Axail Vector Form Factors from Lattice QCD that Satify the PCAC Relation

Phys．Rev．Lett．124， 072002 （2020）

Yong－Chull Jang，Rajan Guputa，Boram Yoon，Tanmoy Bhattacharya

概要：
Lattice QCD で得られる $G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$ の問題を解決する解析方法の提案

Axialvector and pseudoscalar form factors

$G_{A}\left(Q^{2}\right)$ ：Axial（vector）form factor
$\widetilde{G}_{P}\left(Q^{2}\right)$ ：Induced pseudoscalar form factor
$G_{P}\left(Q^{2}\right)$ ：Pseudoscalar form factor

$$
\begin{gathered}
\langle N(p)| A_{\mu}(0)\left|N\left(p^{\prime}\right)\right\rangle=\bar{u}_{N}(p)\left(\gamma_{\mu} \gamma_{5} G_{A}\left(Q^{2}\right)+\frac{i q_{\mu}}{2 M_{N}} \gamma_{5} \widetilde{G}_{P}\left(Q^{2}\right)\right) u_{N}\left(p^{\prime}\right) \\
\langle N(p)| P(0)\left|N\left(p^{\prime}\right)\right\rangle=\bar{u}_{N}(p) \gamma_{5} G_{P}\left(Q^{2}\right) u_{N}\left(p^{\prime}\right) \\
A_{\mu}=\bar{u} \gamma_{\mu} \gamma_{5} d, P=\bar{u} \gamma_{5} d, u_{N}(p): \text { 運動量 } p \text { の核子スピノール } \\
Q^{2}=Q_{\text {Eucl }}^{2}=2 M_{N}\left(E_{N}(p)-M_{N}\right): \text { spacelike momentum transfer }
\end{gathered}
$$

Partially Conserved Axial（vector）Current（PCAC）relation

$$
2 m_{q} P=\partial_{\mu} A_{\mu} \quad\left(m_{q}=m_{u}=m_{d}\right)
$$

Form factor を使うと

$$
2 m_{q} G_{P}\left(Q^{2}\right)=2 M_{N} G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{N}} \widetilde{G}_{P}\left(Q^{2}\right)
$$

Axailvector form factorsの問題

（1）PCAC relation が満たされない
PCAC relation変形版

$$
\frac{m_{q} G_{P}\left(Q^{2}\right)}{M_{N} G_{A}\left(Q^{2}\right)}+\frac{Q^{2}}{4 M_{N}^{2}} \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}=1
$$

（2）小さい Q^{2} でPion Pole Dominance（PPD）Modelと合わない

$$
\mathrm{PPD} \quad \widetilde{G}_{P}\left(Q^{2}\right)=\frac{4 M_{N}^{2} G_{A}\left(Q^{2}\right)}{M_{\pi}^{2}+Q^{2}} \text { or } \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)} \frac{M_{\pi}^{2}+Q^{2}}{4 M_{N}^{2}}=1
$$

PPD は実験とは一致［MuCap，PRL110：012504（2013）；PRC91：055502（2015），
Choi et al．，PRL71：3927（1993）］
（3）A_{4} と A_{i} の計算に大きな違いがある
（4）r_{A} が実験値より小さい

$$
r_{A}=\sqrt{\left\langle r_{A}^{2}\right\rangle}=\left.\sqrt{-\frac{1}{6} \frac{d G_{A}\left(Q^{2}\right)}{d Q^{2}}}\right|_{Q^{2}=0} \quad \text { 実験値 } \sim 0.67 \mathrm{fm} \leftrightarrow \text { lattice } \sim 0.5 \mathrm{fm}
$$

従来の解析方法（ $\mathcal{S}_{2 \mathrm{pt}}$ ）

核子 2 点関数

$$
C_{p}^{2 \mathrm{pt}}(t)=\operatorname{Tr}\left[\mathcal{P}_{+}\langle 0| N(t ; p) \bar{N}(0 ; p)|0\rangle\right]=\sum_{i=0}^{N^{2 p t}} B_{i}^{2}(p) e^{-E_{i}(p) t}
$$

$$
\mathcal{P}_{+}=\left(1+\gamma_{4}\right) / 2, B_{i}(p): \text { 核子演算子規格化定数, } i: \text { 状態のラベル }
$$

$$
E_{0}(p)=E_{N}(p), E_{0}(0)=M_{N}, M_{i} \equiv E_{i}(0)
$$

核子 3 点関数

$$
\begin{aligned}
& C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)=\operatorname{Tr}\left[\mathcal{P}_{53}\langle 0| N(\tau ; 0) \mathcal{O}(t ; q) \bar{N}(0 ; p)|0\rangle\right] \\
&=\sum_{i, j=0}^{N^{3 \mathrm{pt}}} B_{i}(0) B_{j}(p) \overline{\left\langle N_{i}(0)\right| \mathcal{O}\left|N_{j}(p)\right\rangle} e^{-M_{i}(\tau-t)} e^{-E_{j}(p) t} \\
& \mathcal{O}=A_{\mu} \text { or } P, \quad \mathcal{P}_{53}=\left(1+\gamma_{4}\right) \gamma_{3} \gamma_{5} / 2, i, j: \text { 状態のラベル }
\end{aligned}
$$

$\mathcal{S}_{2 \mathrm{pt}}$ 解析
1．$N^{2 \mathrm{pt}}=3$ で $C_{p}^{2 \mathrm{pt}}(t)$ フィット $\rightarrow E_{i}(p), B_{i}(p)$（ $p=0$ も含む）
2．$E_{i}(p), B_{i}(p)$ を使って $N^{3 \mathrm{pt}}=2$ 但し $(i, j) \neq(2,2)$ で $C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)$ フィット

$$
\rightarrow \overline{\left\langle N_{0}(0)\right| \mathcal{O}\left|N_{0}(p)\right\rangle}
$$

従来の解析方法（続き）

$\overline{\left\langle N_{0}(0)\right| \mathcal{O}\left|N_{0}(p)\right\rangle}$ と Form factorの関係（共通の overall 定数を省く）

$$
\begin{array}{|c|c}
\mathcal{O} & \overline{\left\langle N_{0}(0)\right| \mathcal{O}\left|N_{0}(p)\right\rangle} \\
\hline A_{i} & -q_{3} q_{i} \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{2 M_{N}} \quad(i=1,2) \\
A_{3} & \left(E_{N}(p)+M_{N}\right) G_{A}\left(Q^{2}\right)-q_{3}^{2} \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{2 M_{N}} \\
A_{4} & i q_{3}\left[G_{A}\left(Q^{2}\right)-\left(E_{N}(p)-M_{N}\right) \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{2 M_{N}}\right] \\
P & i q_{3} G_{P}\left(Q^{2}\right)
\end{array}
$$

\mathcal{P}_{53} を使ったため A_{i} と A_{3} が違う

問題（1）と（2）PCACとPPD

PCAC relation $\frac{m_{q} G_{P}\left(Q^{2}\right)}{M_{N} G_{A}\left(Q^{2}\right)}+\frac{Q^{2}}{4 M_{N}^{2}} \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}=1$

PPD

$$
\frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)} \frac{M_{\pi}^{2}+Q^{2}}{4 M_{N}^{2}}=1
$$

- 従来の解析方法だとどちらも成り立たない $(\neq 1)$
- Q^{2} が小さくなるほどズレが大きくなる
- 2 つのズレは一致している \rightarrow 本質的に同じものを見ている？

問題（3）A_{3} と A_{i} の違い
例）$C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)$ と $C_{p}^{2 \mathrm{pt}}(t)$ の適切な比
基底状態の t 依存性をなくし，比の値が $\left\langle N_{0}(0)\right| \mathcal{O}\left|N_{0}(p)\right\rangle$

$A_{3}:$ ほぼ定数 $\rightarrow G_{A}\left(q^{2}\right), \widetilde{G}_{P}\left(q^{2}\right)$ を決定
$A_{4}: t$ 依存 \rightarrow 強烈な励起状態の影響 \rightarrow 解析に使わない
有効理論を用いた議論 Oliver Bär［＇19筑波大セミナー，PRD99：054506（2019）］

- $C_{A \mu, p}^{3 \mathrm{pt}}$ では $N_{1}(p)=N(\mathbf{p}) \pi(0), N_{1}(0)=N(\mathbf{p}) \pi(-\mathbf{p})$ が大きな寄与
- $N(\mathbf{p}) \pi(0), N(\mathbf{p}) \pi(-\mathbf{p})$ を考慮した解析を行うと問題（2），（3）が解決できる

新しい解析方法 $\left(\mathcal{S}_{A 4}\right)$
核子 2 点関数

$$
C_{p}^{2 \mathrm{pt}}(t)=\operatorname{Tr}\left[\mathcal{P}_{+}\langle 0| N(t ; p) \bar{N}(0 ; p)|0\rangle\right]=\sum_{i=0}^{N^{2 p t}} B_{i}^{2}(p) e^{-E_{i}^{2 p t}(p) t}
$$

$$
\mathcal{P}_{+}=\left(1+\gamma_{4}\right) / 2, B_{i}(p): \text { 核子演算子規格化定数, } i: \text { 状態のラベル }
$$

核子3点関数

$$
\begin{aligned}
& C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)=\operatorname{Tr}\left[\mathcal{P}_{53}\langle 0| N(\tau ; 0) \mathcal{O}(t ; q) \bar{N}(0 ; p)|0\rangle\right] \\
& \quad=\sum_{i, j=0}^{N^{3 \mathrm{pt}}} A_{i}^{\mathcal{O}}(0) A_{j}^{\mathcal{O}}(p) \overline{\left\langle N_{i}(0)\right| \mathcal{O}(0)\left|N_{j}(p)\right\rangle} e^{-M_{i}(p)(\tau-t)} e^{-E_{j}(p) t} \\
& \mathcal{O}=A_{\mu} \text { or } P, A_{i}^{\mathcal{O}}(p): \text { 核子演算子規格化定数, } \quad \mathcal{P}_{53}=\left(1+\gamma_{4}\right) \gamma_{3} \gamma_{5} / 2, i, j \text { :状態のラベル } \\
& i=0: E_{0}^{2 \mathrm{pt}}(p)=E_{0}(p), E_{0}^{2 \mathrm{pt}}(0)=M_{0}(p)=M_{N}, \frac{B_{0}(p)=A_{0}^{\mathcal{O}}(p)}{\text { (明記されていないが) }} \\
& i \neq 0: E_{i}^{2 \mathrm{pt}}(p) \neq E_{i}(p) \neq M_{i}(p), B_{i}(p) \neq A_{i}^{\mathcal{O}}(p)
\end{aligned}
$$

新しい解析方法（続き）

$$
\begin{aligned}
& C_{p}^{2 \mathrm{pt}}(t)=\sum_{i=0}^{N^{2 \mathrm{pt}}} B_{i}^{2}(p) e^{-E_{i}^{2 \mathrm{pt}}(p) t} \\
& C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)=\sum_{i, j=0}^{N^{3 \mathrm{pt}}} A_{i}^{\mathcal{O}}(0) A_{j}^{\mathcal{O}}(p) \overline{\left\langle N_{i}(0)\right| \mathcal{O}(0)\left|N_{j}(p)\right\rangle} e^{-M_{i}(p)(\tau-t)} e^{-E_{j}(p) t}
\end{aligned}
$$

$\mathcal{S}_{\mathrm{A} 4}$ 解析
1．$N^{2 \mathrm{pt}}=3$ で $C_{p}^{2 \mathrm{pt}}(t)$ フィット $\rightarrow E_{0}(p), B_{0}(p)$（ $p=0$ も含む）
2．$E_{0}(p), B_{0}(p)$ を使って $N^{3 p t}=1$ で $C_{A_{4}, p}^{3 \mathrm{pt}}(t, \tau)$ フィット

$$
\rightarrow E_{1}(p), M_{1}(p), \overline{\left\langle N_{0}(0)\right| A_{4}\left|N_{0}(p)\right\rangle}
$$

3．$E_{0}(p), B_{0}(p), E_{1}(p), M_{1}(p)$ を使って $N^{3 \mathrm{pt}}=1$ で $C_{\mathcal{O}, p}^{3 \mathrm{pt}}(t, \tau)$ フィット

$$
\rightarrow \overline{\left\langle N_{0}(0)\right| \mathcal{O}\left|N_{0}(p)\right\rangle}
$$

シミュレーションパラメーター
Clover クォーク on $N_{f}=2+1+1$ HISQ ゲージ配位 $M_{\pi}=0.138(1) \mathrm{GeV}, L^{3} \times T=64^{3} \times 96, a=0.087 \mathrm{fm}$測定数 165×10^{3} ，配位数 $1290, \tau=12,14,16$

$$
\begin{aligned}
& M_{1}(p) \text { と } E_{1}(p) \\
& \quad C_{A_{4, p}}^{3 \mathrm{pt}}(t, \tau) \text { 比 }\left(\mathbf{n}^{2}=1\right) \\
& p^{2}=(2 \pi / L)^{2} \cdot \mathbf{n}^{2}
\end{aligned}
$$

$\Delta E_{1}^{2 \mathrm{pt}}(p)=E_{1}^{2 \mathrm{pt}}(p)-E_{N}(p) \gtrsim M_{N(1440)}-M$
$\Delta M_{1}(p) \quad=M_{1}(p)-M_{N} \quad \sim E_{N}(p)+E_{\pi}(p)$
$\Delta E_{1}(p) \quad=E_{1}(p)-E_{N}(p) \quad \sim M_{N}+E_{\pi}(p)$
$\triangle M_{1}(p), \triangle E_{1}(p)$ はOliverの予想と近い値
$\mathcal{S}_{2 \mathrm{pt}}$ と $\mathcal{S}_{A 4}$ の比較

－$G_{A}\left(Q^{2}\right)$ は最小の Q^{2} 以外変化無し
最小の Q^{2} の値の変化により $r_{A}=0.45(7) \mathrm{fm} \rightarrow 0.74(6) \mathrm{fm}$実験値を再現（問題（4））

$$
Q^{2}=0 \text { から決めた } G_{A}(0)=1.25(2) \rightarrow G_{A}\left(Q^{2} \rightarrow 0\right)=1.30(7)
$$

－$\widetilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$ は増加。 $Q^{2} \rightarrow$ 小で影響 \rightarrow 大。最小の Q^{2} では約 2 倍

$$
g_{P}^{*}=\frac{m_{\mu}}{2 M_{N}} \widetilde{G}_{P}\left(0.88 m_{\mu}^{2}\right)=4.67(24) \rightarrow 8.06(44)
$$

muon capture 実験値 $g_{P}^{*}=8.06$（55）を再現
－A_{4} から求められた $G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right)$ も尤もらしい結果（問題（3）

PCACとPPDの結果

PCAC relation $\frac{m_{q} G_{P}\left(Q^{2}\right)}{M_{N} G_{A}\left(Q^{2}\right)}+\frac{Q^{2}}{4 M_{N}^{2}} \frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}=1$
PPD

$$
\frac{\widetilde{G}_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)} \frac{M_{\pi}^{2}+Q^{2}}{4 M_{N}^{2}}=1
$$

- $\mathcal{S}_{A 4}$ だとどちらも成り立つ（問題（1），（2））
- 2 つの値は一致 \rightarrow 本質的に同じものを見ている？

まとめ

従来は使われていなかった $C_{A_{4}, p}^{3 p t}(t, \tau)$ を取り入れた $\mathcal{S}_{A 4}$ 解析により $G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$ の問題を解決した

- PCAC relationとPPDが成り立つ $G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$
- A_{4} からも尤もらしい $G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right)$
- r_{A} が実験値を再現

理解できていない点

－ $\mathcal{S}_{2 \mathrm{pt}}$ と $\mathcal{S}_{A 4}$ の解析は χ^{2} / dof では区別できない
$E_{1}(p), M_{1}(p)$ は大きく異なるが，$C_{A_{i}, p}^{3 \mathrm{pt}}, C_{P, p}^{3 \mathrm{pt}}$ フィットの χ^{2} / dof は同程度 $\rightarrow E_{1}(p), M_{1}(p)$ を精度良く決める必要がある
－$G_{A}\left(Q^{2}\right)$ への影響が大き過ぎる？
他グループの $G_{A}(0)$ は実験値を再現
$\rightarrow \mathcal{S}_{A 4}$ の補正を入れると $G_{A}\left(Q^{2} \rightarrow 0\right)$ が実験値を超える？

