L_{1}, L_{2}, L_{3}) \phi^{i_{1}}(L_{1}) \phi^{i_{2}}(L_{2}) \phi^{i_{3}}(L_{3}) + \cdots$$

- ··· should include divergent counter terms to make the amplitude finite.
- This happens for almost all the amplitudes and  $S[\phi]$  is not well-defined.

3. Schwinger-Dyson equation for strings

# 3. Schwinger-Dyson equation for strings

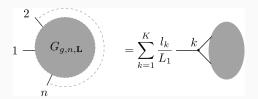


- Although action is ill-defined, one can derive an SD equation.  $(3q-3+n>0, (q,n)\neq (1,1))$ 
  - Given a critical graph  $G_{g,n,\mathbf{L}}$ , we decompose it into a three string vertex one of whose legs is the first external line, and the rest.
  - In our case, it is impossible to uniquely pin down such a vertex, but it is
    possible to define a finite set of such vertices canonically.
  - Making a weighted sum of the decompositions corresponding to these vertices, we get the right hand side of the above.

# Three string vertices

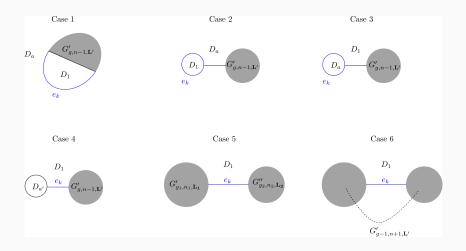


- $\partial D_1$  consists of edges  $e_k$   $(k = 1, \dots, K)$ , whose lengths are denoted by  $l_k$ . They satisfy  $\sum_{k=1}^K l_k = L_1$ .
- $\partial D_1, \partial D_a$  and  $e_k$  specify a three string vertex uniquely.



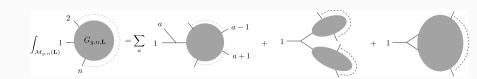
# SD equation

• The configuration falls into one of the following six cases (Bennett et al.)

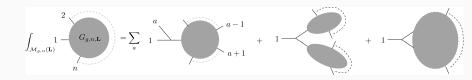


# SD equation

$$\begin{split} A_{g,n}^{i_1\cdots i_n}(\mathbf{L}) &= \sum_{a=1}^n \varepsilon_a \left[ \int_{|L_1-L_a|}^{L_1+L_a} dx \frac{\mathbf{L}_1 + \mathbf{L}_a - x}{2L_1} V^{i_1i_a}_{j}(L_1, L_a, x) A_{g,n-1}^{ji_2\cdots \hat{l}_a\cdots j_n}(x, L_2, \cdots, \hat{L}_a, \cdots L_n) \right. \\ &\qquad \qquad + \theta(L_a - L_1) \int_0^{L_a - L_1} dx \frac{\mathbf{L}_1}{L_1} V^{i_1i_a}_{j}(L_1, L_a, x) A_{g,n-1}^{ji_2\cdots \hat{l}_a\cdots j_n}(x, L_2, \cdots, \hat{L}_a, \cdots L_n) \\ &\qquad \qquad + \theta(L_1 - L_a) \int_0^{L_1 - L_a} dx \frac{\mathbf{L}_1}{L_1} V^{i_1i_a}_{j}(L_1, L_a, x) A_{g,n-1}^{ji_2\cdots \hat{l}_a\cdots j_n}(x, L_2, \cdots, \hat{L}_a, \cdots L_n) \right] \\ &\qquad \qquad + \frac{1}{2} \sum_{\text{stable}} \frac{\varepsilon_{I_1I_2}}{(n_1 - 1)!(n_2 - 1)!} \int_0^{L_1} dx \int_0^{L_1 - x} dy \frac{\mathbf{L}_1 - x - y}{L_1} V^{i_1}_{jj'}(L_1, x, y) A_{g_1, n_1}^{j'i_2\cdots i_n}(y, L_{I_1}) A_{g_2, n_2}^{ji_2}(x, L_{I_2}) \\ &\qquad \qquad + \frac{1}{2} \int_0^{L_1} dx \int_0^{L_1 - x} dy \frac{\mathbf{L}_1 - x - y}{L_1} V^{i_1}_{jj'}(L_1, x, y) A_{g_1, n_1}^{j'i_2\cdots i_n}(y, x, L_2, \cdots, L_n), \end{split} \quad \quad \text{Case 6}$$



#### Remarks



- We have employed the combinatorial Fenchel-Nielsen coordinates  $(l_s; \tau_s)$   $(s = 1, \dots, 3g 3 + n)$  (Andersen et al.) to describe  $\mathcal{M}_{g,n}(\mathbf{L})$ .
  - $l_s$ : the lengths of the nonperipheral boundaries of the pairs of pants
  - $\tau_s$ : twist parameters
- We should take care of the b-ghost insertions.
- Although any critical graph can be decomposed into pairs of pants, a graph made by gluing pairs of pants may not be a critical graph.
  - Some twist parameters do not correspond to critical graphs. (nonadmissible twists)
  - Fortunately, nonadmissible twists do not appear on the right hand side. (Andersen et al.).

# SD equation

$$\int_{\mathcal{M}_{g,n}(\mathbf{L})} 1 - G_{g,n,\mathbf{L}} = \sum_{a} 1 \qquad \qquad a-1 \\ a+1 \qquad \qquad + 1$$

Introducing a convenient notation, we get

$$\begin{split} A_{g,n}^{I_{1}\cdots I_{n}} &= \sum_{a=2}^{n} \varepsilon_{a} B^{I_{1}I_{a}J} G_{JI} A_{g,n-1}^{II_{2}\cdots \hat{I}_{a}\cdots I_{n}} \\ &+ \frac{1}{2} C^{I_{1}J'J} G_{JI} G_{J'I'} \Bigg[ A_{g-1,n+1}^{II'I_{2}\cdots I_{n}} + \sum_{\text{stable}} \frac{\varepsilon_{\mathcal{I}_{1}\mathcal{I}_{2}}}{(n_{1}-1)!(n_{2}-1)!} A_{g_{1},n_{1}}^{I\mathcal{I}_{1}} A_{g_{2},n_{2}}^{I'\mathcal{I}_{2}} \Bigg] \end{split}$$

- $I \leftrightarrow (i, \alpha, L)$ 
  - i: labels for states of worldsheet theory
  - $\alpha = \pm$ : labels for *b*-ghost insertions\*

$$\begin{split} X_I Y^I &= X^I Y_I = \sum_i \sum_{\alpha = \pm} \int_0^\infty dL X(i,\alpha,L) Y(i,\alpha,L) \\ G_{I_1 I_2} &\equiv \delta(L_1 - L_2) \delta_{i_1,i_2} \left[ \delta_{\alpha_1,+} \delta_{\alpha_2,-} + \delta_{\alpha_1,-} \delta_{\alpha_2,+} (-1)^{\left|\varphi_{i_1}\right|} \right] \end{split}$$

4. The Fokker-Planck formalism

#### 4. The Fokker-Planck formalism

- In our theory, the Schwinger-Dyson equation can be derived but the action will be ill-defined.
- We can use the Fokker-Planck formalism to describe the theory.

## Euclidean field theory

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{\int [d\phi] e^{-S[\phi]} \phi(x_1) \cdots \phi(x_n)}{\int [d\phi] e^{-S[\phi]}}$$

the FP formalism

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \lim_{\tau \to \infty} \langle 0|e^{-\tau \hat{H}_{\text{FP}}} \hat{\phi}(x_1) \cdots \hat{\phi}(x_n)|0 \rangle$$
$$[\hat{\pi}(x), \hat{\phi}(y)] = \delta(x - y), [\hat{\pi}, \hat{\pi}] = [\hat{\phi}, \hat{\phi}] = 0$$
$$\langle 0|\hat{\phi}(x) = \hat{\pi}(x)|0 \rangle = 0$$
$$\hat{H}_{\text{FP}} = -\int dx \left(\hat{\pi}(x) - \frac{\delta S}{\delta \phi(x)}[\hat{\phi}]\right) \hat{\pi}(x)$$

# The FP Hamiltonian and SD equation

• The FP Hamiltonian

$$\hat{H}_{\mathrm{FP}} = -\int dx \left( \frac{\hat{\pi}(x) - \frac{\delta S}{\delta \phi(x)} [\hat{\phi}]}{||||} \hat{\pi}(x) \right)$$

• SD equation for  $e^{W[J]} \equiv \int [d\phi] e^{-S[\phi] + \int dx J(x) \phi(x)}$ 

$$0 = \int [d\phi] \frac{\delta}{\delta\phi(x)} \left( e^{-S[\phi] + \int dx J(x)\phi(x)} \right)$$
$$= \underbrace{\left( J(x) - \frac{\delta S}{\delta\phi(x)} \left[ \frac{\delta}{\delta J(x)} \right] \right)}_{||||} e^{W[J]}$$
$$T \left[ J(x), \frac{\delta}{\delta J(x)} \right]$$

•  $\hat{T}(x)$  satisfies

$$\hat{T}(x)e^{\int dx J(x)\hat{\phi}(x)}|0\rangle = T\left[J(x), \frac{\delta}{\delta J(x)}\right]e^{\int dx J(x)\hat{\phi}(x)}|0\rangle$$

This fact gives a quick way to derive FP Hamiltonian from SD equation.

# The FP formalism for strings

The generating functional

$$\begin{split} W\big[J\big] & \quad \equiv \quad \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} g_{\rm s}^{2g-2+n} \frac{1}{n!} J_{I_n} \cdots J_{I_1} A_{g,n}^{I_1 \cdots I_n} \\ & \quad A_{0,1}^I \equiv 0, \ A_{0,2}^{I_1 I_2} \equiv G^{I_1 I_2} \end{split}$$

 $T^{I}\left[J_{K}, \frac{\delta}{\delta J_{FF}}\right] e^{W[J]} = 0$ 

• The SD equation for W[J]

$$\begin{split} T^I \left[ J_K, \frac{\delta}{\delta J_K} \right] & \equiv \ L \frac{\delta}{\delta J_I} - L G^{II'}(-1)^{|I'|} J_{I'} \\ & - \frac{1}{2} g_8 V^{II'I''} G_{I''K''} G_{I''K''} \frac{\delta^2}{\delta J_{K''} \delta J_{K''}} \\ & - g_8 W^{II'I''} G_{I''K''}(-1)^{|I'|} J_{I'} \frac{\delta}{\delta J_{K''}} (-1)^{|I'|} |I^{I''}| \\ \\ V^{I_1 I_2 I_3} & = \ \begin{cases} (L_1 - L_2 - L_3) \langle G_{0,3,(L_1,L_2,L_3)} | B_{\alpha_1}^1 B_{\alpha_2}^2 B_{\alpha_3}^3 | \varphi_{i_1}^{\alpha_1} \rangle_1 | \varphi_{i_2}^{\alpha_2} \rangle_2 | \varphi_{i_3}^{\alpha_3} \rangle_3 & L_2 + L_3 < L_1 \\ 0 & L_1 < L_2 + L_3 \end{cases}, \\ W^{I_1 I_2 I_3} & = \ \begin{cases} 0 & L_1 + L_2 < L_3 \\ (L_1 + L_2 - L_3) \langle G_{0,3,(L_1,L_2,L_3)} | B_{\alpha_1}^1 B_{\alpha_2}^2 B_{\alpha_3}^3 | \varphi_{i_1}^{\alpha_1} \rangle_1 | \varphi_{i_2}^{\alpha_2} \rangle_2 | \varphi_{i_3}^{\alpha_3} \rangle_3 & |L_1 - L_2| < L_3 < L_1 + L_2 < L_3 \\ \min(L_1, L_2) \langle G_{0,3,(L_1,L_2,L_3)} | B_{\alpha_1}^1 B_{\alpha_2}^2 B_{\alpha_3}^3 | \varphi_{i_1}^{\alpha_1} \rangle_1 | \varphi_{i_2}^{\alpha_2} \rangle_2 | \varphi_{i_3}^{\alpha_3} \rangle_3 & |L_1 - L_2| < L_3 < L_1 + L_2 < L_3 \end{cases} \end{split}$$

# The FP formalism for strings

Operators and states

$$\begin{split} \left[ \hat{\pi}_I, \hat{\phi}^K \right] &= \delta_I^K, \\ \left[ \hat{\pi}_I, \hat{\pi}_K \right] &= \left[ \hat{\phi}^I, \hat{\phi}^K \right] = 0, \\ \langle 0 | \hat{\phi}^I &= \hat{\pi}_I | 0 \rangle = 0, \end{split}$$

• The FP Hamiltonian

$$\begin{split} \hat{H}_{FP} &= \hat{T}^I \hat{\pi}_I \\ &= -L \hat{\pi}_I \hat{\pi}_{I'} G^{I'I} + L \hat{\phi}^I \hat{\pi}_I \\ &- \frac{1}{2} g_{\rm s} V^{II'I''} G_{I''K''} \hat{\phi}^{I''} \hat{\phi}^{K''} \hat{\phi}^{K'} \hat{\pi}_I \\ &- g_{\rm s} W^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\pi}_{I'} \hat{\pi}_I \,, \end{split}$$

• One can prove

$$e^{W[J]} = \lim_{\tau \to \infty} \langle 0|e^{-\tau \hat{H}_{\text{FP}}} e^{J_I \hat{\phi}^I} |0\rangle$$

perturbatively using

$$\hat{T}^I e^{J_K \hat{\phi}^K} |0\rangle = T^I \left[ J_K, \frac{\delta}{\delta J_K} \right] e^{J_K \hat{\phi}^K} |0\rangle$$

• The correlation functions are BRST invariant

$$\begin{split} e^{W[J]} &= \lim_{\tau \to \infty} \langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} e^{J_I \hat{\phi}^I} |0\rangle \\ &\lim_{\tau \to \infty} \langle 0| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{Q} = \hat{Q} |0\rangle = 0 \end{split}$$

•  $\hat{H}_{\mathrm{FP}}$  itself is not BRST invariant

$$\begin{split} \left[\hat{Q}, \hat{H}_{\mathrm{FP}}\right] &= \left[\hat{Q}, \hat{T}^I \hat{\pi}_I\right] \\ &= \left[\hat{Q}, \hat{T}^I\right] \hat{\pi}_I + \hat{T}^I \left[\hat{Q}, \hat{\pi}_I\right] \\ \lim_{T \to \infty} \left\langle 0 \middle| e^{-\tau \hat{H}_{\mathrm{FP}}} \left[\hat{Q}, \hat{T}^I\right] = \lim_{T \to \infty} \left\langle 0 \middle| e^{-\tau \hat{H}_{\mathrm{FP}}} \hat{T}^I = 0 \right. \end{split}$$

• BRST invariant Hamiltonian can be obtained by introducing auxiliary fields

$$\hat{H}_{\mathrm{FP}} \to \hat{H}_{\mathrm{FP}} + \left[\hat{Q}, \hat{T}^I\right] \lambda_I^Q + \hat{T}^I \lambda_I^T$$

This modification does not change the correlation functions.

# 5. Conclusions and outlook

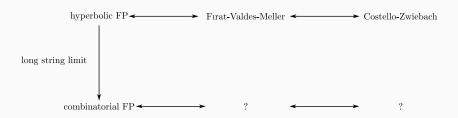
#### 5. Conclusions and outlook

 We have constructed an SFT for closed bosonic strings based on the Strebel differentials via the Fokker-Planck formalism.

$$\begin{split} \hat{H}_{\text{FP}} &= -L \hat{\pi}_I \hat{\pi}_{I'} G^{I'I} + L \hat{\phi}^I \hat{\pi}_I \\ &- \frac{1}{2} g_{\text{s}} V^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\phi}^{K''} \hat{\phi}^{K'} \hat{\pi}_I \\ &- g_{\text{s}} W^{II'I''} G_{I''K''} \hat{\phi}^{K''} \hat{\pi}_{I'} \hat{\pi}_I \,, \end{split}$$

- gauge fixed version
- Superstrings?
- Implication for conventional SFT?

# Outlook

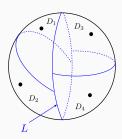


# Backup

# Amplitudes\*

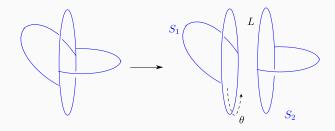
$$A_{g,n}^{i_1\cdots i_n}(\mathbf{L}) \sim \int_{\mathcal{M}_{g,n}(\mathbf{L})} \langle G_{g,n,\mathbf{L}} | B_{6g-6+2n} | i_1 \rangle \cdots | i_n \rangle$$

- Since  $\mathcal{M}_{g,n}(\mathbf{L})$  is homeomorphic to  $\mathcal{M}_{g,n}$ ,  $A_{g,n}^{i_1\cdots i_n}(\mathbf{L})$  coincide with the on-shell amplitudes when  $|i_a\rangle$  are on-shell.
  - The integration over  $L \sim 0$  region yields the s-channel poles.



 There are observables involving integration over the length. They give the nonamputated correlation functions.

# b-ghost insertions\*



$$b(\partial_L) = b_{S_1}(\partial_L) + b_{S_2}(\partial_L)$$
$$b(\partial_{\theta}) = -2\pi i b_0^-$$

- We put  $b(\partial_{\theta})b_{S_1}(\partial_L)$  on  $S_1$  and  $b(\partial_{\theta})b_{S_2}(\partial_L)$  on  $S_2$ .
- String states with these insertions are labeled by  $\alpha$  = –, and those with no insertions are labeled by  $\alpha$  = +.