A novel approach for computing gradients
of physical observables

```
arXiv:2305.07932
```

Simone Bacchio

概要：
格子QCDで作用パラメータ微分係数を計算する新しい手法の提案

結論：
テスト計算で提案方法が正しいこと，統計精度が 100 倍以上改善（する場合がある）ことを確認

QCD 作用に含まれるパラメータ微分

例えば，未知粒子－核子散乱断面積で重要となる σ 項

$$
\sigma=m_{q} \frac{\partial M_{N}}{\partial m_{q}} \sim \begin{cases}40 \mathrm{MeV} & (\text { 格子 } \mathrm{QCD}) \\ 60 \mathrm{MeV} & (\text { 現象論 })\end{cases}
$$

どちらが正しいか未解決 C．f．）PRL127：242002（2021）
高精度計算ができるとうれしい

格子 QCDで作用に含まれるパラメータの微分係数計算方法

1．複数のパラメータで計算した結果から微分係数を数値的に求める
2．パラメータ1点の計算から微分係数を直接計算
新しい計算方法の提案

格子QCDでのパラメータ微分直接計算

作用 S と演算子 O ：パラメータ θ に依存
期待値 $\langle O\rangle$ ：

$$
\begin{aligned}
\left\langle O_{\theta}\right\rangle_{\theta}=\frac{1}{Z_{\theta}} \int & D[U] O_{\theta} e^{-S_{\theta}} \\
\left\langle O_{\theta+d \theta}\right\rangle_{\theta+d \theta} & =\frac{1}{Z_{\theta+d \theta}} \int D[U] O_{\theta+d \theta} e^{-S_{\theta+d \theta}} \quad\left(S_{\theta+d \theta} \approx S_{\theta}+\frac{\partial S}{\partial \theta} d \theta\right) \\
& \approx \frac{1}{\left\langle e^{-(\partial S / \partial \theta) d \theta}\right\rangle_{\theta}}\left\langle\left(O_{\theta}+\frac{\partial O}{\partial \theta} d \theta\right) e^{-(\partial S / \partial \theta) d \theta}\right\rangle_{\theta} \\
& \approx\left\langle O_{\theta}\right\rangle_{\theta}+d \theta\left(\left\langle\frac{\partial O}{\partial \theta}\right\rangle_{\theta}-\left\langle O_{\theta} \frac{\partial S}{\partial \theta}\right\rangle_{\theta}+\left\langle O_{\theta}\right\rangle_{\theta}\left\langle\frac{\partial S}{\partial \theta}\right\rangle_{\theta}\right) \\
& \frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle_{\theta}-\left\langle O_{\theta} \frac{\partial S}{\partial \theta}\right\rangle_{\theta}+\left\langle O_{\theta}\right\rangle_{\theta}\left\langle\frac{\partial S}{\partial \theta}\right\rangle_{\theta}
\end{aligned}
$$

格子 QCD 計算の困難：
期待値 $\rangle\rangle$ はモンテカルロ計算 \rightarrow 統計誤差不可避
$\langle A B\rangle-\langle A\rangle\langle B\rangle$ は大きな統計誤差の原因になる（ことが多い）
このような寄与のない（小さくする）計算方法が望ましい

提案方法

新しい方法の基本方針（の意訳）以降 θ を省く：$\left\langle O_{\theta}\right\rangle_{\theta}=\langle O\rangle$
1．期待値を変えない（ゲージ場に依存した）変換 $f($ パラメータ $d \theta)$

$$
\langle O\rangle^{f_{d \theta}}=\langle O\rangle
$$

期待値を変えないので微分係数はゼロ
$\frac{d\langle O\rangle^{f}}{d \theta}=0$ ：ゲージ場に依存しているので統計的に摇らぐ
2．微分係数にゼロを加える $\quad \frac{d\langle O\rangle}{d \theta} \rightarrow \frac{d\langle O\rangle}{d \theta}+\frac{d\langle O\rangle^{f}}{d \theta}$中心值は変わらないが統計誤差は変わる

3．うまい変換 f を選び，$\langle A B\rangle-\langle A\rangle\langle B\rangle$ をなくす（小さくする）

提案方法

変換 f として Gradient FIow［Lüscher，CMP293：899（2010）］

U の smearing，エネルギー運動量テンソル計算などに応用
Flow 時間 $t(=\theta)$ をパラメータとしたゲージ場の変換：$\dot{U}_{t}=-\partial F\left(U_{t}\right) U_{t}$

$$
\partial G=\partial_{x, \mu}^{a} G(U)=\left.\frac{d}{d \rho} G\left(U_{\rho}\right)\right|_{\rho=0}, \quad U_{\rho}(y, \nu)= \begin{cases}e^{\rho T^{a}} U(x, \mu) & \text { for }(x, \mu)=(y, \nu) \\ U(x, \mu) & \text { for }(x, \mu) \neq(y, \nu)\end{cases}
$$

$T^{a}: \mathrm{SU}(3)$ 生成子，$B_{\mu}(x)=\sum_{a} B_{\mu}^{a}(x) T^{a},(A, B)=\sum_{x, \mu, a} A_{\mu}^{a}(x) B_{\mu}^{a}(x)$
微分係数に (-1) 倍を加える（ F の定義で符号は吸収できる）

$$
\begin{array}{r}
\frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle-\left\langle O \frac{\partial S}{\partial \theta}\right\rangle+\langle O\rangle\left\langle\frac{\partial S}{\partial \theta}\right\rangle-\frac{d\langle O\rangle^{f}}{d \theta} \\
=\left\langle\frac{\partial O}{\partial \theta}\right\rangle+\langle(\partial O, \partial F)\rangle-\langle O C\rangle+\langle O\rangle\langle C\rangle \\
C=-\partial^{2} F+(\partial S, \partial F)+\frac{\partial S}{\partial \theta}
\end{array}
$$

提案方法

$$
\begin{array}{r}
\frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle+\langle(\partial O, \partial F)\rangle-\langle O C\rangle+\langle O\rangle\langle C\rangle \\
C=-\partial^{2} F+(\partial S, \partial F)+\frac{\partial S}{\partial \theta}
\end{array}
$$

うまい変換 F として $C=$ 定数（ゲージ場に依らない）になるものを選ぶと

$$
\begin{aligned}
\frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle+ & \langle(\partial O, \partial F)\rangle \\
& \langle A B\rangle-\langle A\rangle\langle B\rangle \text { の必要無し }
\end{aligned}
$$

$C \neq$ 定数の場合でも C を加えた式で微分係数を計算可能 $C \sim$ 定数の F では，ある程度の統計誤差改善になる
\rightarrow テスト計算

テスト計算

quench QCD $L^{3} \times T=16^{3} \times 16, \beta=0-6$ ，各 $\beta 10,000$ 配位

Wilson gauge action $S=-\frac{\beta}{6} \mathcal{W}_{0}$
Wilson loop の β 微分係数：$O=\mathcal{W}_{i}(i=0-7)$

$$
\mathcal{W}_{i}=\sum_{C \in \Gamma_{i}} \operatorname{Tr}[U(C)]
$$

$$
\mathcal{W}_{i}=\sum_{C, C^{\prime} \in \Gamma_{i}}^{C \in \Gamma_{i}} \operatorname{Tr}[U(C)] \operatorname{Tr}\left[U\left(C^{\prime}\right)\right] \quad \text { for } i=3,4,6,7
$$

（0）

（5）

（6）

（3）

（7）

（4）
$C=-\partial^{2} F-\frac{\beta}{6}\left(\partial \mathcal{W}_{0}, \partial F\right)-\frac{1}{6} \mathcal{W}_{0}=0$ となる F［Lüscher，CMP293：899（2010）］
$F=\frac{1}{6} \sum_{k=0}^{\infty}\left(\frac{\beta}{6}\right)^{k} F^{(k)}, \quad F^{(0)}=\frac{3}{16} \mathcal{W}_{0}, \quad-\partial^{2} F^{(k)}=\left(\partial \mathcal{W}_{0}, \partial F^{(k-1)}\right) \quad(k>0)$
今回は $\left.F\right|_{k=0}(\mathrm{LO})$ と $\left.F\right|_{k \leq 1}(\mathrm{NLO})$ を考える

$$
\beta=0 \text { では } C=0 \text { が満たされる } \quad \because-\partial^{2} F^{(0)}=\mathcal{W}_{0}
$$

結果

PE：従来の方法，LO，NLO：新提案方法
3 つの $\frac{d\left\langle\mathcal{W}_{i}\right\rangle}{d \beta}$ 結果の平均値からのずれ $\quad($ PE の誤差が一定になるように規格化）
－各 β, \mathcal{W}_{i} で良い一致
\rightarrow 提案方法が正しい確認
－$\beta<6$ では PEより誤差改善
$C \neq$ 定数 $(\beta \neq 0)$ でも誤差改善

$$
\delta_{\mathrm{NLO}}<\delta_{\mathrm{LO}} \quad(0<\beta<6)
$$

$C=$ 定数 $(\beta=0)$ では 100 倍以上改善
－$\beta=6$ ではPEとほぼ同じ誤差
C と $\partial S / \partial \beta$ の分散の比 $\sigma_{C} / \sigma_{\partial S / \partial \beta}[\%]$

β	0	1	2	3	4	5	6
LO	0.00	15.0	29.2	47.1	65.6	75.6	102.0
NLO	0.00	2.4	9.7	22.7	42.3	62.2	100.7

PEとLO，NLOの誤差の関係と強い相関 \rightarrow 誤差の改善度を見る指標になる

まとめ

Gradinet Flow を使った新しい微分係数計算方法の提案

$$
\begin{array}{r}
\frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle+\langle(\partial O, \partial F)\rangle-\langle O C\rangle+\langle O\rangle\langle C\rangle \\
C=-\partial^{2} F+(\partial S, \partial F)+\frac{\partial S}{\partial \theta}
\end{array}
$$

$C=$ 定数となるうまい変換 F を選ぶと

$$
\frac{d\langle O\rangle}{d \theta}=\left\langle\frac{\partial O}{\partial \theta}\right\rangle+\langle(\partial O, \partial F)\rangle
$$

- Wilson loopの β 微分係数計算で提案方法が正しいことを確認
- $C=$ 定数では 100 倍以上統計誤差の改善
- C～定数になるような F でも，ある程度の統計誤差改善になる

うまい F が見つけられれば，誤差を改善できる

