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Strebel differentials and string field theory

• On punctured Riemann surfaces (∼Feynman graphs of strings), one can
define quadratic differentials called Strebel differentials.

• Through Strebel differentials, one can represent any punctured Riemann
surface by a critical graph (∼local interaction vertex of strings).

• We propose an SFT (for closed bosonic strings) based on such descriptions
of Riemann surfaces. (PTEP 2024 (2024) 7, 073B02)

2 / 33



Fokker-Planck formalism

• We need to employ the Fokker-Planck formalism to construct such a
theory.

• The Fokker-Planck Hamiltonian we propose is

ĤFP = −Lπ̂I π̂I′G
I′I
+Lφ̂I π̂I

−
1

2
gsV

II′I′′GI′′K′′GI′K′ φ̂
K′′ φ̂K

′

π̂I

−gsW
II′I′′GI′′K′′ φ̂

K′′ π̂I′ π̂I ,
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Remarks

• The SFT given in this talk looks very weird from the physical point of view.

• Unlike the conventional SFT, the SFT may not give a formulation from
which important physical properties of string theory (unitarity, UV
finiteness, background independence etc.) can easily be derived.

• The SFT should be considered as a machinery for computing correlation
functions of string theory.
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This talk

1. Strebel differentials

2. Combinatorial pants decomposition

3. Schwinger-Dyson equation for strings

4. The Fokker-Planck formalism

5. Conclusions and outlook
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1. Strebel differentials

• On a punctured Riemann surface let us consider a quadratic differential
φ(z)dz2 such that

• near punctures (z ∼ za (a = 1,⋯n))

φ(z)dz2 ∼ −(La
2π
)
2 dz2

(z − za)2
with La > 0 and holomorphic for z ≠ za

• A locally flat metric

ds2 = ∣φ(z)∣dzdz̄ = dwdw̄

w = ∫

z

dz′
√
φ(z′)
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Strebel’s theorem

• Given a punctured Riemann surface (2g − 2 + n > 0) and positive numbers
L1,⋯, Ln, there exists the unique quadratic differential φ(z)dz2 (Strebel
differential) such that

• for z ∼ za, φ(z)dz2 ∼ −(La
2π
)
2 dz2

(z−za)2
• holomorphic for z ≠ za
• with the metric

ds2 = ∣φ(z)∣dzdz̄ = dwdw̄

w = ∫
z
dz′
√
φ(z′)

the surface looks like
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Strebel differentials

• To any punctured Riemann surface, there corresponds a (metric ribbon)
graph called critical graph.

• Moduli spaces of punctured Riemann surfaces can be described by the
lengths of the edges of the critical graphs (combinatorial moduli space
Mg,n(L)).

• Such a description plays important roles in
• Kontsevich’s proof of Witten conjecture
• studying the free field limit of AdS/CFT (Gopakumar, ...)
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Strebel differentials and string field theory

• The critical graphs look like local interaction vertices of closed strings.

• Strebel’s theorem implies that any punctured Riemann surface can be
described by such an interaction vertex.

• Such a description is not compatible with conventional SFT.

• Strebel differentials (with some restrictions) were used to construct the
interaction vertices of a closed bosonic string field theory in
Saadi-Zwiebach, Kugo-Kunitomo-Suehiro, Kugo-Suehiro.
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Strebel differentials and string field theory

• If Strebel differentials are really important in describing the free field limit
in AdS/CFT, it may be worthwhile to construct an SFT in which the
whole amplitudes are represented in this way.

• How can one construct such an SFT?
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2. Combinatorial pants decomposition

• The critical graphs can be decomposed into three string vertices.
(combinatorial pants decomposition)

• We may be able to construct a theory with
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SFT action

• We may be able to construct an SFT action starting from these:

S [φ] =
1

2
∑
i
∫

∞

0
dLφi(L)φi(L)

+
gs
6
∑

i1,i2,i3

∫ d3LVi1i2i3(L1, L2, L3)φ
i1(L1)φ

i2(L2)φ
i3(L3)

+⋯

⋯ are fixed so that the amplitudes are reproduced correctly.
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Tree level four point amplitude

• This integral diverges because the moduli space is covered infinitely many
times.

• The pants decomposition of a critical graph is not unique.
• Different decompositions are transformed to each other by action of the

mapping class group.
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The action is not well-defined

S [φ] =
1

2
∑
i
∫

∞

0
dLφi(L)φi(L)

+
gs
6
∑

i1,i2,i3

∫ d3LVi1i2i3(L1, L2, L3)φ
i1(L1)φ

i2(L2)φ
i3(L3)

+⋯

• ⋯ should include divergent counter terms to make the amplitude finite.

• This happens for almost all the amplitudes and S [φ] is not well-defined.

• We need some other formulation to construct the theory.
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3. Schwinger-Dyson equation for strings

• Although action is ill-defined, one can derive an SD equation.
(3g − 3 + n > 0, (g, n) ≠ (1,1))

• Given a critical graph Gg,n,L, we decompose it into a three string vertex
one of whose legs is the first external line, and the rest.

• In our case, it is impossible to uniquely pin down such a vertex, but it is
possible to define a finite set of such vertices canonically.

• We have a finite set of decompositions and make a weighted sum of them,
which gives the right hand side of the above.
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SD equation

• ∂D1 consists of edges ek (k = 1,⋯,K), whose lengths are denoted by lk.

K

∑
k=1

lk = L1

• ∂D1, ∂Da and ek specify a three string vertex uniquely.

• For each k, we get an expression for the amplitude in the form where the
three string vertex is connected by propagators to the rest.

• We assign a weight lk
L1

to the k-th expression and construct a weighted
sum of these.
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SD equation

• The configuration falls into one of the following six cases (Bennett et al.)
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SD equation

• We employ the combinatorial Fenchel-Nielsen coordinates
(ls; τs) (s = 1,⋯,3g − 3 + n) (Andersen et al.) to describeMg,n(L).

• ls: the lengths of the nonperipheral boundaries of the pairs of pants
• τs: twist parameters

• The integrations over the twist parameters make the intermediate states
to satisfy the level matching condition.

• We should take care of the b-ghost insertions.
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SD equation
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4. The Fokker-Planck formalism

• In our theory, the Schwinger-Dyson equation can be derived but the action
will be ill-defined.

• The Fokker-Planck formalism comes to the rescue.

Euclidean field theory

⟨φ(x1)⋯φ(xn)⟩ =
∫ [dφ]e

−S[φ]φ(x1)⋯φ(xn)

∫ [dφ]e
−S[φ]

• the FP formalism

⟨φ(x1)⋯φ(xn)⟩ = lim
τ→∞

⟨0∣e−τĤFP φ̂(x1)⋯φ̂(xn)∣0⟩

[π̂(x), φ̂(y)] = δ(x − y) , [π̂, π̂] = [φ̂, φ̂] = 0

⟨0∣φ̂(x) = π̂(x)∣0⟩ = 0

ĤFP = −∫ dx(π̂(x) −
δS

δφ(x)
[φ̂]) π̂(x)
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The FP Hamiltonian and SD equation

• SD equation for eW [J]
≡ ∫ [dφ]e

−S[φ]+∫ dxJ(x)φ(x)

• The FP Hamiltonian

• T̂ (x) satisfies

T̂ (x)e∫ dxJ(x)φ̂(x)∣0⟩ = T [J(x),
δ

δJ(x)
] e∫ dxJ(x)φ̂(x)∣0⟩

This fact gives a quick way to derive FP Hamiltonian from SD equation.
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The FP formalism for strings

• The generating functional

W [J] ≡
∞
∑
g=0

∞
∑
n=1

g2g−2+ns
1

n!
JIn⋯JI1A

I1⋯In
g,n

AI0,1 ≡ 0, AI1I20,2 ≡ GI1I2

• The SD equation for W [J]

T I [JK ,
δ

δJK
] eW [J]

= 0
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The FP formalism for strings

• Operators and states

[π̂I , φ̂
K
] = δ KI ,

[π̂I , π̂K] = [φ̂I , φ̂K] = 0 ,

⟨0∣φ̂I = π̂I ∣0⟩ = 0 ,

• The FP Hamiltonian

ĤFP = T̂ I π̂I

= −Lπ̂I π̂I′G
I′I
+Lφ̂I π̂I

−
1

2
gsV

II′I′′GI′′K′′GI′K′ φ̂
K′′ φ̂K

′

π̂I

−gsW
II′I′′GI′′K′′ φ̂

K′′ π̂I′ π̂I ,

• One can prove
eW [J]

= lim
τ→∞

⟨0∣e−τĤFPeJI φ̂
I

∣0⟩

perturbatively using

T̂ IeJK φ̂
K

∣0⟩ = T I [JK ,
δ

δJK
] eJK φ̂

K

∣0⟩
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BRST symmetry

• The correlation functions are BRST invariant

eW [J]
= lim
τ→∞

⟨0∣e−τĤFPeJI φ̂
I

∣0⟩

lim
τ→∞

⟨0∣e−τĤFPQ̂ = Q̂∣0⟩ = 0

• ĤFP itself is not BRST invariant

[Q̂, ĤFP] = [Q̂, T̂ I π̂I]

= [Q̂, T̂ I] π̂I + T̂
I
[Q̂, π̂I]

lim
τ→∞

⟨0∣e−τĤFP [Q̂, T̂ I] = lim
τ→∞

⟨0∣e−τĤFP T̂ I = 0

• BRST invariant Hamiltonian can be obtained by introducing auxiliary fields

ĤFP → ĤFP + [Q̂, T̂ I]λQI + T̂
IλTI

• This modification does not change the correlation functions.
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5. Conclusions and outlook

• We have constructed an SFT for closed bosonic strings based on the
Strebel differentials via the Fokker-Planck formalism.

ĤFP = −Lπ̂I π̂I′G
I′I
+Lφ̂I π̂I

−
1

2
gsV

II′I′′GI′′K′′GI′K′ φ̂
K′′ φ̂K

′

π̂I

−gsW
II′I′′GI′′K′′ φ̂

K′′ π̂I′ π̂I ,

• Superstrings?

• AdS/CFT?

• Implication for conventional SFT?
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Outlook
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Strebel differentials and string field theory

• Strebel differentials were used to construct the interaction vertices of a
closed bosonic string field theory in Saadi-Zwiebach,
Kugo-Kunitomo-Suehiro, Kugo-Suehiro.

• One should consider the critical graphs such that

length of an external string = 2π

length of any closed loop ≥ 2π

• With such restrictions, a part of the moduli space is covered by graphs with
propagators.

• The SFT reproduces the tree level amplitudes.
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Pants decompositions

• The combinatorial pants decomposition is analogous to the pants
decomposition of hyperbolic surfaces.

• A Riemann surface with boundaries (2g − 2 + n > 0) admits a hyperbolic
metric (R = −2) such that the boundaries are geodesics.

• It can be decomposed into pairs of pants whose boundaries are geodesics.

• The combinatorial pants decomposition can be considered as the long
string limit of that of hyperbolic surfaces.
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Long string limit

• The critical graphs in the combinatorial moduli space can be regarded as
the long string limit of the hyperbolic surfaces. (Mondello, Do)

• The combinatorial pants decomposition can be considered as the long
string limit of the hyperbolic pants decomposition.

• By attaching semi-infinite cylinders, we get punctured Riemann surfaces.
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Long string limit

AI1⋯Ing,n =
n

∑
a=2

εaB
I1IaJGJIA

II2⋯Îa⋯In
g,n−1

+
1

2
CI1J

′JGJIGJ′I′ [A
II′I2⋯In
g−1,n+1 + ∑

stable

εI1I2
(n1 − 1)!(n2 − 1)!

AII1g1,n1
AI

′I2
g2,n2

]

• This equation can be derived from a similar equation based on the
hyperbolic pants decomposition by taking the long string limit.
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Nonadmissible twists

AI1⋯Ing,n =
n

∑
a=2

εaB
I1IaJGJIA

II2⋯Îa⋯In
g,n−1

+
1

2
CI1J

′JGJIGJ′I′ [A
II′I2⋯In
g−1,n+1 + ∑

stable

εI1I2
(n1 − 1)!(n2 − 1)!

AII1g1,n1
AI

′I2
g2,n2

]

• Although any critical graph can be decomposed into pairs of pants, a
graph made by gluing pairs of pants may not be a critical graph.

• Some twist parameters do not correspond to critical graphs. (nonadmissible
twists)

• Fortunately, nonadmissible twists do not appear on the right hand side.
(Andersen et al.)
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Nonadmissible twists

• Critical graphs are metric ribbon graphs (∼Feynman diagrams of Witten’s
open SFT)

• For nonadmissible twists, closed string propagators appear
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