Journal Club 2021/11/12 Shinichiro Akiyama

Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks G. Magnifico, T. Felser, P. Silvi, and S. Montangero, Nature Commun. 12 (2021) 1

<u>Abstract</u>

The first tensor network simulation of

(3+1)D LGT with dynamical matter in the Hamiltonian formalism

Tensor Network (TN) methods

Tensor network = A contraction of many # of tensors

TN methods are free from the sign problem

For applications of TN methods to lattice field theory, see Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401 (review)

TN method based on the Hamiltonian formalism

The goal is to obtain the ground state, $|\Psi\rangle = \sum_{i_1,\dots,i_N=1}^m \Psi_{i_1\dots i_N} |i_1,\dots,i_N\rangle$

We assume a TN form of $|\Psi\rangle$ and variationally tune it

Ex) Matrix Product State (MPS) ansatz

The bond dimension χ determines # of variational parameters

Examples of TN ansatz

Figure from Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401

Cf. Nishino san's lecture (11/17, 22, 24)

The following TN simulation is based on three-dimensional TTN

Computationally economic & Straightforward extension to higher dim. Area law in d dimensions ($d \ge 2$)

The model

✔ Lattice QED based on the KS formalism

fermions on even (odd) sites are (anti-)particle w/ positive (negative) charge

$$H = -t \sum_{x,\mu} (\psi_x^{\dagger} U_{x,\mu} \psi_{x+\mu} + \text{h. c.}) + m \sum_x (-1)^x \psi_x^{\dagger} \psi_x$$
$$+ \frac{g_e^2}{2} \sum_{x,\mu} E_{x,\mu}^2 - \frac{g_m^2}{2} \sum_x \left(\Box_{\mu_x \mu_y} + \Box_{\mu_y \mu_z} + \Box_{\mu_x \mu_z} + \text{h. c.} \right)$$

with

$$\Box_{\mu_{\alpha}\mu_{\beta}} = U_{x,\mu_{\alpha}}U_{x+\mu_{\alpha},\mu_{\beta}}U_{x+\mu_{\beta},\mu_{\alpha}}^{\dagger}U_{x,\mu_{\beta}}^{\dagger}$$

✓ U(1) electromagnetic fields are truncated up to a spin-*s* representation The original model is restored by the limit $s \to \infty$

 \checkmark TN simulation is implemented selecting s = 1 (smallest but nontrivial one)

Transition at zero total charge w/ PBC

 m_c is shifted by the effect of magnetic coupling

Quantum capacitor w/ OBC

6/9

 $0 \quad n_{\mathbf{x}-\mathrm{odd}}$

Surface charge density at finite density

Felser+, PRX10(2020)041040

- ✓ Frist study of (3+1)D LGT with dynamical matter using the TN method based on the Hamiltonian formalism
- Confinement property has been confirmed
- ✓ TTN works efficiently in this study
- ✓ How about the large-volume calculation w/ TN in the Hamiltonian formalism? s > 1?

"a single simulation for the maximum size that we reached, an 8×8×8 lattice, can last up to five weeks until final convergence, depending on the different regimes of the model and the control parameters of the algorithms"

Backup

Tree tensor network (TTN)

Convergence

The relative error of the energy is in the range of $[10^{-2}, 10^{-4}]$

The model (1/2)

$$H = -t \sum_{x,\mu} (\psi_x^{\dagger} U_{x,\mu} \psi_{x+\mu} + \text{h. c.}) + m \sum_x (-1)^x \psi_x^{\dagger} \psi_x$$
$$+ \frac{g_e^2}{2} \sum_{x,\mu} E_{x,\mu}^2 - \frac{g_m^2}{2} \sum_x \left(\Box_{\mu_x \mu_y} + \Box_{\mu_y \mu_z} + \Box_{\mu_x \mu_z} + \text{h. c.} \right)$$

Relation btw the model parameters and a, m_0, g :

$$t=a^{-1}, m=m_0, g_{\rm e}^2=g^2a^{-1}, g_{\rm m}^2=8/(g^2a)$$

Physical regime of QED: $g_e g_m = 2\sqrt{2}t$

The physical state $|\Phi\rangle$ satisfies $G_{\chi}|\Phi\rangle = 0$ w/

$$G_x = \psi_x^{\dagger} \psi_x - \frac{1 - (-1)^x}{2} - \sum_{\mu} E_{x,\mu}$$

The model (2/2)

Charge operator

Matter occupation operator

$$Q = \sum_{x} (\psi_{x}^{\dagger} \psi_{x} - \frac{1 - (-1)^{x}}{2})$$

$$n_x = \frac{1 - (-1)^x}{2} - (-1)^x \psi_x^{\dagger} \psi_x$$

Charge density along w/ μ_x direction

$$q_c(d) = \frac{2}{L^2} \sum_{j,k=1}^{L} \langle \mathrm{GS} | (-1)^x \psi_x^{\dagger} \psi_x | \mathrm{GS} \rangle \quad \text{w/} \quad x = (d, j, k)$$

Average matter density

$$\rho = \frac{1}{L^3} \sum_x \langle GS | n_x | GS \rangle$$
 w/ $n_x = \frac{1 - (-1)^x}{2} - (-1)^x \psi_x^{\dagger} \psi_x$