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Abstract

The first tensor network simula5on of 

(3+1)D LGT with dynamical maAer in the Hamiltonian formalism



Tensor Network (TN) methods
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TN methods are free from the sign problem

𝑍 = #𝐷𝜙e!"[$] 𝐸& ≤
𝜓 *𝐻 𝜓
𝜓 𝜓

Coarse-graining method on TN Varia7onal method w/ TN

Ex. TRG Ex. DMRG

Lagrangian formalism Hamiltonian formalism

For applica*ons of TN methods to la5ce field theory, 
see Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401 (review)

Express 𝑍 as a TN Prepare ⟩|𝜓 as a TN

Tensor network = A contracNon of many # of tensors



TN method based on the Hamiltonian formalism
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The goal is to obtain the ground state, ⟩|Ψ = ∑!!,⋯,!"$%
& Ψ!!⋯!" ⟩|𝑖%, ⋯ , 𝑖'

We assume a TN form of ⟩|𝚿 and variationally tune it

𝑖' 𝑖( 𝑖) 𝑖' 𝑖( 𝑖)

𝑚) 𝑁𝑚𝜒(~ poly(𝑁)

⟩|Ψ = ∑*!,⋯,*"-'
. Tr 𝐴(*!)𝐴(*#)⋯𝐴(*") ⟩|𝑖', ⋯ , 𝑖) 𝐴(*$) : 𝜒×𝜒 matrix

Ex) Matrix Product State (MPS) ansatz 

→

The bond dimension 𝜒 determines # of variaNonal parameters



Examples of TN ansatz
3/9

The following TN simulaNon is based on three-dimensional TTN 

Cf. Nishino san’s lecture (11/17, 22, 24)

Figure from Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401 

Type of ansatz Cost

MPS 𝑂(𝜒1)
PEPS 𝑂(𝜒'&)

MERA 𝑂(𝜒2)
Tree Tensor Network (TTN) 𝑶(𝝌𝟒)

☺ Computa(onally economic & Straigh5orward extension to higher dim.
😕 Area law in 𝑑 dimensions (𝑑 ≥ 2)



The model
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𝐻 = −𝑡F
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F
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□5%5& + □5&5' + □5%5' + h. c.

✔ LaXce QED based on the KS formalism 
fermions on even (odd) sites are (anN-)parNcle w/ posiNve (negaNve) charge

✔ U(1) electromagne7c fields are truncated up to a spin-𝒔 representa7on
The original model is restored by the limit 𝑠 → ∞

✔ TN simulaNon is implemented selecNng 𝑠 = 1 (smallest but nontrivial one)

with
□5(5) = 𝑈4,5(𝑈475(,5)𝑈475),5(

6 𝑈4,5)
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Transi;on at zero total charge w/ PBC
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Average ma[er density

𝑚( is shifted by the effect of magnetic coupling



Quantum capacitor w/ OBC
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+𝑞 −𝑞

Charge density along w/ 𝜇) direcNon

𝑑



Confinement proper;es
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Coulomb

Confining

𝑉 = 16×4×4

String-breaking

by dynamical ma[er



Surface charge density at finite density
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2D expression of 𝜎*
Felser+, PRX10(2020)041040

the spontaneous creation of charge-anticharge
pairs determines a finite charge density on the 
bulk

𝜌 = 0.25 𝐿 = 8



Summary
9/9

✔ Frist study of (3+1)D LGT with dynamical ma[er using the TN method 
based on the Hamiltonian formalism

✔ Confinement property has been confirmed

✔ TTN works efficiently in this study 

✔ How about the large-volume calculaNon w/ TN in the Hamiltonian formalism?
𝑠 > 1?

“a single simulation for the maximum size that we reached, an 
8⨉8⨉8 lattice, can last up to five weeks until final convergence, 
depending on the different regimes of the model and the 
control parameters of the algorithms”



Backup



Tree tensor network (TTN)

1D 2D

3D



Convergence

The relaNve error of the energy is in the range of [10,-, 10,.]



The model (1/2)

𝐻 = −𝑡F
4,5

𝜓4
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𝑡 = 𝑎!', 𝑚 = 𝑚&, 𝑔8( = 𝑔(𝑎!', 𝑔9( = 8/(𝑔(𝑎)

RelaNon btw the model parameters and 𝑎,𝑚/, 𝑔: 

Physical regime of QED:    𝑔0𝑔1 = 2 2𝑡

The physical state | ⟩Φ satisfies 𝐺)| ⟩Φ = 0 w/

𝐺) = 𝜓)
2𝜓) −
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2
−?

3

𝐸),3



The model (2/2)

𝜌 = %
4#
∑) GS 𝑛) GS w/    𝑛) =

%, ,% $

-
− −1 )𝜓)

2𝜓)

Charge operator

𝑄 =F
4

(𝜓4
6𝜓4 −

1 − −1 4

2 )

Ma[er occupaNon operator

𝑛4 =
1 − −1 4

2 − −1 4𝜓4
6𝜓4

𝑞((𝑑) =
-
4%
∑5,6$%4 GS −1 )𝜓)

2𝜓) GS w/    𝑥 = (𝑑, 𝑗, 𝑘)

Charge density along w/ 𝜇) direcNon

Average ma[er density


