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Classical solutions of the cubic SFT

QΨcl +Ψ2
cl = 0

Tachyon vacuum solution (Schnabl, Okawa, Erler,

Erler-Schnabl, ...)

Marginal deformation (Kiermaier-Okawa-Rastelli-Zwiebach,

Schnabl, Fuchs-Kroyter-Potting, ...)

Relevant deformation (Bonora-Maccaferri-Tolla, ...)

· · ·

“Any background” solution (Erler-Maccaferri)
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Takahashi-Tanimoto (TT) solutions

tachyon vacuum solution

ΨTT =

∫
CL

dξ

2πi

((
eh − 1

)
jB (ξ)− (∂h)2 ehc (ξ)

)
I

jB = cTm + bc∂c+
3

2
∂2c

eh(ξ) = −1

4

(
ξ − 1

ξ

)2
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Identity-based solutions

Ψcl = OI

I: identity string field

Impossible to calculate observables
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SFT around the identity-based solutions

Ψ → Ψcl +Ψ

S′ = − 1

g2

∫ [
1

2
ΨQΨ+ΨΨclΨ+

1

3
ΨΨΨ

]
= − 1

g2

∫ [
1

2
ΨQ′Ψ+

1

3
ΨΨΨ

]
Q′Ψ = QΨ+ {Ψcl,Ψ}∗

In the case of identity-based solutions, Q′ can be expressed by

using local fields on the worldsheet. For TT solution

Q′ =

∮
dξ

2πi

(
ehjB (ξ)− (∂h)2 ehc (ξ)

)
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Evidences

There are many evidences for the claim that ΨTT describes

tachyon vacuum:

No physical open string excitation around the background

ΨTT (Kishimoto-Takahashi, Inatomi-Kishimoto-Takahashi)

Open string amplitudes vanish (Takahashi-Zeze)

Existence of an unstable solution around the background ΨTT

(Takahashi, Kishimoto-Takahashi)

6 / 34



§1 Erler-Schnabl solution §2 Observables §3 SFT around the TT solution §4 Conclusions and discussions

In this talk

I would like to add one more to the list of these evidences.

I will consider the Erler-Schnabl solution in the SFT around

the TT solution.

I will calculate the observables of the solution and the results

indicate that the TT solution corresponds to the tachyon

vacuum.

I will study the SFT around the TT solution and discuss how

we should calculate various quantities.

c.f. Takahashi’s talk

7 / 34



§1 Erler-Schnabl solution §2 Observables §3 SFT around the TT solution §4 Conclusions and discussions

Outline

1 Erler-Schnabl solution

2 Observables

3 SFT around the TT solution

4 Conclusions and discussions
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Erler-Schnabl solution

Tachyon vacuum solution

ΨES =
1

1 +K
(c+Q (Bc))

B =

∫ i∞

−i∞

dz

2πi
b (z) I

c = c (0) I

K = QB

All the conditions in Sen’s conjectures are checked

homotopy operator A = B 1
1+K , s.t. QA = 1

E [ΨES] = − V
2π2
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Erler-Schnabl solution around the TT solution

One can construct ES solution in the SFT around the TT solution

S′ = − 1

g2

∫ [
1

2
ΨQ′Ψ+

1

3
ΨΨΨ

]

Ψ′
ES =

1

1 +K ′
(
c+Q′ (Bc)

)
K ′ = Q′B

= K + {ΨTT, B}

With the homotopy operator A′ = B 1
1+K′ , this solution will

correspond to the tachyon vacuum.
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Remark

Here we assume that 1
1+K′ is well-defined with the definition

1

1 +K ′ =
1

1 +K + {B,ΨTT}

=

∞∑
n=0

(−1)n
(

1

1 +K
{B,ΨTT}

)n 1

1 +K
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Observables

We will calculate the observables of the Ψ′
ES

E
[
Ψ′

ES

]
= −S

[
Ψ′

ES

]
= EΨ′

ES
− ETT

TrV Ψ
′
ES = ⟨V c⟩Ψ′

ES
− ⟨V c⟩TT

and show that they vanish.

Assuming Ψ′
ES corrsponds to the tachyon vacuum, this implies

that the TT solution also coresponds to the tachyon vacuum.
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Remark

Recently Maccaferri gives a way to construct a regular solution

out of an identity-based solution by a gauge transformation

ΨTT → ΨM = UQU−1 + UΨTTU
−1

U = 1 +B
1

1 +K
ΨTT

The observables become

E [ΨM] = E [ΨES]− E
[
Ψ′

ES

]
TrV ΨM = TrV ΨES − TrV Ψ′

ES

What we will show (E [Ψ′
ES] = TrV Ψ

′
ES = 0) implies that ΨM

is a tachyon vacuum solution.

c.f. Takahashi’s talk
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§2 Observables

From

Ψ′
ES =

1

1 +K ′
(
c+Q′ (Bc)

)
one can derive

E
[
Ψ′

ES

]
= −1

6
Tr

[
1

1 +K ′ c
1

1 +K ′Q
′c

]
TrV Ψ

′
ES = TrV

[
1

1 +K ′ c

]
We would like to show that the RHS vanish.
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Proof

One can show

TrV

[
1

1 +K ′ c

]
= 0

Tr

[
1

1 +K ′ c
1

1 +K ′Q
′c

]
= 0

by using Q′ ( 1
π2 b

)
= 1, Q′c = 0.

TrV

[
1

1 +K ′ c

]
= TrV

[
1√

1 +K ′Q
′
(

1

π2
b

)
1√

1 +K ′ c

]
= 0
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Q′ ( 1
π2b

)
= 1, Q′c = 0

Treating them more rigorously, these should be expressed as

e−ϵKQ′
(

1

π2
b

)
e−ϵK = e−2ϵK

e−ϵKQ′ce−ϵK = 0

With the e−ϵK ’s, we have worldsheet with no operator insertions

and
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e−ϵKQ′ ( 1
π2b

)
e−ϵK = e−2ϵK

Q′
(

1

π2
b

)
=

∮
0

dz

2πi

(
− sin2 πz

cos2 πz
jB (z) +

4π2

cos4 πz
c (z)

)
1

π2
b (0)

= 1

e−ϵK (Q′c) e−ϵK = 0 can be proven in the same way.
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TrV
[

1
1+K ′c

]
= 0

TrV

[
1

1 +K ′ c

]
= TrV

[
1√

1 +K ′Q
′
(

1

π2
b

)
1√

1 +K ′ c

]
= 0

1
√
1 +K′

=
1

Γ
(
1
2

) ∫ ∞

0
dtt−

1
2 e−te−tK′

e−tK′
=

∞∑
n=0

(−1)n
∫ ∞

0
dt1 · · ·

∫ ∞

0
dtn+1

×δ

(
n+1∑
i=1

ti − t

)
e−t1K{B,ΨTT} e−t2K · · · {B,ΨTT}e−tn+1K

Q′ ( 1
π2 b

)
= 1, Q′ (c) = 0 can be used safely.
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Remark

Actually, since Q′c = 0, Ψ′
ES becomes identity-based

Ψ′
ES =

1

1 +K ′
(
c+Q′ (Bc)

)
= c

One can avoid this by replacing

c → cy = c (iy) I, (y ̸= 0)

TrV

[
1

1+K′ cy

]
, Tr

[
1

1+K′ cy
1

1+K′Q′cy

]
are independent of y,

and we get the same answers for the observables
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§3 SFT around the TT solution

We have shown

E
[
Ψ′

ES

]
= −1

6
Tr

[
1

1 +K ′ c
1

1 +K ′Q
′c

]
= 0

TrV Ψ
′
ES = TrV

[
1

1 +K ′ c

]
= 0

using the definition

e−tK′
≡

∞∑
n=0

(−1)n
∫ ∞

0

dt1 · · ·
∫ ∞

0

dtn+1

×δ

(
n+1∑
i=1

ti − t

)
e−t1K {B,ΨTT} e−t2K · · · {B,ΨTT} e−tn+1K
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SFT around the TT solution

S′ = − 1

g2

∫ [
1

2
ΨQ′Ψ+

1

3
ΨΨΨ

]
Since Q′ is given by a local operator, we should be able to show

E
[
Ψ′

ES

]
= −1

6
Tr

[
1

1 +K ′ c
1

1 +K ′Q
′c

]
= 0

TrV Ψ
′
ES = TrV

[
1

1 +K ′ c

]
= 0

by dealing with the operator K ′ = Q′B more directly.

We find that doing so is a little bit nontrivial.
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Similarity transformation

Since K ′ itself is still difficult to deal with, we use the relation

discovered by Kishimoto-Takahshi

Q′ = −1

4
UQU−1

U=e−q(λ)U2

q (λ) = 2

∞∑
n=1

1

n
q−2n

jgh (ξ) =
∑
m

ξ−m−1qm
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U2:bc-shift operator

U2cnU
−1
2 = cn+2

U2bnU
−1
2 = bn−2

U2ϕ
mU−1

2 = ϕm

U2 |0⟩ = b−3b−2 |0⟩

⟨0|U−1
2 = ⟨0| c−1c0

U2 is of ghost number −2
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Useful relations

Q′ = −1

4
UQU−1

Uc (ξ)U−1 =

(
ξ2 − 1

)2
ξ2

c (ξ)

Ub (ξ)U−1 =
ξ2

(ξ2 − 1)2
b (ξ)

U |0⟩ =
1

16
∂bb (1) ∂bb (−1) c0c1 |0⟩

U−1 |0⟩ =
1

16
∂cc (1) ∂cc (−1) b−3b−2 |0⟩

⟨0|U = ⟨0| b2b3

⟨0|U−1 = ⟨0| c−1c0
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Useful relations

Q′ = −1

4
UQU−1

U |I⟩ =
1

32
∂bb (1) |I⟩

U−1 |I⟩ = 2∂cc (1) |I⟩

⟨I|U = 0

⟨I|U−1 = 0

Using the similarity transformation and these relations, it should be

possible to calculate various quantities.
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Q′ cohomology

Kishimoto-Takahashi

Q′ = −1

4
UQU−1

the representative state of the cohomology of Q′

UcV (0) |0⟩ : gh# = −1

U∂ccV (0) |0⟩ : gh# = 0

In conflict with the homotopy operator A = 1
π2 b ?

{
Q′, b (1)

}
= 1
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UcV (0) |0⟩ , U∂ccV (0) |0⟩

These are outside of the Fock space

(Inatomi-Kishimoto-Takahashi)

UcV (0) |0⟩

=
1

32
∂bb (1) ∂bb (−1) ∂2c∂ccV (0) |0⟩

AUcV (0) |0⟩ = b (1)UcV (0) |0⟩ = 0

{Q′, b (1)} = 1 is not correct with ∂bb (1).

Having some worldsheet with no operator insertions is crucial

for Q′A = 1.
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Observables

E
[
Ψ′

ES

]
= −1

6
Tr

[
1

1 +K ′ c
1

1 +K ′Q
′c

]
= 0

TrV Ψ
′
ES = TrV

[
1

1 +K ′ c

]
= 0

are derived from e−ϵKQ′ ( 1
π2 b

)
e−ϵK = e−2ϵK , e−ϵKQ′ce−ϵK = 0.

Let us see if we can show

e−ϵK′
Q′

(
1

π2
b

)
e−ϵK′

= e−2ϵK′

e−ϵK′
Q′ce−ϵK′

= 0

instead.
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e−ϵK ′
Q′ ( 1

π2b
)
e−ϵK ′

= e−2ϵK ′

(
e−ϵK′ |I⟩

)
∗Q′ (b (1) |I⟩) ∗

(
e−ϵK′ |I⟩

)
= e−2ϵK′ |I⟩

Inserting Q′ = −1
4UQU−1, the left hand side becomes

−1

4

(
e−ϵK′ |I⟩

)
∗ UQU−1 (b (1) |I⟩) ∗

(
e−ϵK′ |I⟩

)
= −1

4
U
(
e−ϵK̃′ |I⟩ ∗Q (2c (1) |I⟩) ∗ e−ϵK̃′ |I⟩

)
→ −1

4
U
(
e−ϵK̃′

Q (2πc) e−ϵK̃′
)

where

K̃ ′ = −
∫ i∞

−i∞

dz

2πi
T (z) tan2 πz
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K̃ ′ = −
∫ i∞
−i∞

dz
2πiT (z) tan2 πz

We can use the method of Kiermaier-Sen-Zwiebach to show that

K̃ ′ does not move the points on the boundary.

We cannot prove e−ϵK′
Q′ ( 1

π2 b
)
e−ϵK′

= e−2ϵK′
.
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Regularization

The homotopy operator seems to be crucial for ΨTT to be a

tachyon vacuum solution.

The surface should be defined as a limit of regular surfaces

anyway.

We propose a regularization such that the homotopy operator

becomes well-defined.
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Regularization

Replace K̃ ′ by

K̃ ′
δ =

∫ i∞

−i∞

dz

2πi
T (z)

− sin2 πz + δ

cos2 πz

and take the limit δ → 0
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Homotopy operator

With this prescription,

e−ϵK′
Q′

(
1

π2
b

)
e−ϵK′

= −1

4
U
(
e−ϵK̃′

Q (2πc) e−ϵK̃′
)

→ −1

4
U

(
lim
δ→0

e−ϵK̃′
δQ (2πc) e−ϵK̃′

δ

)
=

π

4
U

(
lim
δ→0

e−ϵK̃′
δ∂cce−ϵK̃′

δ

)
= e−2ϵK′

One also has e−ϵK′
Q′ce−ϵK′

= 0 and we can derive

TrV

[
1

1 +K′ c

]
= Tr

[
1

1 +K′ c
1

1 +K′Q
′c

]
= 0
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§4 Conclusions and discussions

We have calculated the observables of the Erler-Schnabl

solution around the TT solution. The results imply that TT

solution corresponds to the tachyon vacuum.

We explain how to deal with kinetic operator of the SFT

around the TT solution.

We will be able to calculate various quantities from the SFT

around the TT solution. We may be able to see its relation to

the VSFT. (Drukker, Drukker-Okawa)
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