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Light-cone gauge closed super SFT
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Mandelstam, Sin, Green-Scharz-Brink, Gross-Periwal, ...
@ No gauge invariance, no Lorentz invariance

@ Only three string interaction terms
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Feynman amplitudes diverge

e Contact term (CT) divergences

e Even the tree amplitudes are ill-defined
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@ Degenerations of the worldsheet also cause divergences.
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We would like to get finite amplitudes

Strategy

We regularize the amplitudes, by considering the SFT in linear dilaton background
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We would like to show
© The amplitudes become finite for Q2 > 10.

© The amplitudes coincide with those obtained by the 1-st quantized approach
in the limit @ — 0.

under certain assumptions.

Based on Murakami-N.I. arXiv:1063.008337,
N.I. arXiv:106504666, 1066**¥****x
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LC gauge super SFT in LD background

§1 LC gauge super SFT in LD background

Linear dilaton background ® = —iQX"! (ds? = 29.:dzdz)
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the correlation functions on the sphere
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LC gauge super SFT in LD background

LC gauge super SFT in LD background @»

We construct SFT (type II) with the worldsheet theory for X7, 4%, ¢* (i = 1,---8)
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@ Feynman amplitude
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LC gauge super SFT in LD background

Anomaly factor

e—(1-Q)T

@ On the LC diagram there is a naturally defined metric ds®> = dpdp
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@ ds? = dpdp is singular at zy,--- and punctures.
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LC gauge super SFT in LD background

Anomaly factor

e~ (1-Q7)r
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LC gauge super SFT in LD background

Anomaly factor

e ¢! was calculated by Mandelstam (tree bosonic), Berkovits (tree super),

Murakami-N.1. (multiloop) €

For large Q2, e~ (1=Q")T has the effect of taming divergences. J
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Divergences

§2 Divergences

The amplitude is expressed explicitly in terms of the theta functions defined on
the Riemann surface.
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Divergences

From the explicit form of the amplitudes,

we can see that the divergences arise when

@ Some of the interaction points collide with each other. (CT divergences)
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@ The Riemann surface corresponding to the world sheet degenerates.
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Divergences

Possible divergences arise from the combinations of

T—=0
0 — by

Infinitely long cylinder

T =00
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Finiteness

§3 Finiteness

Infinitely long cylinder
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@ Following Berera, Witten, we modify the contour as
oo To To—+ico
[ ar (/0 s )dT

we get a finite result.
@ The Feynman ic takes care of the divergences of this kind.

@ We assume that taking the limit ¢ — 0 causes no problems. @&
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Finiteness

Other kinds of divergences
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Examining the behavior of F(f), we show that the other divergences are tamed by

taking Q? large enough.

Do
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Power counting

10(z1) = p(z2)| ~ € = 0

F(f) ~ Sl

Finiteness

Q>
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Finiteness

Finiteness

@ For Q =0, F(f) becomes singular at the points corresponding to these

configurations

o For Q2 large enough, F(t) becomes regular at these points.

For Q2 > 10, we find
o F(t) is a continuous function without singularities.

o Al = [d"tF(t) is finite.
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Comparison with the first quantized approach

§4 Comparison with the first quantized approach

@ The divergences of the amplitudes are regularized by taking ® = —iQ X!,
with Q% > 10.
@ We can define the amplitudes for Q2 > 10 as analytic functions of Q
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T e fluse) oo
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A
and take the the limit Q — 0.

9=z

We would like to compare the results with those of the first quantized approach. J
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Comparison with the first quantized approach

Conformal gauge expression

The LC amplitude can be recast into a conformal gauge expression (even spin
structure)
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29— 24N XH 4t ghosts
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e with a nontrivial CFT for X* ¢* (X* CFT). (Murakami-N.l.) @&

° X(2) = —e?G + cO¢ + %(%1762‘1’ + i (2677€2¢ + n862¢): picture changing
operator (PCO)

@ PCO'’s are placed at the interaction points.
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Comparison with the first quantized approach

First quantized approach (Verlinde-Verlinde)
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o If the PCO'’s are placed at z = z;(m), but the amplitudes suffer from the so

called spurious singularities.

@ Sen-Witten gave a prescription to write down amplitudes placing PCO’s
avoiding the spurious singularities patchwise.
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Comparison with the first quantized approach
AgC AS W

e When Q? > 10,
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because
e putting z;(m) = zr does not make the amplitude diverge

o Sen-Witten prescription does no depend on the choice of z;(m)

Therefore as an analytic function of Q, Ag° =

We can get limg_0 A~ = A5V, if AGW is well-defined.
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§5 Conclusions and discussions

@ In order to regularize the Feynman amplitudes, we consider light-cone gauge
superstring field theory in linear dilaton background ® = —iQX".

@ The amplitudes become finite for Q% > 10 and they can be defined as
analytic functions of Q. The amplitudes without the background is given by

the limit Q — 0.

@ The results coincide with those from the first quantized approach.
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Conclusions and di

Outlook

Equivalence of the amplitudes with odd spin structure.

@ Our approach looks quite similar to the dimensional regularization in field

theory, but there are crucial differences:

The number of 7%, %" is not changed. Therefore the number of the gamma

matrices is not changed and we do not have any problems with fermions.

o We have a concrete theory for @ # 0. It may be possible to discuss nonperturbative

problems using this approach.



Anomaly factor @z
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e r=1,..., N label the punctures
@ I =1,...,2g — 2+ N label the interaction points, where dp(z;) = 0.

e g2 Arakelov metric on the surface

o Nit = & (p(zrn) = limzsz, (p (2) = pf In (2 = Z,)))

r-th external line

Zr(r)
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Conclusi: and di

Remark &

Tadpoles and mass renormalization are irrelevant to the limit € — 0.

@ Tadpoles: belong to the “Tiny neck” category

2ma Q1
T
N

@ Mass renormalization: If p; is on-shell, py is generically off-shell for @ # 0.

pl+p;+2Q1—g)=0

=1~




Conclusions and di

X* CFT

1 n — —
e = ’?/ d?2d9d (DX DX~ + DX~ DX ") = QTsuper []
s
X* = o +ioy* +i0pF + i00FF
1 n — - A
Psuper [2] = —5— / d%2dfdf (D<1>D<1> + 005> R¢>)
us
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@ This theory can be formulated in the case (9,, X ") # 0.

@ In the case of the LC gauge amplitudes, we always have

[Te X" (pf #0) and (9, X ) #0.
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X* CFT axDd
Sy+ = 7% /dzzdeda_ (DXTDX™ 4+ DX~ DX7T) — Q*T'super [@]
T(z,0) = G(z)+06T(2)

= % :0XTDX™ (2) : +% :DXTOX ™ (z) : +2Q°%S (z, X 1)

e It is a superconformal field theory with & = 2 + 8Q?.

@ The worldsheet theory becomes BRST invariant

X+ Xt ghosts
¢ = 248Q%* + 8-8Q* — 10 = 0
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