Multiloop amplitudes of light-cone gauge superstring field theory: Odd spin structure contributions

N. Ishibashi

University of Tsukuba

25 June, 2017

SFT@HIT
Light-cone gauge SFT for closed strings

- **String field**
 \[\Phi [x^+, p^+, X^i(\sigma)] \]

- **Action**
 \[S = \int \left[\frac{1}{2} \Phi \cdot \left(i\partial_{x^+} - \frac{L_0 + \tilde{L}_0 - 1}{p^+} \right) \Phi + \frac{g_s}{3} \Phi \cdot (\Phi \ast \Phi) \right] \]
On-shell amplitudes for bosonic strings

\[A^{LC} = \int \prod_K dt_K F^{LC} (t) \]

On-shell amplitudes coincide with the conformal gauge ones.

\[A^{\text{conf.}} = \int \prod_a dm_a F^{\text{conf.}} (m) \]

- \(t_K \) can be chosen to be the moduli parameters (Giddings-Wolpert)
- \(F^{LC} (t) = F^{\text{conf.}} (t) \) (D’Hoker-Giddings)
- The integral itself is divergent.
On-shell amplitudes for superstrings

\[
A^{LC} = \sum_{\alpha_L, \alpha_R} \int \prod_{K} dt_K F^{LC}(t, \alpha_L, \alpha_R)
\]

For superstrings, on-shell amplitudes

- with (NS,NS) external lines
- even spin structure

coincide with the conformal gauge ones. (Aoki-D'Hoker-Phong)

- The integral itself is divergent because of the contact term divergences.
- This can be remedied by dimensional regularization. (Murakami-N.I.)
On-shell amplitudes for superstrings

In this talk, I would like to show that the above results can be generalized to the odd spin structure case. (with (NS,NS) external lines)

We would like to show

- The LC amplitudes for odd spin structures can be recast into a conformal gauge expression.
- Although the expression yields a divergent integral, we can make it well-defined by dimensional regularization.
 - Here we assume that there are no problems of mass renormalization or vacuum shift.

Based on Murakami-N.I. in preparation,
Outline

1. LC gauge vs. conformal gauge
2. Odd spin structure
3. Amplitudes for odd spin structures
4. Outlook
§1 LC gauge vs. conformal gauge

For bosonic strings

\[
A^{LC} = \int \prod_K dt_K F^{LC}(t)
\]

\[
F^{LC}(t) \propto \int \Sigma \left[\frac{dX^i}{\partial \rho \partial \bar{\rho}} \right] e^{-S X^i} = e^{-\Gamma[\rho, \hat{g}_{\bar{z}z}]} \int \left[dX^i \hat{g}_{z\bar{z}} \right] e^{-S X^i} \prod_r V_r^{LC}(Z_r, \bar{Z}_r)
\]

\[
\int \prod_K dt_K \quad \Sigma
\]

\[
ds^2 = \partial \rho \bar{\partial} \rho d\rho d\bar{\rho}
\]

\[
ds^2 = 2\hat{g}_{z\bar{z}} dz d\bar{z}
\]
\[F^{\text{LC}}(t) = F^{\text{conf.}}(t) \]

\[F^{\text{conf.}}(t) = \int [dX^\mu dbdc] e^{-S^{\text{conf.}}} \times \prod_K \left[\int_{C_K} dz b_{zz} + \varepsilon_K \int_{\bar{C}_K} d\bar{z} b_{\bar{z}\bar{z}} \right] \prod_r \left[c\bar{c}V_r^{\text{DDF}}(Z_r, \bar{Z}_r) \right] \]

- \(V_r^{\text{DDF}} \) is a \((1, 1)\) matter primary
- \(\varepsilon_K = \pm 1 \)
- This can be shown by just performing the integrations over \(X^\pm \) and \(b, c \) in \(F^{\text{conf.}}(t) \).
Bosonic strings

\[\int [dX^\pm] e^{-S^\pm} \prod_r V_r^{\text{DDF}} (Z_r, \bar{Z}_r) \]

\[= Z_X^\pm \left(\prod_r V_r^{\text{DDF}} (Z_r, \bar{Z}_r) \right)^{X^\pm} \propto Z_X^\pm \prod_{r=1}^{N} V_r^{\text{LC}} (Z_r, \bar{Z}_r) \]

\[\int [dbdc] \hat{g}_{\z\z} e^{-S^{bc}} \prod_{r=1}^{N} c\bar{c}(Z_r, \bar{Z}_r) \prod_{K=1}^{6g-6+2N} \left[\oint_{C_K} \frac{dz}{\partial \rho} b_{\z\z} + \varepsilon_K \oint_{\bar{C}_K} \frac{d\bar{z}}{\partial \bar{\rho}} b_{\z\z} \right] \]

\[\propto (Z_X^\pm)^{-1} e^{-\Gamma[\rho, \hat{g}_{\z\z}]} \]

\[F^{\text{conf.}} (t) \propto e^{-\Gamma[\rho, \hat{g}_{\z\z}]} \int [dX^i] \hat{g}_{\z\z} e^{-S^X} \prod_r V_r^{\text{LC}} (Z_r, \bar{Z}_r) \]

\[= F^{\text{LC}} (t) \]
LC gauge amplitudes for type II strings

\[
A^{\text{LC}} = \sum_{\alpha_L, \alpha_R} \int \prod_K dt_K F^{\text{LC}}(t, \alpha_L, \alpha_R)
\]

- α_L, α_R: spin structures of left and right moving fermions
- Supercurrent for the LC variables $T^\text{LC}_F(z)$ are inserted at the interaction points.

\[
ds^2 = \partial \rho \delta \rho dz d\bar{z}
\]

\[
ds^2 = 2\hat{g}_{zz} dz d\bar{z}
\]
LC gauge amplitudes for critical type II strings

\[F^{LC}(t, \alpha_L, \alpha_R) \propto e^{-\frac{1}{2} \Gamma_{\rho; \tilde{g}_{z\tilde{z}}} \int [dX^i d\psi^i d\bar{\psi}^i] \tilde{g}_{z\tilde{z}}^\rho_{\bar{z}\bar{z}}} e^{-S^{LC}[X^i, \psi^i, \bar{\psi}^i]} \]

\[\times \prod_{I=1}^{2g-2+N} \left(\left| \partial^2 \rho(z_I) \right|^{-\frac{3}{2}} T_{F}^{LC}(z_I) \bar{T}_{F}^{LC}(\bar{z}_I) \right) \]

\[\times \prod_{r=1}^{N} V_{r}^{LC}(Z_r, \bar{Z}_r). \]

\[\int \prod_{\kappa} dt_{\kappa} \]

\[ds^2 = \partial \rho \partial \bar{\rho} dz d\bar{z} \]

\[\int \prod_{\kappa} dt_{\kappa} \]

\[ds^2 = 2\tilde{g}_{z\tilde{z}} dz d\bar{z} \]
\[F^{\text{LC}}(t, \alpha_L, \alpha_R) = F^{\text{conf.}}(t, \alpha_L, \alpha_R) \]

\[F^{\text{conf.}}(t, \alpha_L, \alpha_R) \equiv \int \prod_K dt_K \int [dX^\mu d\psi^\mu d\bar{\psi}^\mu db dcd\beta d\gamma] \hat{g}_{zz} e^{-S_{\text{tot}}} \times \prod_K \left[\int_{C_K} \frac{dz}{\partial \rho} b_{zz} + \varepsilon_K \int_{\bar{C}_K} \frac{d\bar{z}}{\partial \bar{\rho}} b_{\bar{z}\bar{z}} \right]^{2g-2+N} \prod_{l=1}^N [X(z_I) \bar{X}(\bar{z}_I)] \times \prod_{r=1}^N \left[c \bar{c} e^{-\phi - \bar{\phi}} V_r^\text{DDF}(Z_r, \bar{Z}_r) \right]. \]

- \(V_r^\text{DDF} \) is a \((\frac{1}{2}, \frac{1}{2})\) matter primary in the (NS,NS) sector.
- \(X(z) = \left[c \partial \xi - e^\phi T_F + \frac{1}{4} \partial b \eta e^{2\phi} + \frac{1}{4} b \left(2 \partial \eta e^{2\phi} + \eta \partial e^{2\phi} \right) \right](z) \)
- The PCO’s are inserted at the interaction points of the LC diagram.
$F_{\text{conf.}} = F_{\text{LC}}$

Proof involves two steps (Murakami-N.I.)

1. $X(z) = -e^\phi T_F^{\text{LC}}(z) + \triangle(z)$ One can show that $\triangle(z)$ does not contribute to the correlation function

$$F_{\text{conf.}} = \int \prod_K dt_K \int [dX^\mu d\psi^\mu d\bar{\psi}^\mu db d\beta d\gamma] \hat{g}_{z\bar{z}} e^{-S_{\text{tot}}} \times \prod_K \left[\int C_K \frac{dz}{\partial \rho} b_{zz} + \varepsilon_K \int \bar{C}_K \frac{d\bar{z}}{\partial \bar{\rho}} b_{z\bar{z}} \right]^{2g-2+N} \prod_{I=1} \left[e^{\phi T_F^{\text{LC}}(z_I)} e^{\bar{\phi} T_F^{\text{LC}}(\bar{z}_I)} \right] \times \prod_{r=1}^N \left[c\bar{c} e^{-\phi - \bar{\phi}} V_r^{\text{DDF}}(Z_r, \bar{Z}_r) \right].$$

- One can find a nilpotent fermionic charge \hat{Q}, s.t. all the insertions are \hat{Q} invariant and $\triangle(z) = \{ \hat{Q}, \mathcal{O}(z) \}$
2. Integrating over X^\pm, ψ^\pm and ghosts, we get $F^\text{conf.} = F^\text{LC}$

\[
\int [dX^\pm d\psi^\pm d\bar{\psi}^\pm] e^{-S^\pm} \prod_{r=1}^{N} V^{\text{DDF}}_r (Z_r, \bar{Z}_r) \sim Z_X Z_\psi V^{\text{LC}}_r (Z_r, \bar{Z}_r)
\]

(b, c part) \sim (Z_X)^{-1} e^{-\Gamma[\rho, \hat{g}z\bar{z}]}

(\beta, \gamma \text{ part}) \sim (Z_\psi)^{-1} e^{\frac{1}{2} \Gamma[\rho, \hat{g}z\bar{z}]} \prod_{I=1}^{2g-2+N} \left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}}

$F^\text{conf.}$ \sim e^{-\frac{1}{2} \Gamma[\rho; \hat{g}z\bar{z}]} \int [dX^i d\psi^i d\bar{\psi}^i] e^{-S^{\text{LC}} [X^i, \psi^i, \bar{\psi}^i]}

\times \prod_{I=1}^{2g-2+N} \left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}} T^{\text{LC}}_F (z_I) T^{\text{LC}}_F (\bar{z}_I) \prod_{r=1}^{N} V^{\text{LC}}_r (Z_r, \bar{Z}_r)

= F^\text{LC}
§2 Odd spin structure

- In order for the above procedure to be well-defined we need

\[
Z_{ψ^±} = \left(\frac{\det' (-g^{z\bar{z}} \partial_z \partial_{\bar{z}})}{\det \text{Im} Ω \int d^2z \sqrt{g}} \right)^{-\frac{1}{2}} \varθ[α_L] (0) \vartheta[α_R] (0)^* ≠ 0
\]

- The theta function satisfies

\[
\vartheta[α] (-ζ) = (-1)^{4\bar{α}' \cdot \bar{α}''} \vartheta[α] (ζ)
\]

- \(α\) is called even or odd, depending on whether \(4\bar{α}' \cdot \bar{α}''\) is an even or odd integer.

When the spin structure \(α_L\) is odd, for example, \(\vartheta[α_L] (0) = 0\) and we are in trouble.
Odd spin structures

\[
Z_{\psi^\pm} = \left(\frac{\det' (-g^{z\bar{z}} \partial_z \partial_{\bar{z}})}{\det \text{Im} \Omega \int d^2z \sqrt{g}} \right)^{-\frac{1}{2}} \vartheta[\alpha_L] (0) \vartheta[\alpha_R] (0)^* \\
\int [d\beta d\gamma] e^{-S_{\beta\gamma}} \prod_{I=1}^{2g-2+N} \left[e^\phi (z_I) e^{\bar{\phi}} (\bar{z}_I) \right] \prod_{r=1}^{N} \left[e^{-\phi} (Z_r) e^{-\bar{\phi}} (\bar{Z}_r) \right] \\
= \left(Z_{\psi^\pm} \right)^{-1} e^{\frac{1}{2} \Gamma[\rho, \dot{g}_{z\bar{z}}]} \prod_{r=1}^{N} e^{-\text{Re} \tilde{N}_{00}^{rr}} \prod_{I=1}^{2g-2+N} \left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}}.
\]

- \(\vartheta[\alpha_L] (0) = 0 \) implies that \(\psi^\pm, \beta, \gamma \) possess zero modes \(h_{\alpha_L} (z), \partial \rho h_{\alpha_L} (z), (\partial \rho)^{-1} h_{\alpha_L} (z) \) where

\[
h_{\alpha_L} (z) = \sqrt{\sum_{\nu} \partial_{\nu} \vartheta[\alpha_L] (0) \omega_{\nu} (z)}
\]

- The conformal gauge expression involves a combination \(0 \times \infty \) and is ill-defined.
§3 Amplitudes for odd spin structures

- In order to deal with the problem, we need to insert $\psi^\pm, \delta(\gamma), \delta(\beta)$ to soak up the zero modes.

- This can be achieved in a BRST invariant way by changing the pictures of some of the external lines.

- In the following, we consider the case when α_L is odd and α_R is even.
The conformal gauge expression is taken to be

\[
F^{\text{conf.}}(t, \alpha_L, \alpha_R) = \int [dX^\mu d\psi^{\mu} dbdc\beta d\gamma] g_{z\bar{z}} e^{-S^{\text{tot}}}
\]

\[
\times \left[\prod_{K=1}^{6g-6+2N} \left(\int_{C_K} \frac{dz}{\partial \rho} b_{zz} + \varepsilon_K \int_{\bar{C}_K} \frac{d\bar{z}}{\partial \bar{\rho}} b_{\bar{z}\bar{z}} \right) \right] \prod_I \left[X(z_I) \bar{X}(\bar{z}_I) \right]
\]

\[
\times V_1^{(-2,-1)}(Z_1, \bar{Z}_1) V_2^{(0,-1)}(Z_2, \bar{Z}_2) \prod_{r=3}^{N} \left[V_r^{(-1,-1)}(Z_r, \bar{Z}_r) \right],
\]

\[
V_r^{(-1,-1)}(Z_r, \bar{Z}_r) = c\bar{c}e^{-\phi - \bar{\phi}} V_r^{\text{DDF}}(Z_r, \bar{Z}_r)
\]

\[
V_1^{(-2,-1)}(Z_1, \bar{Z}_1) = -\frac{2}{p_1^+} c\bar{c}e^{-2\phi} e^{-\bar{\phi}} \psi^+ V_1^{\text{DDF}}(Z_1, \bar{Z}_1),
\]

\[
V_2^{(0,-1)}(Z_2, \bar{Z}_2) = \left[-\frac{1}{2} c\bar{c}e^{-\phi} \left(p_2^+ \psi^- + \left(p_2^- - \frac{N_2}{p_2^+} - \frac{Q^2}{2p_2^+} \right) \psi^+ - \bar{p}_2 \cdot \psi \right) + \frac{1}{4} \bar{c}\gamma e^{-\bar{\phi}} \right] V_2^{\text{DDF}}
\]
Proof involves two steps

1. One can show that $X(z_I)$ can be replaced by $-e^\phi T_F^{LC}(z_I)$ and $V_2^{(0,-1)}$ by the first term

$$F^{\text{conf.}}(t, \alpha_L, \alpha_R) = \int \left[dX^\mu d\psi^\mu db dc d\beta d\gamma \right] \hat{g}_{zz} e^{-S^{\text{tot}}}
\times \frac{6g-6+2N}{\prod_{K=1}^{g-1}} \left[\oint_{C_K} \frac{dz}{\partial \rho} b_{zz} + \varepsilon_K \oint_{C_K} \frac{d\bar{z}}{\partial \bar{\rho}} b_{\bar{z}\bar{z}} \right] \prod_I \left[e^\phi T_F^{LC}(z_I) e^{\bar{\phi}} \bar{T}_F^{LC}(\bar{z_I}) \right]
\times \left[-\frac{2}{p_1^+} c\bar{c} e^{-2\phi} e^{-\bar{\phi} \psi^+} V_1^{\text{DDF}} \right] (Z_1, \bar{Z}_1) V_2^{(0,-1)} (Z_2, \bar{Z}_2)
\times \left[-\frac{1}{2} c\bar{c} e^{-\bar{\phi} p_2^+ \psi^-} \right] V_2^{\text{DDF}} (Z_2, \bar{Z}_2)
\times \prod_{r=3}^{N} \left[c\bar{c} e^{-\phi} V_r^{\text{DDF}} (Z_r, \bar{Z}_r) \right]$$
2. Integrating over X^\pm, ψ^\pm and ghosts, we get $F^{\text{conf.}} = F^{\text{LC}}$

\[
\int \left[dX^\pm d\psi^\pm d\bar{\psi}^\pm \right] e^{-S^\pm} \prod_{r=1}^{N} V_r^{\text{DDF}}(Z_r, \bar{Z}_r) \psi^+ (Z_1) \psi^- (Z_2) \\
\sim Z_{X^\pm} \prod_{r=1}^{N} V_r^{\text{LC}}(Z_r, \bar{Z}_r) \left(\frac{\det' \left(-g z \bar{z} \partial_z \partial_{\bar{z}}\right)}{\det \text{Im} \Omega \int d^2 z \sqrt{g}} \right)^{-\frac{1}{2}} \vartheta[\alpha_R] (0)^* h_{\alpha_L} (Z_1) h_{\alpha_L} (Z_2) \\
(b, c \text{ part}) \sim \left(Z_{X^\pm} \right)^{-1} e^{-\Gamma[\rho, \hat{g} z \bar{z}]} \\
(\beta, \gamma \text{ part}) \\
\sim e^{\frac{1}{2} \Gamma[\rho, \hat{g} z \bar{z}]} 2g - 2 + N \prod_{I=1}^{N} \left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}} \\
\times \frac{p_1^+}{p_2^+} \left(\frac{\det' \left(-g z \bar{z} \partial_z \partial_{\bar{z}}\right)}{\det \text{Im} \Omega \int d^2 z \sqrt{g}} \right)^{\frac{1}{2}} \left(\vartheta[\alpha_R] (0)^* h_{\alpha_L} (Z_1) h_{\alpha_L} (Z_2) \right)^{-1}
\]

$F^{\text{conf.}} \sim e^{-\frac{1}{2} \Gamma[\rho; \hat{g} z \bar{z}]} \int \left[dX^i d\psi^i d\bar{\psi}^i \right] \hat{g}_{z \bar{z}} e^{-S^{\text{LC}}[X^i, \psi^i, \bar{\psi}^i]} \\
\times 2g - 2 + N \prod_{I=1}^{N} \left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}} T_{\text{F}^{\text{LC}}} (z_I) T_{\text{F}^{\text{LC}}} (\bar{z}_I) \prod_{r=1}^{N} V_r^{\text{LC}}(Z_r, \bar{Z}_r) .

= F^{\text{LC}}$
Contact term divergences

• The amplitude

\[
A = \sum_{\alpha_L,\alpha_R} \int \prod_{K} dt_K F^{LC}(t, \alpha_L, \alpha_R)
\]

\[
= \sum_{\alpha_L,\alpha_R} \int \prod_{K} dt_K F^{\text{conf.}}(t, \alpha_L, \alpha_R)
\]

is ill-defined because of the contact term divergences.
The divergences can be regularized by dimensional regularization.

By considering the theory in a linear dilaton background $\Phi = -iqX^1$, with a real constant Q, we can make the amplitudes well-defined for $Q^2 > 10$:

$$F^{LC}(t, \alpha_L, \alpha_R) \sim e^{-\frac{1-Q^2}{2} \Gamma[\rho; \hat{g}_{zz}]} \times \int \left[dX^i d\psi^i d\bar{\psi}^i \right] \hat{g}_{zz} e^{-S^{LC}[X^i, \psi^i, \bar{\psi}^i]} \times 2^{g-2+N} \prod_{I=1}^N \left(\left| \partial^2 \rho (z_I) \right|^{-\frac{3}{2}} T^{LC}_F (z_I) \bar{T}^{LC}_F (\bar{z}_I) \right) \prod_{r=1}^N V^{LC}_r (Z_r, \bar{Z}_r).$$
We can prove \(F^{LC}(t, \alpha_L, \alpha_R) = F^{\text{conf.}}(t, \alpha_L, \alpha_R) \)

\[
F^{\text{conf.}}(t, \alpha_L, \alpha_R) = \int [dX^\mu d\psi^\mu db dcd\beta d\gamma] \ g_{zz} \ e^{-S_{\text{tot}}} \times \prod_{K=1}^{6g-6+2N} \left[\oint_{C_K} \frac{dz}{\partial \rho} b_{zz} + \varepsilon_K \oint_{\bar{C}_K} \frac{d\bar{z}}{\partial \rho} \bar{b}_{\bar{z}\bar{z}} \right] \times \prod_I \left[X(z_I) \bar{X}(\bar{z}_I) \right] \prod_r e^{-\frac{iQ^2}{\alpha r} X^+ \left(\hat{z}_I(r), \hat{\bar{z}}_I(r) \right)} \times V_1^{(-2,-1)}(Z_1, \bar{Z}_1) V_2^{(0,-1)}(Z_2, \bar{Z}_2) \prod_{r=3}^{N} \left[V_r^{(-1,-1)}(Z_r, \bar{Z}_r) \right].
\]
Dimensional regularization

- The longitudinal part is a super conformal field theory with $c = 3 + 12Q^2$ so that the total central charge vanishes.

- The LC amplitudes $A^{LC}(Q^2)$ are well-defined for $Q^2 > 10$ and can be defined as analytic functions of Q^2.

- $A^{conf.}(Q^2)$ can be made well-defined by avoiding the spurious singularities using Sen-Witten prescription for $Q^2 < 10$ and

$$A^{LC}(Q^2) = A^{conf.}(Q^2)$$

- $\lim_{Q \to 0} A^{LC}(Q^2)$ is well-defined when there are no infrared divergences.
We have shown that the odd spin structure contributions to the light-cone gauge amplitudes correspond to the conformal gauge expression using the vertex operators $V(-2,-1), V(0,-1)$.

The contact term divergences can be regularized by dimensional regularization.

The wrong picture vertex operators $V(-2,-1), V(0,-1)$?
Vacuum shift and mass renormalization

- Mass renormalization may be dealt with by making the external line off-shell.
- There exist no light-cone tadpole diagrams but there are divergences associated with them.

We may have to deal with it in the same way as the UV divergences in usual field theory.
Jump
Anomaly factor

\[e^{-\Gamma[\rho, g_{z\bar{z}}^A]} \propto \prod_{r=1}^{N} \left[\alpha_r^{-1} (g_{Z_r \bar{Z}_r}^A)^{-\frac{1}{2}} e^{-\text{Re} \bar{N}_{00}^{rr}} \right]^{2g-2+N} \prod_{I=1} \left[(g_{z_I \bar{z}_I}^A)^{-\frac{1}{2}} |\partial^2 \rho(z_I)|^{-\frac{1}{2}} \right] \]

- \(g_{z\bar{z}}^A \): Arakelov metric on the surface
- \(r = 1, \ldots, N \) label the punctures
- \(I = 1, \ldots, 2g - 2 + N \) label the interaction points, where \(\partial \rho(z_I) = 0 \).
- \(\bar{N}_{00}^{rr} \equiv \frac{1}{p_r^+} \left(\rho(z_I(r)) - \lim_{z \to Z_r} (\rho(z) - p_r^+ \ln(z - Z_r)) \right) \)
Spin structure

- When z is moved around the cycles once, left moving fermion $\phi(z)$ transforms as

 \[\phi(z) \rightarrow e^{2\pi i \alpha_{L,j}^\prime} \phi(z) \text{ (} A_j \text{ cycle)} \]
 \[\phi(z) \rightarrow e^{2\pi i \alpha_{L,j}^{''}} \phi(z) \text{ (} B_j \text{ cycle)} \]

 with $\alpha_{L,j}^\prime, \alpha_{L,j}^{''} = 0, \frac{1}{2}$. We label the spin structure by the vector α_L.

- α_R is defined in the same way.