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Strebel differentials and string field theory

e On punctured Riemann surfaces (~Feynman graphs of strings), one can
define quadratic differentials called Strebel differentials.

e Through Strebel differentials, one can represent any punctured Riemann
surface by a critical graph (~local interaction vertex of strings).

critical graph

e We propose an SFT (for closed bosonic strings) based on such descriptions
of Riemann surfaces. (PTEP 2024 (2024) 7, 073B02)
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Fokker-Planck formalism

e \We need to employ the Fokker-Planck formalism to construct such a
theory.
e The Fokker-Planck Hamiltonian we propose is

HFP = —Lﬁ'Iﬁ’IIGI,I + LQZASI?TI
1 ' AR KT
_595‘/ GI!!KIIGI!K/¢ ¢ Tr

rr TK" L .
-gsW Grgnd” Tpfr,

propagator vertices

6 type
|Ly — Lo| < Ly < Ly + Ly

dumbbell type
Jip 4= /iy < Ui
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e The SFT given in this talk looks very weird from the physical point of view.

e Unlike the conventional SFT, the SFT may not give a formulation from
which important physical properties of string theory (unitarity, UV
finiteness, background independence etc.) can easily be derived.

e The SFT should be considered as a machinery for computing correlation
functions of string theory.
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This talk

1. Strebel differentials

2. Combinatorial pants decomposition
3. Schwinger-Dyson equation for strings
4. The Fokker-Planck formalism

5. Conclusions and outlook

5/33



1. Strebel differentials




1. Strebel differentials

e On a punctured Riemann surface let us consider a quadratic differential
#(z)dz* such that

® near punctures (z ~ 2Zaq (a = 1,---n))

La\?> d22
dz? ~ — (J) _ %
¢(2)dz 2] (2-z2a)?
with L, > 0 and holomorphic for z # z,
e A locally flat metric
ds® = |¢(2)|dzdz = dwdw

w:fzdz'\/Wz’)
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Strebel’s theorem

e Given a punctured Riemann surface (2g — 2 + n > 0) and positive numbers
Ly, Ly, there exists the unique quadratic differential ¢(z)dz* (Strebel
differential) such that

2
o for z ~ 24, ¢(z)dz2~—(]2“7‘;) %
e holomorphic for z # z,4 '

e with the metric

ds® = |¢(2)|dzdz = dwdd

w:fzdz'\/m

the surface looks like
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Strebel differentials

critical graph
GgﬂL,L

e To any punctured Riemann surface, there corresponds a (metric ribbon)
graph called critical graph.

e Moduli spaces of punctured Riemann surfaces can be described by the
lengths of the edges of the critical graphs (combinatorial moduli space
Mg, (L)).

e Such a description plays important roles in

e Kontsevich's proof of Witten conjecture
e studying the free field limit of AdS/CFT (Gopakumar, ...)
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Strebel differentials and string field theory

e The critical graphs look like local interaction vertices of closed strings.

e Strebel's theorem implies that any punctured Riemann surface can be
described by such an interaction vertex.

e Such a description is not compatible with conventional SFT.

propagator

e Strebel differentials (with some restrictions) were used to construct the
interaction vertices of a closed bosonic string field theory in
Saadi-Zwiebach, Kugo-Kunitomo-Suehiro, Kugo-Suehiro.
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Strebel differentials and string field theory

<>
critical graph
Gg,n?L
A @~ [ (GomalBog-ssanlit) -+ fin)
Mg, n(L)

o If Strebel differentials are really important in describing the free field limit
in AdS/CFT, it may be worthwhile to construct an SFT in which the
whole amplitudes are represented in this way.

e How can one construct such an SFT?
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2. Combinatorial pants decomposition

Q h
critical graph e

e The critical graphs can be decomposed into three string vertices.

(combinatorial pants decomposition)

e We may be able to construct a theory with

propagator vertices

0 type
[L1 —La| < L3 < L1+ Ly

3

3
dumbbell type
Li+Ly<Ls
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propagator vertices

0 type
|Ly — Ly| < Ly < Ly + Ly

3
3
dumbbell type
Li+ Ly <Ls

e We may be able to construct an SFT action starting from these:
1 ~ i i
Sle] = 3% [ dLe'(We' W)

+% > f d*LViyigiy (L1, L2, L) ™ (L1)9™ (L2)$™ (Ls)
11,%2,13
+...
--- are fixed so that the amplitudes are reproduced correctly.
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Tree level four point amplitude

[
0

e This integral diverges because the moduli space is covered infinitely many
times.

e The pants decomposition of a critical graph is not unique.
e Different decompositions are transformed to each other by action of the
mapping class group.

a8 4D
> P

4
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The action is not well-defined

Sl = 53 [ aLs s

6
+eee

S [ LV (L, Lo, La)g" ()8 (L2)6™ (L)

11,12,%3

e --- should include divergent counter terms to make the amplitude finite.
e This happens for almost all the amplitudes and S[¢] is not well-defined.

e \We need some other formulation to construct the theory.
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3. Schwinger-Dyson equation for strings




3. Schwinger-Dyson equation for strings

N a \ a—1

S = S8 <L

Na+1

e Although action is ill-defined, one can derive an SD equation.
(Bg-3+n>0, (g,n) = (1,1))

e Given a critical graph Gy ,, 1., we decompose it into a three string vertex
one of whose legs is the first external line, and the rest.

e In our case, it is impossible to uniquely pin down such a vertex, but it is
possible to define a finite set of such vertices canonically.

e We have a finite set of decompositions and make a weighted sum of them,
which gives the right hand side of the above.
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SD equation

N GgnL

1— Gony -

e OD; consists of edges ex (k=1,-, K), whose lengths are denoted by [j.

K
Sli=L
k=1

e 0D1,0D, and ey, specify a three string vertex uniquely.

e For each k, we get an expression for the amplitude in the form where the
three string vertex is connected by propagators to the rest.

e We assign a weight ]% to the k-th expression and construct a weighted
sum of these.
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SD equation

e The configuration falls into one of the following six cases (Bennett et al.)

Case 1 Case 2 Case 3
"
b, G D, D
" 4
ey

ey

Case 4 Case 5 Case 6
D, Dy
[ % s

G/gl B P — Gm,m,la

[CARTIRE Y
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SD equation

n Li+La P
) = a:lfn [/\L,—La\d LIJF’)TLTﬂV““J(LlJm« B A I, Loy By L) Case 1
bemln Ly -
+6(La 7Ll),/o d:L'L—l‘/““‘,(L,,L(,,I)Af]fflff’ I (x,La, -+, Lay-++Ly) Case 2
hi-le I,—a it -
10(Ly — L )/ e VI (L, L ) A9 (@ Ly L L) Case 3 + Case 4

1 cnr b fame ’fl*l Li—a—y.; s i
Y e e[ w Vi () A 0, L) A, L) Case

stable

Ll ot Li—a—y
*5,/0 ”/ dy SV (L 2 ) A B o Ly L) Cecl

e We employ the combinatorial Fenchel-Nielsen coordinates
(ls;7s) (s=1,-+,3g -3 +n) (Andersen et al.) to describe M, ,(L).

e [s: the lengths of the nonperipheral boundaries of the pairs of pants
e T, twist parameters

e The integrations over the twist parameters make the intermediate states
to satisfy the level matching condition.

e We should take care of the b-ghost insertions.
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SD equation

N a \ a-1
| G =Y L
7 “ ’ Sa+1
n \
~In ,ZE Bhla IG A”2
Lonrs mr “1112 1T, 4I'T.
+5CM GG | A + Z oDl D) o Asaina | -
stable \ 1 B :
I +— (i,a, L)
xyt=x'v =3 Z/ dLX (i,o, L)Y (i,a, L)
i a=t
Gty = (L1 = L2)8iy i St 6as, + Sy Gt (<1191
At s o-thitn ‘(27”')7"“’“7"/ (L)<(’Vﬂ.n,L‘36576+2nB:i| BRI L)
Mo,
BNIs = B(Ly, Ly, Ls)(Go,3,(L1,La,Ls) | Bay Ba Bi \Y D1lei )2l )s
CM2ls = C(Ly, Lo, L3){(Go a1y 10, 10) | Bay B2, B | Pinlei)alei)s
oy — [@in) =+ 0 Li+Ly<Ls
. A =) (Vo= @ iy < B 4
Piq 65) aa=— BInlals) = {7 (Ly+ L2 — Ls) \‘;t 2] i s < L1+ Ly
. _ 1 =db (L1 = Ls)
a0 = by Dbgn(Or,) an = — i) = | Li<Li+Ls
% 1—Ly—Ls) Ly+Ls<Ly 19/33
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4. The Fokker-Planck formalism

e In our theory, the Schwinger-Dyson equation can be derived but the action
will be ill-defined.

e The Fokker-Planck formalism comes to the rescue.

Euclidean field theory

[ dele 5N p(z1)p(n)

<¢($1)¢($,L)) = f[dqs]e,s[qﬂ

e the FP formalism

($(@1)-¢(wn)) = lim (0l 7 §(@1)-+-G(an)[0)

[#(2), ()] = 8(x - ), [#, %] = [$,¢] = 0
(Olé(x) = #t(2)/0) = 0

tten =~ | s (10) - 5225181 (@)
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The FP Hamiltonian and SD equation

e SD equation for ¢V’ = = [[dole” ¢l+[ dzJ(2)¢(2)

0 = ./[ddﬂ%@)<e*5[¢1+.l'dw1(z>¢(x>)

- (0~ 555 7w ] ) ™
M1l

T {J(ZL’), ﬁm]

e The FP Hamiltonian

Hyp = 7/dx m #(z)
M1l

T(z)

o T'(z) satisfies
Pl e ded (@)b() [ dzJ(@)d(x)
T(a)e 0) - [Ju) e )] 0)

This fact gives a quick way to derive FP Hamiltonian from SD equation.
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The FP formalism for strings

e The generating functional

oo

2g-2+n 1 Iy--In
9s ﬁjfn'"']flAg,n
n=1 uz

=
=
NgE

g

Ag1=0, Afl? =G

I
’NO

e The SD equation for W[.J]

0Jk
§ 5 , ,
I = O et il
T []K, 071\] Lé,], G (=)t Ly
1 iy 82
—gs e G ———
QQEV 1"k G K OJk”(UKr
—gs T Chpal= \1 ‘er T (- 1)|"H’”\
K
yhil  _ (L1 = Ly = L3){Go3.(Ly.Ls.Ly) | Ba, Be, B 951052 )al@i?)s Lo+ Ls < Ln
0 Li<Ly+Ls’
0 Li+Ly<Ls

whixls (L1 + Lz — L3){(Go 3,(Ly, L2, Ly) | Ba, Ba, B, |95 1les
)2}

min(Ly, Lo)(Go3.(Ly La.Ls) | B, B3, Bag 951

a1 Doz Pag Il

>2\vm 3 |Li—Lao| <Ly <L+ Lz .
2195 )s L; < |Li — Ls|
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The FP formalism for strings

e Operators and states

[ﬁl»g’K] = 51K7
[fr.4x] = [67,6"]1=0,
(0¢" = #:o)=o0,
e The FP Hamiltonian
Hpp = T'#;

A o 1'r 2T A
= —LaapG ~ + Lo 7r

1 '’ AR AR
gsv GI”K”GI’K’(b ¢ Tr

II/I,I ,\KII N R
—gsW Grigr¢™ wpfr,

e One can prove

"] - Lim (0l "HFP 1% |0)

T—00

perturbatively using

a 2K 1) 2K
T7e’x " 0y = 7 [JK, S ] ’x%% 0)
2%

23/33



BRST symmetry

e The correlation functions are BRST invariant

eV TILTO(O|677FIFP eJ19! |0)

lim (0”@ = Ql0) =0
o Hpp itself is not BRST invariant

(@ Hre] = [Q.T'7i]
]
lim (0|6ngFP [QJH] = Tli_)r{.lo(O\efTﬁFPTI =0
e BRST invariant Hamiltonian can be obtained by introducing auxiliary fields
Hyp — Hep + [Q,TI] /\? + TI)\}F

e This modification does not change the correlation functions.
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5. Conclusions and outlook

e We have constructed an SFT for closed bosonic strings based on the
Strebel differentials via the Fokker-Planck formalism.

ﬁFp = —Lﬁ'[ﬁ'IIGI,I + LQEIﬁ'I

1 Ir'r AR AR
_Egsv GI”K”GI’K’¢) qb I

IIIIH K" N N
-gsW Grgr¢” Tpfr,

e Superstrings?
e AdS/CFT?

e Implication for conventional SFT?
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hyperbolic FP

Firat-Valdes-Meller <——— > Costello-Zwiebach

long string limit

9 CBOOoOOaEOonoa0000
Y e

combinatorial FP

26 /33






Strebel differentials and string field theory

e Strebel differentials were used to construct the interaction vertices of a
closed bosonic string field theory in Saadi-Zwiebach,
Kugo-Kunitomo-Suehiro, Kugo-Suehiro.

e One should consider the critical graphs such that
2w
2

length of an external string

length of any closed loop

v

e With such restrictions, a part of the moduli space is covered by graphs with
propagators.
e The SFT reproduces the tree level amplitudes.

propagator
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Pants decompositions

e The combinatorial pants decomposition is analogous to the pants
decomposition of hyperbolic surfaces.

e A Riemann surface with boundaries (2g — 2 + n > 0) admits a hyperbolic
metric (R = —2) such that the boundaries are geodesics.
e It can be decomposed into pairs of pants whose boundaries are geodesics.

% /‘
N NP

e The combinatorial pants decomposition can be considered as the long
string limit of that of hyperbolic surfaces.
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Long string limit

e The critical graphs in the combinatorial moduli space can be regarded as
the long string limit of the hyperbolic surfaces. (Mondello, Do)

5/31

BLy

e The combinatorial pants decomposition can be considered as the long
string limit of the hyperbolic pants decomposition.

-0 -

e By attaching semi-infinite cylinders, we get punctured Riemann surfaces.
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Long string limit

2 N /
@ \ a—1 ;
- .
1 — Ggnr :Z 1 L + 1% \}\ + 1{
“ a1
/ / '
n \--- \
Ip-1 2 I11qJ IIy-Ig-I
Ag}n noo_ Z ea B e GJIAg,rZL—la n
a=2
+1CIIJ'.IG]IG . AU’IZ...I,I . Z TNy AT AI’IZ
= . J'T _ — ) 15
2 g-1,n+1 = (nl _ 1)'(’112 _ 1)| g1,m1“7g2;n2

e This equation can be derived from a similar equation based on the
hyperbolic pants decomposition by taking the long string limit.
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Nonadmissible twists

2 N /
@ \o a—1 /
e .
1 — G =y 1; + 1{ \) + 1{
“ Na+1
n A\ \
Iy--1 o I11aJ T igyeectfyeccl]
- N b et
Agn™ = Y EaB G AT
=2
1 0 Ir'Ip-1 ET, T IT 'z
+=C"1 GJIGJ’I’ At lzedn 1212 1 2
2 g-1,n+1 st;;le (nl _ 1)!(n2 _ 1)! g1,m141g2,n2

e Although any critical graph can be decomposed into pairs of pants, a
graph made by gluing pairs of pants may not be a critical graph.
e Some twist parameters do not correspond to critical graphs. (nonadmissible
twists)

e Fortunately, nonadmissible twists do not appear on the right hand side.

(Andersen et al.)
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Nonadmissible twists

e Critical graphs are metric ribbon graphs (~Feynman diagrams of Witten's

open SFT)

e For nonadmissible twists, closed string propagators appear
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