Light-cone gauge superstring field theory in linear dilaton background

N. Ishibashi

University of Tsukuba

1 June, 2016

VIII Workshop on String Field Theory and Related Aspects

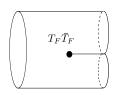
Light-cone gauge closed super SFT

$$S = \int \left[\frac{1}{2} \Phi \cdot \left(i \partial_t - \frac{L_0 + \tilde{L}_0 - 1}{p^+} \right) \Phi + \frac{g_s}{3} \Phi \cdot (\Phi * \Phi) \right]$$

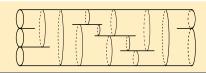
Mandelstam, Sin, Green-Scharz-Brink, Gross-Periwal, ...

- No gauge invariance, no Lorentz invariance
- Only three string interaction terms

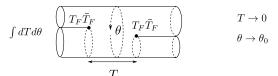
propagator



Feynman amplitudes diverge



- Contact term (CT) divergences
 - Even the tree amplitudes are ill-defined



• Degenerations of the worldsheet also cause divergences.

We would like to get finite amplitudes

Strategy

We regularize the amplitudes, by considering the SFT in linear dilaton background

$$\Phi = -iQX^1$$

We would like to show

- The amplitudes become finite for $Q^2 > 10$.
- ullet The amplitudes coincide with those obtained by the 1-st quantized approach in the limit Q o 0.

under certain assumptions.

Based on Murakami-N.I. arXiv:1063.008337,

Outline

- 1 LC gauge super SFT in LD background
- 2 Divergences
- Finiteness
- 4 Comparison with the first quantized approach
- Conclusions and discussions

§1 LC gauge super SFT in LD background

Linear dilaton background $\Phi = -iQX^1 \ (ds^2 = 2\hat{g}_{z\bar{z}}dzd\bar{z})$

$$S = \frac{1}{16\pi} \int dz \wedge d\bar{z} i \sqrt{\hat{g}} \left(\hat{g}^{ab} \partial_a X^1 \partial_b X^1 - 2iQ\hat{R}X^1 \right)$$

- $i\partial \tilde{X}^1(z) \equiv i\partial (X^1 iQ \ln(2g_{z\bar{z}})) = \sum_n \alpha_n^1 z^{-n-1}$
- $(\alpha_n^1)^* = (-1)^{n+1}(\alpha_{-n}^1 + 2Q\delta_{n,0})$
- $L_0 = \frac{1}{2}p^2 + Qp + N$
- $c = 1 12Q^2$
- the correlation functions on the sphere

$$\int \left[dX^1 \right]_{g_z \bar{z}} e^{-S} \prod_{r=1}^N e^{i p_r \tilde{X}^1} (Z_r, \bar{Z}_r) = 2\pi \delta \left(\sum p_r + 2Q \right) e^{-\frac{1-12Q^2}{24} \Gamma} \prod_{r>s} |Z_r - Z_s|^{2p_r p_s}$$

LC gauge super SFT in LD background ...

We construct SFT (type II) with the worldsheet theory for $X^i, \psi^i, \bar{\psi}^i \ (i=1,\cdots 8)$

$$S = \int \left[\frac{1}{2} \Phi \cdot \left(i \partial_t - \frac{L_0 + \tilde{L}_0 - 1 + Q^2 - i\varepsilon}{p^+} \right) \Phi + \frac{g_s}{3} \Phi \cdot (\Phi * \Phi) \right]$$

Feynman amplitude

$$A_Q^{\mathrm{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{g_{z\bar{z}}} e^{-(1-Q^2)\Gamma}$$

Anomaly factor

$$A_Q^{\mathrm{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{g_z \bar{z}} e^{-(1-Q^2)\Gamma}$$

$$\int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2} \left| \prod_{I=1}^$$

ullet On the LC diagram there is a naturally defined metric $ds^2=d
ho dar
ho$

• $ds^2=d\rho dar{
ho}$ is singular at z_1,\cdots and punctures.

Anomaly factor

$$A_Q^{\text{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} T_F^{\text{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\text{LC}} \right\rangle_{g_z \bar{z}} e^{-(1-Q^2)\Gamma}$$

$$\int \prod_K dt_K \left\langle \prod_{i=1}^{2g-2} \prod_{i=1}^{2g-2} V_r^{\text{LC}} \right\rangle_{g_z \bar{z}} e^{-(1-Q^2)\Gamma}$$

ullet The integrand of $A_Q^{
m LC}$ is defined with the metric $ds^2=d
ho dar
ho.$

$$\begin{split} A_Q^{\mathrm{LC}} &= \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} \, T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{\partial \rho \bar{\partial} \bar{\rho}} \\ &= \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} \, T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{q \neq \bar{\tau}} e^{-(1-Q^2)\Gamma} \end{split}$$

Anomaly factor

$$A_Q^{\text{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} T_F^{\text{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\text{LC}} \right\rangle_{g_{z\bar{z}}} e^{-(1-Q^2)\Gamma}$$

$$\int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2} \prod_{I=1}^{2g-2} \left| \prod_{I=1}^{2g-2} \prod_{I=1}^{2g-2} \left| \prod_{I=1}^{2g-2} \prod_{I=1}^{2g-2} \prod_{I=1}^{2g-2} \left| \prod_{I=1}^{2g-2} \prod_{I=1}^{2$$

 \bullet $e^{-\Gamma}$ was calculated by Mandelstam (tree bosonic), Berkovits (tree super), Murakami-N.I. (multiloop) $\mbox{ }^{\Box }$

For large Q^2 , $e^{-(1-Q^2)\Gamma}$ has the effect of taming divergences.

§2 Divergences

The amplitude is expressed explicitly in terms of the theta functions defined on the Riemann surface.

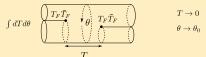
$$A_Q^{\mathrm{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{\mathrm{c}^{\mathrm{A}}} \, e^{-(1-Q^2)\Gamma}$$

$$\begin{split} e^{-\Gamma} & \propto \prod_{r=1}^{N} \left[\alpha_r^{-1} (g_{Z_r \bar{Z}_r}^{\text{A}})^{-\frac{1}{2}} e^{-\text{Re} \bar{N}_{00}^{rr}} \right]^{2g-2+N} \left[(g_{z_I \bar{z}_I}^{\text{A}})^{-\frac{1}{2}} \left| \partial^2 \rho(z_I) \right|^{-\frac{1}{2}} \right] \\ & \rho(z) = \sum_{r=1}^{N} p_r^{+} \left[\ln E\left(z, Z_r\right) - 2\pi i \int_{P_0}^{z} \omega \frac{1}{\text{Im}\Omega} \text{Im} \int_{P_0}^{Z_r} \omega \right] \\ & Z^X[g_{z\bar{z}}^{\text{A}}] = \left| \left(\frac{\prod_i E\left(z_i, R\right) \sigma\left(R\right) \det \omega_{\nu z_i}}{\vartheta\left(\epsilon_{\nu}\right) \prod_i > j} \frac{1}{\vartheta} \right|^2 e^{-S} \\ & \left\langle \prod_i e^{iq_i H}\left(z_i\right) \right\rangle = \vartheta \begin{bmatrix} \alpha' \\ \alpha'' \end{bmatrix} (\epsilon_{\nu}) \prod_{i > l} E\left(z_i, z_j\right)^{q_i q_j} \end{split}$$

From the explicit form of the amplitudes,

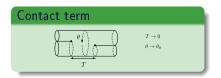
we can see that the divergences arise when

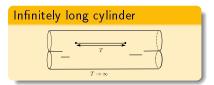
• Some of the interaction points collide with each other. (CT divergences)

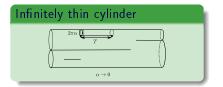


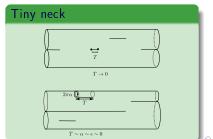
2 The Riemann surface corresponding to the world sheet degenerates.

Possible divergences arise from the combinations of









§3 Finiteness

$$\int_0^\infty dT \exp \left[-T \left(\sum_j \frac{L_0^{(j)} + \bar{L}_0^{(j)} - 1 + Q^2 - i\varepsilon}{\alpha_j} - P^- \right) \right]$$

• Following Berera, Witten, we modify the contour as

$$\int_0^\infty \, dT \, \rightarrow \left(\int_0^{T_0} + \int_{T_0}^{T_0+i\infty} \right) dT$$

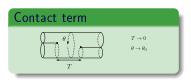
we get a finite result.

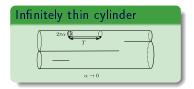
- ullet The Feynman iarepsilon takes care of the divergences of this kind.
- We assume that taking the limit $\varepsilon \to 0$ causes no problems.

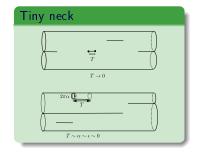
Other kinds of divergences

$$A_Q^{\mathrm{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^2 \rho \right)^{-\frac{3}{4}} \, T_F^{\mathrm{LC}} \left(z_I \right) \right|^2 \prod_{r=1}^N V_r^{\mathrm{LC}} \right\rangle_{g_{\Delta_{\overline{z}}}^{\Delta_r}} e^{-(1-Q^2)\Gamma} = \int d^n t F(\vec{t})$$

Examining the behavior of $F(\vec{t})$, we show that the other divergences are tamed by taking Q^2 large enough.

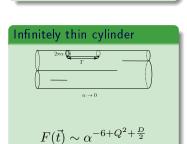


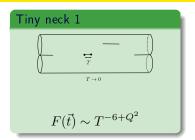


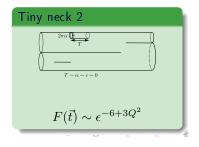


Power counting

Contact term $\frac{\sqrt{|\rho(z_1)-\rho(z_2)|}}{|\rho(z_1)-\rho(z_2)|\sim\epsilon\to0}$ $F(\bar{t})\sim\epsilon^{-\frac{10}{3}+\frac{1}{3}}Q^2$







Finiteness

- \bullet For $Q=0,\,F(\vec{t})$ becomes singular at the points corresponding to these configurations
- ullet For Q^2 large enough, $F(ec{t})$ becomes regular at these points.

For $Q^2 > 10$, we find

- ullet $F(ec{t})$ is a continuous function without singularities.
- $\bullet \ A_Q^{\rm LC} = \int d^n t F(\vec{t})$ is finite.

§4 Comparison with the first quantized approach

- \bullet The divergences of the amplitudes are regularized by taking $\Phi=-iQX^1,$ with $Q^2>10.$
- ullet We can define the amplitudes for $Q^2>10$ as analytic functions of Q

$$A_{Q}^{LC} = \int \prod_{K} dt_{K} \left\langle \prod_{I=1}^{2g-2+N} \left| \left(\partial^{2} \rho \right)^{-\frac{3}{4}} T_{F}^{LC} (z_{I}) \right|^{2} \prod_{r=1}^{N} V_{r}^{LC} \right\rangle_{g_{z\bar{z}}^{A}} e^{-(1-Q^{2})\Gamma}$$

and take the the limit $Q \to 0$.

We would like to compare the results with those of the first quantized approach.

Conformal gauge expression

The LC amplitude can be recast into a conformal gauge expression (even spin structure)

$$A_Q^{\text{LC}} = \int \prod_K dt_K \left\langle \prod_{I=1}^{2g-2+N} \left| (\partial^2 \rho)^{-\frac{3}{4}} T_F^{\text{LC}}(z_I) \right|^2 \prod_{r=1}^N V_r^{\text{LC}} \right\rangle_{g_{z\bar{z}}^{\text{A}}} e^{-(1-Q^2)\Gamma}$$

$$= \int \prod_j dm_j \left\langle \prod_j \oint \left(\mu_j b + \bar{\mu}_j \bar{b} \right) \prod_{I=1}^{2g-2+N} X(z_I) \bar{X}(\bar{z}_I) \prod_{r=1}^N V_r^{\text{conf.}} \right\rangle^{X^{\mu}, \psi^{\mu}, \text{ghosts}}$$

- with a nontrivial CFT for X^{\pm}, ψ^{\pm} (X^{\pm} CFT). (Murakami-N.I.) GO
- $X(z)=-e^{\phi}G+c\partial\xi+\frac{1}{4}\partial b\eta e^{2\phi}+\frac{1}{4}\left(2\partial\eta e^{2\phi}+\eta\partial e^{2\phi}\right)$: picture changing operator (PCO)
- PCO's are placed at the interaction points.

First quantized approach (Verlinde-Verlinde)

$$A_Q^{VV} = \int_{\mathcal{M}} \prod_j dm_j \left\langle \prod_j \oint \left(\mu_j b + \bar{\mu}_j \bar{b} \right)^{2g - 2 + N} \prod_i \frac{X(\boldsymbol{z}_i(\boldsymbol{m})) \bar{X}(\bar{\boldsymbol{z}}_i(\boldsymbol{m}))}{\prod_{r=1}^N V_r^{\text{conf.}}} \right\rangle$$

$$\int_{\prod_j dm_j} \underbrace{\sqrt{X(\boldsymbol{z}_i(\boldsymbol{m}))} \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right) \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right) \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right) \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right) \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right)}_{V_i(\boldsymbol{z}_i)} \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m}) \right) \cdot \left(\overline{\boldsymbol{z}}_i(\boldsymbol{m$$

- If the PCO's are placed at $z=z_i(m)$, but the amplitudes suffer from the so called spurious singularities.
- Sen-Witten gave a prescription to write down amplitudes placing PCO's avoiding the spurious singularities patchwise.

$$A_Q^{SW} = \sum_{\alpha} \int_{\mathcal{M}^{\alpha}} \prod_j dm_j \left\langle \prod_j \oint \left(\mu_j b + \bar{\mu}_j \bar{b} \right)^{2g - 2 + N} \underbrace{X(z_i(m)) \bar{X}(\bar{z}_i(m))}_{r=1} \prod_{r=1}^N V_r^{\text{conf.}} \right\rangle$$

$$A_Q^{\rm LC} = A_Q^{SW}$$

• When $Q^2 > 10$,

$$\begin{split} A_Q^{SW} &= \sum_{\alpha} \int_{\mathcal{M}^{\alpha}} \prod_j dm_j \left\langle \prod_j \oint \left(\mu_j b + \bar{\mu}_j \bar{b} \right)^{2g-2+N} \prod_i X(\boldsymbol{z_i}(\boldsymbol{m})) \bar{X}(\bar{\boldsymbol{z}_i}(\boldsymbol{m})) \prod_{r=1}^N V_r^{\text{conf.}} \right\rangle \\ &+ \cdots \\ &= \int_{\mathcal{M}} \prod_j dm_j \left\langle \prod_j \oint \left(\mu_j b + \bar{\mu}_j \bar{b} \right)^{2g-2+N} \prod_{I=1} X(\boldsymbol{z_I}) \bar{X}(\bar{\boldsymbol{z}_I}) \prod_{r=1}^N V_r^{\text{conf.}} \right\rangle \\ &= A_Q^{LC} \end{split}$$

because

- putting $z_i(m) = z_I$ does not make the amplitude diverge
- ullet Sen-Witten prescription does no depend on the choice of $z_i(m)$

Therefore as an analytic function of $Q,\,A_Q^{\rm LC}=A_Q^{SW}.$

We can get $\lim_{Q\to 0} A_Q^{\rm LC} = A_0^{SW}$, if A_0^{SW} is well-defined.

§5 Conclusions and discussions

- In order to regularize the Feynman amplitudes, we consider light-cone gauge superstring field theory in linear dilaton background $\Phi=-iQX^1$.
- ullet The amplitudes become finite for $Q^2>10$ and they can be defined as analytic functions of Q. The amplitudes without the background is given by the limit $Q\to 0$.
- The results coincide with those from the first quantized approach.

Outlook

- Equivalence of the amplitudes with odd spin structure.
- Our approach looks quite similar to the dimensional regularization in field theory, but there are crucial differences:
- ullet The number of $\psi^i, ar{\psi}^i$ is not changed. Therefore the number of the gamma matrices is not changed and we do not have any problems with fermions.
- ullet We have a concrete theory for $Q \neq 0$. It may be possible to discuss nonperturbative problems using this approach.

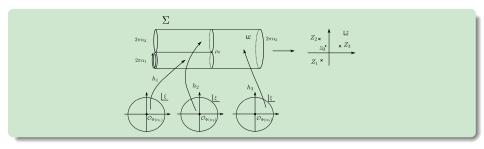
Anomaly factor PBACK

$$e^{-\Gamma} \propto \prod_{1}^{N} \left[\alpha_r^{-1} (g_{Z_r \bar{Z}_r}^{\mathcal{A}})^{-\frac{1}{2}} e^{-\operatorname{Re} \bar{N}_{00}^{rr}} \right] \prod_{1}^{2g-2+N} \left[(g_{z_I \bar{z}_I}^{\mathcal{A}})^{-\frac{1}{2}} \left| \partial^2 \rho(z_I) \right|^{-\frac{1}{2}} \right]$$

- $r=1,\ldots,N$ label the punctures
- ullet $I=1,\ldots,2g-2+N$ label the interaction points, where $\partial
 ho(z_I)=0$.
- $g_{z\bar{z}}^{A}$: Arakelov metric on the surface
- $\bar{N}_{00}^{rr} \equiv \frac{1}{p_r^+} \left(\rho(z_{I^{(r)}}) \lim_{z \to Z_r} \left(\rho(z) p_r^+ \ln(z Z_r) \right) \right)$

$$r$$
-th external line () $z_{I^{(r)}}$

Three-string vertex BACK

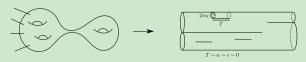


$$\begin{split} \int \Phi_{1} \cdot (\Phi_{2} * \Phi_{3}) &= \int dt \prod_{r=1}^{3} \left(\frac{p_{r}^{+} d p_{r}^{+}}{4 \pi} \right) \delta \left(\sum_{r=1}^{3} p_{r}^{+} \right) \\ &\times \left(p_{1}^{+} p_{2}^{+} p_{3}^{+} \right)^{-\frac{1}{2} (1 - Q^{2})} e^{-(1 - Q^{2}) \sum_{r} \frac{1}{p_{r}^{+}} \sum_{s=1}^{3} p_{s}^{+} \ln \left| p_{s}^{+} \right|} \\ &\times \left\langle \left| \partial^{2} \rho \left(z_{0} \right) \right|^{-\frac{3}{2}} T_{F}^{LC} \left(z_{0} \right) \bar{T}_{F}^{LC} \left(\bar{z}_{0} \right) \\ &\times \rho^{-1} h_{1} \circ \mathcal{O}_{\Phi_{1} \left(t, \alpha_{1} \right)} \rho^{-1} h_{2} \circ \mathcal{O}_{\Phi_{2} \left(t, \alpha_{2} \right)} \rho^{-1} h_{3} \circ \mathcal{O}_{\Phi_{3} \left(t, \alpha_{3} \right)} \right\rangle_{C} \\ &+ \left(\sum_{s=1}^{3} \left(\sum_{s=1}^{3}$$

Remark • BACK

Tadpoles and mass renormalization are irrelevant to the limit $\varepsilon \to 0$.

• Tadpoles: belong to the "Tiny neck" category



ullet Mass renormalization: If p_1 is on-shell, p_2 is generically off-shell for Q
eq 0.

$$p_1^1 + p_2^1 + 2Q(1 - g) = 0$$

X^{\pm} CFT

$$S_{X^{\pm}} = -\frac{1}{2\pi} \int d^2z d\theta d\bar{\theta} \left(\bar{D}X^+ D X^- + \bar{D}X^- D X^+ \right) - Q^2 \Gamma_{\text{super}} \left[\Phi \right]$$

$$X^{\pm} \equiv x^{\pm} + i\theta \psi^{\pm} + i\bar{\theta}\tilde{\psi}^{\pm} + i\theta\bar{\theta}F^{\pm}$$

$$\Gamma_{\text{super}} \left[\Phi \right] = -\frac{1}{2\pi} \int d^2z d\theta d\bar{\theta} \left(\bar{D}\Phi D\Phi + \theta\bar{\theta}\hat{g}_{z\bar{z}}\hat{R}\Phi \right)$$

$$\Phi \equiv \ln \left| \partial X^+ - \frac{\partial DX^+ DX^+}{(\partial X^+)^2} \right|^2 - \ln \hat{g}_{z\bar{z}}$$

- This theory can be formulated in the case $\langle \partial_m X^+ \rangle \neq 0$.
- In the case of the LC gauge amplitudes, we always have $\prod e^{-ip_r^+X^-} \ (p_r^+ \neq 0) \text{ and } \langle \partial_m X^+ \rangle \neq 0.$

X[±] CFT → BACK

$$\begin{split} S_{X^{\pm}} &= -\frac{1}{2\pi} \int d^2z d\theta d\bar{\theta} \left(\bar{D}X^+ D X^- + \bar{D}X^- D X^+ \right) - Q^2 \Gamma_{\text{super}} \left[\Phi \right] \\ T\left(z, \theta \right) &= G\left(z \right) + \theta T\left(z \right) \\ &= \frac{1}{2} : \partial X^+ D X^- \left(\mathbf{z} \right) : + \frac{1}{2} : D X^+ \partial X^- \left(\mathbf{z} \right) : + 2 Q^2 S\left(\mathbf{z}, \boldsymbol{X}^+ \right) \end{split}$$

- It is a superconformal field theory with $\hat{c} = 2 + 8Q^2$.
- The worldsheet theory becomes BRST invariant