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概要:
Lattice QCDで得られるGA(Q

2), G̃P(Q
2), GP(Q

2) の問題を

解決する解析方法の提案
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Axialvector and pseudoscalar form factors

GA(Q
2) : Axial(vector) form factor

G̃P (Q
2) : Induced pseudoscalar form factor

GP (Q
2) : Pseudoscalar form factor

⟨N(p)|Aµ(0)|N(p′)⟩ = uN(p)

(
γµγ5GA(Q

2) +
iqµ

2MN
γ5G̃P (Q

2)

)
uN(p′)

⟨N(p)|P (0)|N(p′)⟩ = uN(p)γ5GP (Q
2)uN(p′)

Aµ = uγµγ5d, P = uγ5d, uN(p): 運動量 pの核子スピノール

Q2 = Q2
Eucl = 2MN(EN(p)−MN) : spacelike momentum transfer

Partially Conserved Axial(vector) Current (PCAC) relation

2mqP = ∂µAµ (mq=mu=md)

Form factor を使うと

2mqGP (Q
2) = 2MNGA(Q

2)−
Q2

2MN
G̃P (Q

2)

2



Axailvector form factorsの問題

1⃝ PCAC relation が満たされない

PCAC relation変形版
mqGP (Q

2)

MNGA(Q2)
+

Q2

4M2
N

G̃P (Q
2)

GA(Q2)
= 1

2⃝ 小さいQ2でPion Pole Dominance (PPD) Modelと合わない

PPD G̃P (Q
2) =

4M2
NGA(Q

2)

M2
π +Q2

or
G̃P (Q

2)

GA(Q2)

M2
π +Q2

4M2
N

= 1

PPDは実験とは一致 [MuCap, PRL110:012504(2013);PRC91:055502(2015),

Choi et al., PRL71:3927(1993)]

3⃝ A4とAiの計算に大きな違いがある

4⃝ rAが実験値より小さい

rA =
√
⟨r2A⟩ =

√√√√−
1

6

dGA(Q
2)

dQ2

∣∣∣∣∣∣∣
Q2=0

実験値∼0.67fm ↔ lattice∼0.5fm

3



従来の解析方法(S2pt)
核子2点関数

C2pt
p (t) = Tr

[
P+⟨0|N(t; p)N(0; p)|0⟩

]
=

N2pt∑
i=0

B2
i (p)e

−Ei(p)t

P+ = (1+ γ4)/2, Bi(p):核子演算子規格化定数, i:状態のラベル

E0(p) = EN(p), E0(0) = MN , Mi ≡ Ei(0)

核子3点関数

C3pt
O,p(t, τ) = Tr

[
P53⟨0|N(τ ; 0)O(t; q)N(0; p)|0⟩

]
C3pt
O,p(t, τ) =

N3pt∑
i,j=0

Bi(0)Bj(p)⟨Ni(0)|O|Nj(p)⟩e−Mi(τ−t)e−Ej(p)t

O = Aµ or P , P53 = (1+ γ4)γ3γ5/2, i, j:状態のラベル

S2pt解析
1. N2pt = 3でC2pt

p (t)フィット → Ei(p), Bi(p) (p = 0も含む)

2. Ei(p), Bi(p)を使ってN3pt = 2 但し (i, j) ̸= (2,2) でC3pt
O,p(t, τ)フィット

→ ⟨N0(0)|O|N0(p)⟩
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従来の解析方法(続き)

⟨N0(0)|O|N0(p)⟩とForm factorの関係 (共通のoverall定数を省く)

O ⟨N0(0)|O|N0(p)⟩

Ai −q3qi
G̃P (Q

2)

2MN
(i = 1,2)

A3 (EN(p) +MN)GA(Q
2)− q23

G̃P (Q
2)

2MN

A4 iq3

[
GA(Q

2)− (EN(p)−MN)
G̃P (Q

2)

2MN

]
P iq3GP (Q

2)

P53を使ったためAiとA3が違う
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問題 1⃝と 2⃝ PCACとPPD

ensembles described in Ref. [13] and partly presented
in Ref. [22].
WithGA, G̃P, andGP in hand, we test the PCAC relation,

Eq. (3), and the pion-pole dominance (PPD) hypothesis,
which relates G̃P to GA as

G̃PðQ2Þ
GAðQ2Þ

Q2 þM2
π

4M2
¼ 1; ð10Þ

in Fig. 5. Both relations are satisfied to within 5% at all Q2

with SA4, whereas the deviation grows to about 40% with
S2pt at n2 ¼ 1, as first pointed out in Ref. [6]. What is also
remarkable is that the PPD relation with the proportionality
factor 4M2 provided by the Goldberger-Treiman relation
[23] tracks the improvement in PCAC. In fact, the data for
the two tests overlap at all Q2.
The next test, shown in Fig. 2 (bottom panels), demon-

strates that the relation ∂tA4 ¼ ðM − EÞA4 is satisfied by
the ground state matrix elements only for SA4. The values of
ðM − EÞA4 are essentially zero in both cases for S2pt

because (M − E) is small.
The axial charge gA is obtained from the A3 correlator

with q ¼ 0, as shown in Eq. (7). The relevant ΔM is
typically taken from the two-point fit and cannot be
extracted from A4. Candidates for the lowest energy excited
state with spin-isospin-parity 1

2 ð
1
2
þÞ at q ¼ 0 are Nππ and

NðpÞπð−pÞ. Both are lighter than the radial excitations N
(1440) and N(1710) and dominate their decay. Their
relativistic noninteracting energies, in a box of size L=a¼
64 used for the a09m130W ensemble, are about 1230 MeV
(aΔM1 ≈ 0.12). In our analysis, the only quantity that
enters is the mass gap, not the specifics of the excited state,
so we take the common value, aΔM1 ¼ 0.12ð4Þ for the
prior, in the reanalysis of A3 to extract gA. These fits give gA
within the range 1.29–1.31 depending on the value of τ
used in the fit compared to gA ¼ 1.25ð2Þ using the S2pt

value given in Ref. [18]. Unfortunately, fits with priors in
the range 0.1≲ aΔM1 ≲ 0.4 are not distinguished on the
basis of χ2=DOF. The output ΔM1 tracks the input prior,
and the value of gA increases as the prior value is decreased.

This implies a large systematic uncertainty in gA unless the
relevant ΔMi are known a priori and input into the fit. An
estimate of ΔM1 is ΔMA4

1 ðn2 ¼ 1Þ ≈ 1.8Mπ , which
roughly corresponds to the Nð−pÞπðpÞ state mentioned
above. Using this ΔMA4

1 in a 2-state fit to A3ð0Þ gives
gA ¼ 1.30ð6Þ, with the axial current renormalization factor,
ZA ¼ 0.95ð4Þ, taken from Ref. [18].
Parenthetically, fits to extract the scalar and tensor

charges gS and gT with priors over the same range are
much more stable: the value of the output ΔM1 is far less
sensitive to the prior, and the results vary by ≲2σ. This
analysis will be presented in a separate publication.
Note that with infinite statistics one can extract all of the

relevant excited states from the nucleon two-point function.
With finite statistics, a known methodology is to construct a
large basis of interpolating operators, including operators
overlapping primarily with multiparticle states, and solve
the generalized eigenvalue problem [24] in a variational
approach [25–29]. In either case, S2pt should become a
viable strategy. The latter option will be explored in future
calculations.
The second way that we extract gA is to parametrize the

Q2 dependence of GAðQ2 ≠ 0Þ using the z expansion and
the dipole ansatz. The zk-expansion fits, using the process
defined in Refs. [6,13], give gA ¼ 1.30ð7Þ for SA4 com-
pared to gA ¼ 1.19ð5Þ using S2pt. These results are stable
for k ≥ 3. The dipole fit gives gA ¼ 1.20ð6Þ with a large
χ2=DOF ¼ 1.97, and the results are essentially the same for
SA4 and S2pt and miss the point at lowQ2, as can be seen in
Fig. 4 (left panel). One can fix the dipole fit by putting a cut
on Q2; however, in this Letter, we choose to neglect it.
The root-mean-squared charge radius, extracted using

the same z-expansion fits, is rA ¼ 0.74ð6Þ fm with SA4 and
rA ¼ 0.45ð7Þ fm with S2pt. For comparison, (i) a weighted
world average of (quasi)elastic neutrino and antineutrino
scattering data is 0.666(17) fm [1], (ii) charged pion
electroproduction experiments give 0.639(10) fm [1],
and (iii) a reanalysis of the deuterium target data gave
0.68(16) fm [30].
The induced pseudoscalar charge g%P, defined as g%P≡

ðmμ=2MÞ × G̃Pð0.88m2
μÞ, is obtained by fitting G̃PðQ2Þ

using the small Q2 expansion of the PPD ansatz:

mμ

2M
G̃PðQ2Þ ¼ c1

M2
π þQ2

þ c2 þ c3Q2: ð11Þ

We obtain g%P ¼ 8.06ð44Þwith SA4 and g%P ¼ 4.67ð24Þwith
S2pt, while the MuCap experiment gave g%P ¼ 8.06ð55Þ
[31,32]. We caution the reader that all results summarized
in Table I are at fixed lattice spacing a. Extrapolation to
a→ 0 is needed before making a comparison to the
experimental values, compiled here for completeness.
An attempt to resolve the PCAC conundrum was

presented in Ref. [33] using the projected currents A⊥
μ ≡

½gμν−ðp̄μp̄ν=p̄2Þ'Aν and P⊥≡P−ð1=2im̂Þðp̄μp̄ν=p̄2Þ∂μAν.

FIG. 5. Tests of the PCAC relation, Eq. (3), and the PPD
hypothesis, Eq. (10), with the two strategies SA4 and S2pt.
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PCAC relation
mqGP (Q

2)

MNGA(Q2)
+

Q2

4M2
N

G̃P (Q
2)

GA(Q2)
= 1

PPD
G̃P (Q

2)

GA(Q2)

M2
π +Q2

4M2
N

= 1

• 従来の解析方法だとどちらも成り立たない( ̸= 1)

• Q2が小さくなるほどズレが大きくなる
• 2つのズレは一致している → 本質的に同じものを見ている?
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問題 3⃝ A3とAiの違い
例) C3pt

O,p(t, τ)とC2pt
p (t)の適切な比

基底状態の t依存性をなくし、比の値が⟨N0(0)|O|N0(p)⟩

0 5 10 15

t

0

1

2

3

A
3
, τ=15, n

2
=1

0 5 10 15

t

-2

0

2

4

6

A
4
, τ=15, n

2
=1

p2 = (2π/L)2 · n2

A3: ほぼ定数 → GA(q
2), G̃P (q

2)を決定

A4: t依存 → 強烈な励起状態の影響 → 解析に使わない

有効理論を用いた議論 Oliver Bär [’19筑波大セミナー, PRD99:054506(2019)]

• C3pt
Aµ,p

ではN1(p) = N(p)π(0), N1(0) = N(p)π(−p)が大きな寄与

• N(p)π(0), N(p)π(−p)を考慮した解析を行うと問題 2⃝, 3⃝が解決できる
7



新しい解析方法(SA4)

核子2点関数

C2pt
p (t) = Tr

[
P+⟨0|N(t; p)N(0; p)|0⟩

]
=

N2pt∑
i=0

B2
i (p)e

−E2pt
i (p)t

P+ = (1+ γ4)/2, Bi(p):核子演算子規格化定数, i:状態のラベル

核子3点関数

C3pt
O,p(t, τ) = Tr

[
P53⟨0|N(τ ; 0)O(t; q)N(0; p)|0⟩

]
C3pt
O,p(t, τ) =

N3pt∑
i,j=0

AO
i (0)AO

j (p)⟨Ni(0)|O(0)|Nj(p)⟩e−Mi(p)(τ−t)e−Ej(p)t

O = Aµ or P , AO
i (p):核子演算子規格化定数, P53 = (1+ γ4)γ3γ5/2, i, j:状態のラベル

i = 0 : E2pt
0 (p) = E0(p), E2pt

0 (0) = M0(p) = MN , B0(p) = AO
0 (p)

i ̸= 0 : E2pt
i (p) ̸= Ei(p) ̸= Mi(p), Bi(p) ̸= AO

i (p)
(明記されていないが)
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新しい解析方法(続き)

C2pt
p (t) =

N2pt∑
i=0

B2
i (p)e

−E2pt
i (p)t

C3pt
O,p(t, τ) =

N3pt∑
i,j=0

AO
i (0)AO

j (p)⟨Ni(0)|O(0)|Nj(p)⟩e−Mi(p)(τ−t)e−Ej(p)t

SA4解析
1. N2pt = 3でC2pt

p (t)フィット → E0(p), B0(p)(p = 0も含む)

2. E0(p), B0(p)を使って N3pt = 1でC3pt
A4,p

(t, τ)フィット

→ E1(p),M1(p), ⟨N0(0)|A4|N0(p)⟩

3. E0(p), B0(p), E1(p),M1(p)を使ってN3pt = 1でC3pt
O,p(t, τ)フィット

→ ⟨N0(0)|O|N0(p)⟩

シミュレーションパラメーター
Clover クォーク on Nf = 2+ 1+ 1 HISQ ゲージ配位
Mπ = 0.138(1)GeV, L3 × T = 643 × 96, a = 0.087fm
測定数 165×103, 配位数 1290, τ = 12,14,16
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M1(p)とE1(p)

The central point of this Letter is that the problematic
systematic is a missed lower energy excited state. Using a
physical pion mass ensemblea09m130W [13,14], we show
that the mass and energy gap of this state can be determined
from the analysis of nucleon three-point correlation func-
tions. Form factors extracted including these states satisfy
PCAC and another consistency condition and constitute a
major advance in our understanding of the systematics.
Further details of lattice methodology, parameters, statis-
tics, and the interpolating operator used to construct the
correlation functions can be found in Refs. [6,13].
The excited-state contamination (ESC) arises because

the operator used to create and annihilate the nucleon state
couples to the ground and all of the excited and multi-
particle states with appropriate quantum numbers. To
isolate the ground state matrix elements, we fit the two-
and three-point functions C2pt

p and C3pt
Γ;p0 using their spectral

decompositions. The 4-state truncation of C2pt
p is

C2pt
p ðτÞ ¼

X3

i¼0

jAij2e−E
2pt
i ðpÞτ; ð4Þ

whereAi are the amplitudes and E2pt
i ðpÞ the energies for the

ith state. The data and fits using Eq. (4) are shown in Fig. 1.
There is a reasonable plateau at large τ in EeffðτÞ≡
logf½C2ptðτÞ%=½C2ptðτ þ 1Þ%g for momenta up to n2 ¼ 6.
We have checked to see that the lowest E0 determined from
the 4-state fit [13] is consistent with that from a variant of
the Prony method [15]. Similarly, the 2-state truncation of
C3pt
Γ;p0ðt; τÞ with Dirac index Γ and operator OΓ ∈ Aμ; P is

C3pt
Γ;p0ðt; τÞ ¼

X1

i;j¼0

jAjjjA0
ijhjjOΓji0ie−Eit−Mjðτ−tÞ; ð5Þ

where M0 ≡M, j0i and jn i are the ground and n th excited
states. The source point is at t ¼ 0, the operator is inserted
at time t, and the nucleon is annihilated at time τ. The
superscript prime denotes that the state could have nonzero
momentum p0.

To discuss the data, we consider the five ratios R of the
C3pt
Γ to C2pt functions defined in Ref. [6]:

R5i → K−1½−qiq3G̃P=2M% ði ¼ 1; 2Þ; ð6Þ

R53 → K−1½−q23G̃P=2M þ ðM þ E0ÞGA%; ð7Þ

R54 → q3K−1½2ðM − E0ÞG̃P þ 4MGA%; ð8Þ

R5 → K−1½q3GP%; K−1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ðE0 þMÞ

p
; ð9Þ

where “4” is the temporal direction and the spin projection
is along “3.” As τ → ∞, these ratios give the ground state
matrix elements, whose decomposition into form factors
for the nonvanishing momentum combinations is shown in
Eqs. (6)–(9). Equivalent momenta are averaged.
For Q2 ≠ 0, R5μ form an overdetermined system for

extracting G̃P and GA, while GP is uniquely determined
fromR5 using Eq. (9). The A4 correlators have traditionally
[6–12] been neglected because fits with Ei andMi obtained
from C2pt are poor, as shown in Fig. 2 (top left panel). Here,
we define two analysis strategies: S2pt and SA4

.
S2pt.—In Eq. (5), we use Mi ¼ M2pt

i and Ei ¼ E2pt
i ,

obtained from a 4-state fit to C2pt. With this S2pt, we have
performed up to 3'-state analyses of C3pt

Γ to isolate the
ground state matrix elements as discussed in Refs. [6,13].
Form factors obtained using S2pt violate PCAC, and
correcting for OðaÞ lattice artifacts in the axial current
showed negligible improvement [6]. Furthermore, the vio-
lation increases as Q2 → 0, a→ 0, and Mπ → Mphysical

π .
SA4

.—The ground state’s mass and energy are taken
from the 4-state fits to C2pt shown in Fig. 1. For the first
excited state, we take M1 ¼ MA4

1 and E1 ¼ EA4
1 from 2-

state fits to the A4 three-point correlator. These are then
used in a 2-state analysis of C3pt

Γ with operators Ai and P.

FIG. 1. Data for Eeffðτ; pÞ (circles) and fit results (lines) for
0 ≤n2 ≤6 and n2 ¼ 8, 10. As τ → ∞, Eeffðτ; pÞ → E0ðpÞ. FIG. 2. Data for R54 and ∂tR54 with p ¼ ð0; 0; 1Þ2π=La and

fits to (top panels) A4 and (bottom panels) ∂tA4 with the two
strategies S2pt and SA4. The derivative in ∂tR54 acts only on C3pt

A4
in Eq. (5). The horizontal gray band at approximately zero in the
bottom right panel has tiny uncertainty.
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decompositions. The 4-state truncation of C2pt
p is

C2pt
p ðτÞ ¼

X3

i¼0

jAij2e−E
2pt
i ðpÞτ; ð4Þ
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states. The source point is at t ¼ 0, the operator is inserted
at time t, and the nucleon is annihilated at time τ. The
superscript prime denotes that the state could have nonzero
momentum p0.

To discuss the data, we consider the five ratios R of the
C3pt
Γ to C2pt functions defined in Ref. [6]:

R5i → K−1½−qiq3G̃P=2M% ði ¼ 1; 2Þ; ð6Þ

R53 → K−1½−q23G̃P=2M þ ðM þ E0ÞGA%; ð7Þ

R54 → q3K−1½2ðM − E0ÞG̃P þ 4MGA%; ð8Þ

R5 → K−1½q3GP%; K−1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ðE0 þMÞ

p
; ð9Þ

where “4” is the temporal direction and the spin projection
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extracting G̃P and GA, while GP is uniquely determined
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from the 4-state fits to C2pt shown in Fig. 1. For the first
excited state, we take M1 ¼ MA4

1 and E1 ¼ EA4
1 from 2-

state fits to the A4 three-point correlator. These are then
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Γ with operators Ai and P.
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C3pt
A4,p

(t, τ)比 (n2 = 1)
p2 = (2π/L)2 · n2

Below, we identify the violation of PCAC with S2pt with
a missed lower excited state that can be determined from
the analysis of the A4 correlator, which is very sensitive to
the excited state Mi and Ei, as it gets a tiny contribution
from the ground state. Its analysis is the basis of the new
strategy SA4

, and we highlight two points.
First, fits to the A4 correlator with S2pt and SA4 are shown

in Fig. 2 (top panels) for n2 ¼ 1. The almost linear (sinh-
like) behavior ofR54 results from the large ESC (due to the
j0i ↔ j1i transitions) that decreases slowly with τ [16].
The A4 correlator flips sign at about τ=2, a property under a
combined Hermitian conjugate and parity transformation
[13]. The χ2=degrees of freedom (DOF) reduces from
21.8 to 0.8 with SA4

[17]. The resulting first excited-state
mass and energy gaps from S2pt (ΔM2pt

1 ≡M2pt
1 −M,

ΔE2pt
1 ≡ E2pt

1 − E0) and from SA4
(ΔMA4

1 ≡MA4

1 −M,
the zero momentum case on the sink side, and ΔEA4

1 ≡
EA4

1 − E0 with nonzero momentum on the source side) are
shown in Fig. 3. It is clear that ΔEA4

1 and ΔMA4

1 are much
smaller thanΔE2pt

1 for n2 ≲ 6, and they correspond to lower
energy excited state(s). By n2 ≳ 6, the mass gaps, and
therefore the form factors, with the two strategies become
similar (see Fig. 4), and the violation of PCAC at larger
momentum transfers is smaller as shown in Fig. 5 and
in Ref. [6].

Second, the values ofΔEA4

1 andΔMA4

1 and their variation
with n2 are consistent with the following picture: the
leading contribution of the current A4ðqÞ is to insert or
remove a pion with momentum q. In that case, ΔE1 ¼
M þ EπðqÞ − ENðqÞ for the Nð0ÞπðqÞ state, while ΔM1 ¼
ENðqÞ þ EπðqÞ −M for Nð−qÞπðqÞ. The impact of such a
lower energy Nπ state has been discussed in Refs. [16,21]
using effective field theory techniques. These ΔE1 and
ΔM1, for noninteracting lattice states and using the
relativistic dispersion relation that our data support, are
shown with dotted lines in Fig. 3.
It is very important to note that, in such 2-state fits, the

contributions of all possible excited states are, in practice,
lumped into one. Future higher statistics calculations are
needed to resolve and include more states.
Applying the strategy SA4 to the three spatial correlators

Ai and the P correlator gives very different values for the
ground state matrix elements, and thus the form factors,
especially for n2 ≲ 5. On the other hand, the χ2=DOF of the
fits with full covariance matrix are similar. The same is true
of fits to C2pt, in which the number of points sensitive to
ESC are small. Thus, the two strategies, with very different
ΔE and ΔM, are not distinguished based on χ2=DOF with
current statistics (165 × 103 measurements on 1290 con-
figurations) [13]. (The data and fits to C2pt, Ai, and P
comparing SA4

and S2pt are shown in the Supplemental
Material [17]). In C3ptAi

, the variation of ESC over a limited
range of τ (10 ≤ τ ≤ 16 in our case) is essentially linear and
similar, whereas the τ → ∞ limit, i.e., the value of the
ground state matrix element, depends strongly on them. In
short, it is very important to determineΔE andΔM reliably
first since the χ2=DOF of the fits to the Ai do not provide a
good metric for differentiation.
The results for the three form factorsGA, G̃P, and GP are

compared in Fig. 4. The effect of using SA4 is clear and
largest for n2 ¼ 1. In particular, the change in GAðQ2Þ is
apparent only for n2 ¼ 1; consequently, data at smaller Q2

are needed to quantify its Q2 → 0 limit, i.e., the charge gA.
The pattern, that the effect increases asQ2 → 0, a → 0, and
Mπ → Mphysical

π , is confirmed by the analysis of the 11

FIG. 3. Energy gaps from S2pt and SA4
in units of Mπ . The

dotted lines show the estimates for noninteracting systems.

FIG. 4. Comparison of (left panel) GA, (middle panel) G̃P × ðmμ=2MÞ, and (right panel) GP obtained using the two strategies SA4 and
S2pt. The lines show the dipole and zk-expansion fits to GA from SA4 and the PPD ansatz to G̃P.
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∆E2pt
1 (p) = E2pt

1 (p)− EN(p) ∼>MN(1440) −M

∆M1(p) = M1(p)−MN ∼ EN(p) + Eπ(p)

∆E1(p) = E1(p)− EN(p) ∼ MN + Eπ(p)

∆M1(p),∆E1(p)はOliverの予想と近い値
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S2ptとSA4の比較
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from the ground state. Its analysis is the basis of the new
strategy SA4
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mass and energy gaps from S2pt (ΔM2pt

1 ≡M2pt
1 −M,

ΔE2pt
1 ≡ E2pt

1 − E0) and from SA4
(ΔMA4

1 ≡MA4

1 −M,
the zero momentum case on the sink side, and ΔEA4

1 ≡
EA4

1 − E0 with nonzero momentum on the source side) are
shown in Fig. 3. It is clear that ΔEA4

1 and ΔMA4

1 are much
smaller thanΔE2pt

1 for n2 ≲ 6, and they correspond to lower
energy excited state(s). By n2 ≳ 6, the mass gaps, and
therefore the form factors, with the two strategies become
similar (see Fig. 4), and the violation of PCAC at larger
momentum transfers is smaller as shown in Fig. 5 and
in Ref. [6].

Second, the values ofΔEA4

1 andΔMA4

1 and their variation
with n2 are consistent with the following picture: the
leading contribution of the current A4ðqÞ is to insert or
remove a pion with momentum q. In that case, ΔE1 ¼
M þ EπðqÞ − ENðqÞ for the Nð0ÞπðqÞ state, while ΔM1 ¼
ENðqÞ þ EπðqÞ −M for Nð−qÞπðqÞ. The impact of such a
lower energy Nπ state has been discussed in Refs. [16,21]
using effective field theory techniques. These ΔE1 and
ΔM1, for noninteracting lattice states and using the
relativistic dispersion relation that our data support, are
shown with dotted lines in Fig. 3.
It is very important to note that, in such 2-state fits, the

contributions of all possible excited states are, in practice,
lumped into one. Future higher statistics calculations are
needed to resolve and include more states.
Applying the strategy SA4 to the three spatial correlators

Ai and the P correlator gives very different values for the
ground state matrix elements, and thus the form factors,
especially for n2 ≲ 5. On the other hand, the χ2=DOF of the
fits with full covariance matrix are similar. The same is true
of fits to C2pt, in which the number of points sensitive to
ESC are small. Thus, the two strategies, with very different
ΔE and ΔM, are not distinguished based on χ2=DOF with
current statistics (165 × 103 measurements on 1290 con-
figurations) [13]. (The data and fits to C2pt, Ai, and P
comparing SA4

and S2pt are shown in the Supplemental
Material [17]). In C3ptAi

, the variation of ESC over a limited
range of τ (10 ≤ τ ≤ 16 in our case) is essentially linear and
similar, whereas the τ → ∞ limit, i.e., the value of the
ground state matrix element, depends strongly on them. In
short, it is very important to determineΔE andΔM reliably
first since the χ2=DOF of the fits to the Ai do not provide a
good metric for differentiation.
The results for the three form factorsGA, G̃P, and GP are

compared in Fig. 4. The effect of using SA4 is clear and
largest for n2 ¼ 1. In particular, the change in GAðQ2Þ is
apparent only for n2 ¼ 1; consequently, data at smaller Q2

are needed to quantify its Q2 → 0 limit, i.e., the charge gA.
The pattern, that the effect increases asQ2 → 0, a → 0, and
Mπ → Mphysical

π , is confirmed by the analysis of the 11

FIG. 3. Energy gaps from S2pt and SA4
in units of Mπ . The

dotted lines show the estimates for noninteracting systems.

FIG. 4. Comparison of (left panel) GA, (middle panel) G̃P × ðmμ=2MÞ, and (right panel) GP obtained using the two strategies SA4 and
S2pt. The lines show the dipole and zk-expansion fits to GA from SA4 and the PPD ansatz to G̃P.

PHYSICAL REVIEW LETTERS 124, 072002 (2020)

072002-3

GP (Q
2)

G̃P (Q
2)

GA(Q
2)

• GA(Q
2)は最小のQ2以外変化無し

最小のQ2の値の変化により rA = 0.45(7)fm → 0.74(6)fm

実験値を再現(問題 4⃝)

Q2 = 0から決めたGA(0) = 1.25(2) → GA(Q
2 → 0) = 1.30(7)

• G̃P (Q
2), GP (Q

2)は増加。Q2 →小で影響→大。最小のQ2では約2倍

g∗P =
mµ

2MN
G̃P (0.88m

2
µ) = 4.67(24) → 8.06(44)

muon capture実験値g∗P = 8.06(55)を再現

• A4から求められたGA(Q
2), G̃P (Q

2) も尤もらしい結果(問題 3⃝)
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PCACとPPDの結果

ensembles described in Ref. [13] and partly presented
in Ref. [22].
WithGA, G̃P, andGP in hand, we test the PCAC relation,

Eq. (3), and the pion-pole dominance (PPD) hypothesis,
which relates G̃P to GA as

G̃PðQ2Þ
GAðQ2Þ

Q2 þM2
π

4M2
¼ 1; ð10Þ

in Fig. 5. Both relations are satisfied to within 5% at all Q2

with SA4, whereas the deviation grows to about 40% with
S2pt at n2 ¼ 1, as first pointed out in Ref. [6]. What is also
remarkable is that the PPD relation with the proportionality
factor 4M2 provided by the Goldberger-Treiman relation
[23] tracks the improvement in PCAC. In fact, the data for
the two tests overlap at all Q2.
The next test, shown in Fig. 2 (bottom panels), demon-

strates that the relation ∂tA4 ¼ ðM − EÞA4 is satisfied by
the ground state matrix elements only for SA4. The values of
ðM − EÞA4 are essentially zero in both cases for S2pt

because (M − E) is small.
The axial charge gA is obtained from the A3 correlator

with q ¼ 0, as shown in Eq. (7). The relevant ΔM is
typically taken from the two-point fit and cannot be
extracted from A4. Candidates for the lowest energy excited
state with spin-isospin-parity 1

2 ð
1
2
þÞ at q ¼ 0 are Nππ and

NðpÞπð−pÞ. Both are lighter than the radial excitations N
(1440) and N(1710) and dominate their decay. Their
relativistic noninteracting energies, in a box of size L=a¼
64 used for the a09m130W ensemble, are about 1230 MeV
(aΔM1 ≈ 0.12). In our analysis, the only quantity that
enters is the mass gap, not the specifics of the excited state,
so we take the common value, aΔM1 ¼ 0.12ð4Þ for the
prior, in the reanalysis of A3 to extract gA. These fits give gA
within the range 1.29–1.31 depending on the value of τ
used in the fit compared to gA ¼ 1.25ð2Þ using the S2pt

value given in Ref. [18]. Unfortunately, fits with priors in
the range 0.1≲ aΔM1 ≲ 0.4 are not distinguished on the
basis of χ2=DOF. The output ΔM1 tracks the input prior,
and the value of gA increases as the prior value is decreased.

This implies a large systematic uncertainty in gA unless the
relevant ΔMi are known a priori and input into the fit. An
estimate of ΔM1 is ΔMA4

1 ðn2 ¼ 1Þ ≈ 1.8Mπ , which
roughly corresponds to the Nð−pÞπðpÞ state mentioned
above. Using this ΔMA4

1 in a 2-state fit to A3ð0Þ gives
gA ¼ 1.30ð6Þ, with the axial current renormalization factor,
ZA ¼ 0.95ð4Þ, taken from Ref. [18].
Parenthetically, fits to extract the scalar and tensor

charges gS and gT with priors over the same range are
much more stable: the value of the output ΔM1 is far less
sensitive to the prior, and the results vary by ≲2σ. This
analysis will be presented in a separate publication.
Note that with infinite statistics one can extract all of the

relevant excited states from the nucleon two-point function.
With finite statistics, a known methodology is to construct a
large basis of interpolating operators, including operators
overlapping primarily with multiparticle states, and solve
the generalized eigenvalue problem [24] in a variational
approach [25–29]. In either case, S2pt should become a
viable strategy. The latter option will be explored in future
calculations.
The second way that we extract gA is to parametrize the

Q2 dependence of GAðQ2 ≠ 0Þ using the z expansion and
the dipole ansatz. The zk-expansion fits, using the process
defined in Refs. [6,13], give gA ¼ 1.30ð7Þ for SA4 com-
pared to gA ¼ 1.19ð5Þ using S2pt. These results are stable
for k ≥ 3. The dipole fit gives gA ¼ 1.20ð6Þ with a large
χ2=DOF ¼ 1.97, and the results are essentially the same for
SA4 and S2pt and miss the point at lowQ2, as can be seen in
Fig. 4 (left panel). One can fix the dipole fit by putting a cut
on Q2; however, in this Letter, we choose to neglect it.
The root-mean-squared charge radius, extracted using

the same z-expansion fits, is rA ¼ 0.74ð6Þ fm with SA4 and
rA ¼ 0.45ð7Þ fm with S2pt. For comparison, (i) a weighted
world average of (quasi)elastic neutrino and antineutrino
scattering data is 0.666(17) fm [1], (ii) charged pion
electroproduction experiments give 0.639(10) fm [1],
and (iii) a reanalysis of the deuterium target data gave
0.68(16) fm [30].
The induced pseudoscalar charge g%P, defined as g%P≡

ðmμ=2MÞ × G̃Pð0.88m2
μÞ, is obtained by fitting G̃PðQ2Þ

using the small Q2 expansion of the PPD ansatz:

mμ

2M
G̃PðQ2Þ ¼ c1

M2
π þQ2

þ c2 þ c3Q2: ð11Þ

We obtain g%P ¼ 8.06ð44Þwith SA4 and g%P ¼ 4.67ð24Þwith
S2pt, while the MuCap experiment gave g%P ¼ 8.06ð55Þ
[31,32]. We caution the reader that all results summarized
in Table I are at fixed lattice spacing a. Extrapolation to
a→ 0 is needed before making a comparison to the
experimental values, compiled here for completeness.
An attempt to resolve the PCAC conundrum was

presented in Ref. [33] using the projected currents A⊥
μ ≡

½gμν−ðp̄μp̄ν=p̄2Þ'Aν and P⊥≡P−ð1=2im̂Þðp̄μp̄ν=p̄2Þ∂μAν.

FIG. 5. Tests of the PCAC relation, Eq. (3), and the PPD
hypothesis, Eq. (10), with the two strategies SA4 and S2pt.
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PCAC relation
mqGP (Q

2)

MNGA(Q2)
+

Q2

4M2
N

G̃P (Q
2)

GA(Q2)
= 1

PPD
G̃P (Q

2)

GA(Q2)

M2
π +Q2

4M2
N

= 1

• SA4だとどちらも成り立つ(問題 1⃝, 2⃝)

• 2つの値は一致 → 本質的に同じものを見ている?
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まとめ

従来は使われていなかったC3pt
A4,p

(t, τ)を取り入れたSA4解析により

GA(Q
2), G̃P (Q

2), GP (Q
2)の問題を解決した

• PCAC relationとPPDが成り立つGA(Q
2), G̃P (Q

2), GP (Q
2)

• A4からも尤もらしいGA(Q
2), G̃P (Q

2)

• rAが実験値を再現

理解できていない点

• S2ptとSA4の解析はχ2/dofでは区別できない

E1(p),M1(p)は大きく異なるが、C3pt
Ai,p

, C3pt
P,p フィットのχ2/dofは同程度

→ E1(p),M1(p)を精度良く決める必要がある

• GA(Q
2)への影響が大き過ぎる?

他グループのGA(0)は実験値を再現
→ SA4の補正を入れるとGA(Q

2 → 0)が実験値を超える?
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