Lattice quantum electrodynamics in (3+1)-dimensions

 at finite density with tensor networksG. Magnifico, T. Felser, P. Silvi, and S. Montangero, Nature Commun. 12 (2021) 1

Abstract
The first tensor network simulation of
(3+1)D LGT with dynamical matter in the Hamiltonian formalism

Tensor Network (TN) methods

Tensor network = A contraction of many \# of tensors
TN methods are free from the sign problem

Hamiltonian formalism

$$
E_{0} \leq \frac{\langle\psi| \widehat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

Prepare $|\psi\rangle$ as a TN

Variational method w/ TN

Ex. DMRG

TN method based on the Hamiltonian formalism

The goal is to obtain the ground state, $|\Psi\rangle=\sum_{i_{1}, \cdots, i_{N}=1}^{m} \Psi_{i_{1} \cdots i_{N}}\left|i_{1}, \cdots, i_{N}\right\rangle$

We assume a TN form of $|\Psi\rangle$ and variationally tune it

Ex) Matrix Product State (MPS) ansatz

$$
|\Psi\rangle=\sum_{i_{1}, \cdots, i_{N}=1}^{m} \operatorname{Tr}\left[A^{\left(i_{1}\right)} A^{\left(i_{2}\right)} \cdots A^{\left(i_{N}\right)}\right]\left|i_{1}, \cdots, i_{N}\right\rangle \quad A^{\left(i_{k}\right)}: \chi \times \chi \text { matrix }
$$

m^{N}

$$
N m \chi^{2} \sim \operatorname{poly}(N)
$$

The bond dimension χ determines \# of variational parameters

Examples of TN ansatz

Type of ansatz	Cost
MPS	$O\left(\chi^{3}\right)$
PEPS	$O\left(\chi^{10}\right)$
MERA	$O\left(\chi^{8}\right)$
Tree Tensor Network (TTN)	$\boldsymbol{O}\left(\chi^{4}\right)$

Figure from Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401
Cf. Nishino san's lecture (11/17, 22, 24)

The following TN simulation is based on three-dimensional TTN
Computationally economic \& Straightforward extension to higher dim.

- Area law in d dimensions $(d \geq 2)$

The model

\checkmark Lattice QED based on the KS formalism
fermions on even (odd) sites are (anti-)particle w/ positive (negative) charge

$$
\begin{array}{r}
H=-t \sum_{x, \mu}\left(\psi_{x}^{\dagger} U_{x, \mu} \psi_{x+\mu}+\text { h.c. }\right)+m \sum_{x}(-1)^{x} \psi_{x}^{\dagger} \psi_{x} \\
+\frac{g_{\mathrm{e}}^{2}}{2} \sum_{x, \mu} E_{x, \mu}^{2}-\frac{g_{\mathrm{m}}^{2}}{2} \sum_{x}\left(\square_{\mu_{x} \mu_{y}}+\square_{\mu_{y} \mu_{z}}+\square_{\mu_{x} \mu_{z}}+\text { h. c. }\right)
\end{array}
$$

with

$$
\square_{\mu_{\alpha} \mu_{\beta}}=U_{x, \mu_{\alpha}} U_{x+\mu_{\alpha}, \mu_{\beta}} U_{x+\mu_{\beta}, \mu_{\alpha}}^{\dagger} U_{x, \mu_{\beta}}^{\dagger}
$$

$\boldsymbol{V}(1)$ electromagnetic fields are truncated up to a spins representation The original model is restored by the limit $s \rightarrow \infty$
\checkmark TN simulation is implemented selecting $s=1$ (smallest but nontrivial one)

Transition at zero total charge w/ PBC

m_{c} is shifted by the effect of magnetic coupling

Quantum capacitor w/ OBC

Charge density along w / μ_{x} direction

Confinement properties

Surface charge density at finite density

a

Summary

\checkmark Frist study of (3+1)D LGT with dynamical matter using the TN method based on the Hamiltonian formalism
\checkmark Confinement property has been confirmed
$\boldsymbol{\checkmark}$ TTN works efficiently in this study
\checkmark How about the large-volume calculation w/ TN in the Hamiltonian formalism? $s>1$?
"a single simulation for the maximum size that we reached, an $8 \times 8 \times 8$ lattice, can last up to five weeks until final convergence, depending on the different regimes of the model and the control parameters of the algorithms"

Backup

Tree tensor network (TTN)

Convergence

The relative error of the energy is in the range of $\left[10^{-2}, 10^{-4}\right]$

The model (1/2)

$$
\begin{aligned}
& H=-t \sum_{x, \mu}\left(\psi_{x}^{\dagger} U_{x, \mu} \psi_{x+\mu}+\text { h.c. }\right)+m \sum_{x}(-1)^{x} \psi_{x}^{\dagger} \psi_{x} \\
& +\frac{g_{\mathrm{e}}^{2}}{2} \sum_{x, \mu} E_{x, \mu}^{2}-\frac{g_{\mathrm{m}}^{2}}{2} \sum_{x}\left(\square_{\mu_{x} \mu_{y}}+\square_{\mu_{y} \mu_{z}}+\square_{\mu_{x} \mu_{z}}+\text { h.c. }\right)
\end{aligned}
$$

Relation btw the model parameters and a, m_{0}, g :

$$
t=a^{-1}, m=m_{0}, g_{\mathrm{e}}^{2}=g^{2} a^{-1}, g_{\mathrm{m}}^{2}=8 /\left(g^{2} a\right)
$$

Physical regime of QED: $g_{\mathrm{e}} g_{\mathrm{m}}=2 \sqrt{2} t$

The physical state $|\Phi\rangle$ satisfies $G_{x}|\Phi\rangle=0 \mathrm{w} /$

$$
G_{x}=\psi_{x}^{\dagger} \psi_{x}-\frac{1-(-1)^{x}}{2}-\sum_{\mu} E_{x, \mu}
$$

The model (2/2)

Charge operator

Matter occupation operator

$$
Q=\sum_{x}\left(\psi_{x}^{\dagger} \psi_{x}-\frac{1-(-1)^{x}}{2}\right)
$$

$$
n_{x}=\frac{1-(-1)^{x}}{2}-(-1)^{x} \psi_{x}^{\dagger} \psi_{x}
$$

Charge density along w/ μ_{x} direction

$$
q_{c}(d)=\frac{2}{L^{2}} \sum_{j, k=1}^{L}\langle\mathrm{GS}|(-1)^{x} \psi_{x}^{\dagger} \psi_{x}|\mathrm{GS}\rangle \quad \mathrm{w} / \quad x=(d, j, k)
$$

Average matter density

$$
\rho=\frac{1}{L^{3}} \sum_{x}\langle\mathrm{GS}| n_{x}|\mathrm{GS}\rangle \quad \mathrm{w} / \quad n_{x}=\frac{1-(-1)^{x}}{2}-(-1)^{x} \psi_{x}^{\dagger} \psi_{x}
$$

