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概要:
格子QCDで作用パラメータ微分係数を計算する新しい手法の提案

結論:
テスト計算で提案方法が正しいこと、
統計精度が100倍以上改善(する場合がある)ことを確認
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QCD作用に含まれるパラメータ微分

例えば、未知粒子-核子散乱断面積で重要となるσ項

σ = mq
∂MN

∂mq
∼

{
40 MeV (格子QCD)
60 MeV (現象論)

どちらが正しいか未解決 c.f.) PRL127:242002(2021)

高精度計算ができるとうれしい

格子QCDで作用に含まれるパラメータの微分係数計算方法

1. 複数のパラメータで計算した結果から微分係数を数値的に求める

2. パラメータ1点の計算から微分係数を直接計算

新しい計算方法の提案
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格子QCDでのパラメータ微分直接計算
作用Sと演算子O: パラメータθに依存

期待値⟨O⟩:
⟨Oθ⟩θ =

1

Zθ

∫
D[U ]Oθe

−Sθ

⟨Oθ+dθ⟩θ+dθ =
1

Zθ+dθ

∫
D[U ]Oθ+dθe

−Sθ+dθ
(
Sθ+dθ ≈ Sθ +

∂S

∂θ
dθ

)
⟨Oθ+dθ⟩θ+dθ ≈

1〈
e−(∂S/∂θ)dθ

〉
θ

〈(
Oθ +

∂O

∂θ
dθ

)
e−(∂S/∂θ)dθ

〉
θ

⟨Oθ+dθ⟩θ+dθ ≈ ⟨Oθ⟩θ + dθ

(〈
∂O

∂θ

〉
θ
−

〈
Oθ

∂S

∂θ

〉
θ
+ ⟨Oθ⟩θ

〈
∂S

∂θ

〉
θ

)

d ⟨O⟩
dθ

=
〈
∂O

∂θ

〉
θ
−

〈
Oθ

∂S

∂θ

〉
θ
+ ⟨Oθ⟩θ

〈
∂S

∂θ

〉
θ

格子QCD計算の困難:
期待値⟨·⟩はモンテカルロ計算 → 統計誤差不可避
⟨AB⟩ − ⟨A⟩⟨B⟩ は大きな統計誤差の原因になる(ことが多い)

このような寄与のない(小さくする)計算方法が望ましい
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提案方法

新しい方法の基本方針(の意訳) 以降 θを省く: ⟨Oθ⟩θ = ⟨O⟩

1. 期待値を変えない(ゲージ場に依存した)変換f(パラメータdθ)

⟨O⟩fdθ = ⟨O⟩
期待値を変えないので微分係数はゼロ

d⟨O⟩f

dθ
= 0: ゲージ場に依存しているので統計的に揺らぐ

2. 微分係数にゼロを加える
d⟨O⟩
dθ

→
d⟨O⟩
dθ

+
d⟨O⟩f

dθ
中心値は変わらないが統計誤差は変わる

3. うまい変換fを選び、⟨AB⟩ − ⟨A⟩⟨B⟩ をなくす(小さくする)
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提案方法

変換fとして Gradient Flow [Lüscher,CMP293:899(2010)]

Uの smearing, エネルギー運動量テンソル計算などに応用

Flow時間 t(= θ)をパラメータとしたゲージ場の変換: U̇t = −∂F (Ut)Ut

d⟨O⟩f

dθ
= −⟨(∂O, ∂F )⟩+

〈
O(−∂2F + (∂S, ∂F ))

〉
− ⟨O⟩⟨−∂2F + (∂S, ∂F )⟩

演算子 Jacobian 作用

∂G = ∂a
x,µG(U) =

d

dρ
G(Uρ)

∣∣∣∣
ρ=0

, Uρ(y, ν) =

{
eρT

a

U(x, µ) for (x, µ) = (y, ν)
U(x, µ) for (x, µ) ̸= (y, ν)

T a: SU(3)生成子, Bµ(x) =
∑

aB
a
µ(x)T

a, (A,B) =
∑

x,µ,aA
a
µ(x)B

a
µ(x)

微分係数に(−1)倍を加える (F の定義で符号は吸収できる)

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
−

〈
O
∂S

∂θ

〉
+ ⟨O⟩

〈
∂S

∂θ

〉
−

d⟨O⟩f

dθ

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
+ ⟨(∂O, ∂F )⟩ − ⟨OC⟩+ ⟨O⟩⟨C⟩

C = −∂2F + (∂S, ∂F ) +
∂S

∂θ
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提案方法

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
+ ⟨(∂O, ∂F )⟩ − ⟨OC⟩+ ⟨O⟩⟨C⟩

C = −∂2F + (∂S, ∂F ) +
∂S

∂θ

うまい変換FとしてC =定数(ゲージ場に依らない)になるものを選ぶと

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
+ ⟨(∂O, ∂F )⟩

⟨AB⟩ − ⟨A⟩⟨B⟩ の必要無し

C ̸=定数の場合でもCを加えた式で微分係数を計算可能

C ∼定数のFでは、ある程度の統計誤差改善になる
→ テスト計算

6



テスト計算

quench QCD L3 × T = 163 × 16, β = 0–6, 各β 10,000配位

Wilson gauge action S = −
β

6
W0

Wilson loopのβ微分係数: O = Wi (i = 0–7)

Wi =
∑
C∈Γi

Tr [U(C)] for i =0,1,2,5

Wi =
∑

C,C ′∈Γi

Tr [U(C)]Tr
[
U(C ′)

]
for i =3,4,6,7
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FIG. 1. Representation of the loops entering the �-expansion
up to the NLO order. The plaquette, shown by the green
loop, enters the LO expansion, while the loops shown in blue
enter the NLO. The enumeration of the loops follows Ref. [1].

CASE STUDY AND NUMERICAL RESULTS

Wilson action. To demonstrate the e↵ectiveness
of Eq. (7) compared to Eq. (3), we consider a four-
dimensional SU(3) Yang-Mills theory defined on a lattice
using the standard Wilson action

SW (�, U) = �
�

6
W0(U), (23)

whereW0 denotes the sum of plaquettes. We aim at com-
puting the slope in � of various observables and, there-
fore, the approach outlined here requires a flow action S̃

that satisfies Eq. (5) in the following way,

L0S̃ �
�

6

⇣
@W0, @S̃

⌘
�

1

6
W0 = constant . (24)

Inspired by Lüscher’s t-expansion [1], it is easy to show
that an analytical solution to Eq. (24) is

S̃ =
1

6

1X

k=0

✓
�

6

◆k

S̃
(k) with

S̃
(0) = L

�1
0 W0 =

3

16
W0 and

S̃
(k) = L

�1
0

⇣
@W0, @S̃

(k�1)
⌘

for k > 0 ,

(25)

which we refer to as �-expansion and it is equivalent
to Lüscher’s t-expansion evaluated at t = � divided by
�. We refer to S̃

(0) as the leading order (LO) and to
S̃
(1) as the next-to-leading order (NLO). The calculation

of the NLO can be found in Ref. [1], where the term
(@W0, @W0) is computed. It results in a linear combi-
nation of the Wilson loops depicted in Fig. 1, which are
defined as

Wi =
X

C2�i

tr{U(C)} for i = 0, 1, 2, 5

Wi =
X

C,C02�i

tr{U(C)}tr{U(C 0)} for i = 3, 4, 6, 7
(26)

FIG. 2. Deviation from their average of the gradients mea-
sured for various Wilson loops, Wi, using the perturbative ex-
pansion (PE) in Eq. (3) or alternatively the LO or the NLO
in the flow action S̃, see Eq. (25). The values are normal-
ized such that the errors of PE are unitary. All results are
measured at various � over ten thousand configurations with
lattice size 164 and separated by 4 MDUs.

� = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6

LO
min 0.08% 12.0% 23.1% 37.6% 45.4% 67.6% 65.3%

max 0.45% 16.7% 33.5% 48.2% 66.2% 81.1% 92.5%

�C/�S0 0.00% 15.0% 29.2% 47.1% 65.6% 75.6% 102.0%

NLO
min 0.08% 1.8% 6.9% 17.0% 29.6% 55.3% 68.9%

max 0.45% 2.5% 10.4% 22.4% 43.9% 66.3% 99.1%

�C/�S0 0.00% 2.4% 9.7% 22.8% 42.3% 62.2% 100.7%

TABLE I. Smallest and largest value for the ratio of the error
obtained using the new approach defined by Eq. (7) and the
error of the perturbative expansion given by Eq. (3). Results
are given for the cases when the LO or the NLO is used in the
flow action. We report also the ratio between the standard
deviation of C and the one of S0 = @S/@�, noting a strong
connection between this ratio and the one between the errors.

where �i are all unique loops for a given shape, including
loops in the perpendicular direction – i.e. chair-shaped
– for i =1,2,3,4.

Gradients of Wilson loops. Since the conver-
gence of the �-expansion in Eq. (25) deteriorates as �

grows, we show results at various values of � from � = 0
up to � = 6. Although the region of physical interest
starts from � & 5.8, where a lattice spacing of about

C = −∂2F −
β

6
(∂W0, ∂F )−

1

6
W0 = 0 となるF [Lüscher,CMP293:899(2010)]

F =
1

6

∞∑
k=0

(
β

6

)k

F (k), F (0) =
3

16
W0, −∂2F (k) =

(
∂W0, ∂F

(k−1)
)

(k>0)

今回はF |k=0(LO)とF |k≤1(NLO)を考える

β = 0ではC = 0が満たされる ∵ −∂2F (0) = W0

7



結果
3

FIG. 1. Representation of the loops entering the �-expansion
up to the NLO order. The plaquette, shown by the green
loop, enters the LO expansion, while the loops shown in blue
enter the NLO. The enumeration of the loops follows Ref. [1].
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sured for various Wilson loops, Wi, using the perturbative ex-
pansion (PE) in Eq. (3) or alternatively the LO or the NLO
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ized such that the errors of PE are unitary. All results are
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min 0.08% 12.0% 23.1% 37.6% 45.4% 67.6% 65.3%

max 0.45% 16.7% 33.5% 48.2% 66.2% 81.1% 92.5%

�C/�S0 0.00% 15.0% 29.2% 47.1% 65.6% 75.6% 102.0%
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max 0.45% 2.5% 10.4% 22.4% 43.9% 66.3% 99.1%
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obtained using the new approach defined by Eq. (7) and the
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are given for the cases when the LO or the NLO is used in the
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where �i are all unique loops for a given shape, including
loops in the perpendicular direction – i.e. chair-shaped
– for i =1,2,3,4.

Gradients of Wilson loops. Since the conver-
gence of the �-expansion in Eq. (25) deteriorates as �

grows, we show results at various values of � from � = 0
up to � = 6. Although the region of physical interest
starts from � & 5.8, where a lattice spacing of about

PE: 従来の方法, LO,NLO: 新提案方法

3つの
d⟨Wi⟩
dβ

結果の平均値からのずれ

(PEの誤差が一定になるように規格化)

• 各β,Wiで良い一致
→ 提案方法が正しい確認

• β < 6ではPEより誤差改善
C ̸=定数(β ̸= 0)でも誤差改善

δNLO < δLO (0 < β < 6)

C =定数(β = 0)では100倍以上改善

• β = 6ではPEとほぼ同じ誤差

Cと∂S/∂βの分散の比 σC/σ∂S/∂β[%]

β 0 1 2 3 4 5 6
LO 0.00 15.0 29.2 47.1 65.6 75.6 102.0
NLO 0.00 2.4 9.7 22.7 42.3 62.2 100.7

PEとLO,NLOの誤差の関係と強い相関 → 誤差の改善度を見る指標になる
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まとめ

Gradinet Flowを使った新しい微分係数計算方法の提案

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
+ ⟨(∂O, ∂F )⟩ − ⟨OC⟩+ ⟨O⟩⟨C⟩

C = −∂2F + (∂S, ∂F ) +
∂S

∂θ

C =定数となるうまい変換Fを選ぶと

d⟨O⟩
dθ

=
〈
∂O

∂θ

〉
+ ⟨(∂O, ∂F )⟩

• Wilson loopのβ微分係数計算で提案方法が正しいことを確認

• C =定数では100倍以上統計誤差の改善

• C ∼定数になるようなFでも、ある程度の統計誤差改善になる

うまいFが見つけられれば、誤差を改善できる
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