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We make an analysis of the two-dimensional U(1) lattice gauge theory with a θ term by using
the tensor renormalization group. Our numerical result for the free energy shows good consistency
with the exact one at finite coupling constant. The topological charge density generates a finite gap
at θ = π toward the thermodynamic limit. In addition finite size scaling analysis of the topological
susceptibility up to V = L × L = 1024 × 1024 allows us to determine the phase transition at θ = π
is the first order.
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I. INTRODUCTION

It has been argued that pure gauge theories with a θ
term contain intriguing nonperturbative aspects. Pos-
sible phase transition in the two-dimensional (2D) pure
U(N) gauge theory was investigated at θ = 0 in the large
N limit by Gross and Witten thirty years ago [1] and
Seiberg discussed that it has a phase transition at θ = π
in the strong coupling limit [2]. Later Witten showed
that the four-dimensional (4D) pure Yang-Mills theory
yields the spontaneous CP violation at θ = π in the large
N limit [3]. Recently this non-trivial phenomena was also
predicted based on the argument of the anomaly match-
ing between the CP symmetry and the center symmetry
[4]. Up to now, unfortunately, the numerical study with
the lattice formulation has not been an efficient tool to
investigate these nonperturbative phenomena. The rea-
son is that the lattice numerical methods are based on
the Monte Carlo algorithm so that they suffer from the
sign problem caused by the introduction of the θ term.

In 2007 the tensor renormalization group (TRG) was
proposed by Levin and Nave to study 2D classical spin
models [5]. They pointed out that the TRG method does
not suffer from the sign problem in principle. This is
a fascinating feature to attract the attention of the el-
ementary particle physicists, who have been struggling
with the sign problem to investigate the finite density
QCD, the strong CP problem, the lattice supersymme-
try and so on. In past several years exploratory numeri-
cal studies were performed by applying the TRG method
to the quantum field theories in the path-integral for-
malism [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The authors and their collaborators have confirmed that
the TRG method is free from the sign problem by suc-
cessfully demonstrating the phase structure predicted by
Coleman [19] for the one-flavor Schwinger model with
the θ term employing the Wilson fermion formulation [8]
and the Bose condensation accompanied with the Silver
Blaze phenomena in the 2D complex scalar φ4 theory at
the finite density [18].

In this article we apply the TRG method to the 2D
pure U(1) lattice gauge theory with a θ term. Since this is

the simplest pure lattice gauge theory with a θ term and
the analytical result for the partition function is already
known [21], it is a good test case for the TRG method to
check the feasibility to investigate the nonperturbative
properties of the lattice gauge theories with a θ term
overcoming the sign problem. In the previous studies of
Schwinger model with and without the θ term [7, 8, 9], we
employed the character expansion method to construct
the tensor network representation following the proposal
in Ref. [20]. In this work, however, we use the Gauss
quadrature method to discretize the phase in the U(1)
link variable. This is motivated by the success of the
Gauss quadrature method to discretize the continuous
degree of freedom in the TRG studies of the scalar field
theories [16, 18].

This paper is organized as follows. In Sec. II we explain
the TRG method to calculate the partition function of
the 2D pure U(1) gauge theory. Numerical results for the
phase transition at θ = π are presented in Sec. III, where
our results are compared with the exact ones which are
analytically obtained. Section IV is devoted to summary
and outlook.

II. TENSOR RENORMALIZATION GROUP
ALGORITHM

A. 2D pure U(1) lattice gauge theory with a θ term

The Euclidean action of the two-dimensional pure U(1)
lattice gauge theory with a θ term is defined by

S = −β
∑

x

cos px − iθQ (1)

px = ϕx,1 + ϕx+1̂,2 − ϕx+2̂,1 − ϕx,2 (2)

Q =
1
2π

∑

x

qx, qx = px mod 2π (3)

where ϕx,µ ∈ [−π,π] is the phase of U(1) link variable
at site x in µ direction. The range of qx is [−π,π] and it
can be expressed as follows by introducing an integer nx:

qx = px + 2πnx, nx ∈ {−2,−1, 0, 1, 2}. (4)

𝜑x,1

𝜑x,+1,2𝜑x,2

𝜑x+2,1
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Mijkl =
√

wiwjwkwl

(2π)4

∞∑

n=−∞
ein(ϕ(i)+ϕ(j)−ϕ(k)+ϕ(l))




∞∑

m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)



 . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−10 or Jn−m,n−m′/J0 < 10−10.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose N = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and N provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [21]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| ln Zanalytic − lnZ(N,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as N increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of N . Thirdly,

our choice of a parameter set of (D,N) = (32, 32) yields
δf = 1.35 × 10−14, which means that the free energy is
determined at sufficiently high precision. Hereafter we
present the results obtained with (D,N) = (32, 32).
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FIG. 1. Relative error of free energy as a function of N with
D = 32 on a 1024 × 1024 lattice. N is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge 〈Q〉 at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

〈Q〉 = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of 〈Q〉/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [21]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:

〈Q〉
V

∣∣∣∣
β=0

= −i

(
1
2

cot
(

θ

2

)
− 1

θ

)
. (20)

Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy
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Sign (complex action) problem

Conventional Monte Carlo method w/ reweighting technique

Doesn’t work for 𝜃≳0.7𝜋 (difficult near the transition point)
⇒ A typical model with a sign problem in two dimension

SU~1!5b(
p

~Up1Up*!, ~3.1!

where Up is the product of the U~1! link phases around the
plaquette p and where b is the inverse coupling.
Define a local topological density np via

np[
1
i ln(Up)/2p, where 2p, 1

i ln(Up)<p. The total topo-
logical charge Q is given by Q5(pnp . The u term Su term is
iuQ , that is @45#

Su term5
u

2p(
p
ln~Up!. ~3.2!

Equation ~3.2! is the lattice analog of the continuum u-term
action i(u/2p)*d2xF .
In d52 dimensions, gauge theories are exactly solvable

even in the presence of a u term. For periodic boundary
conditions, in which case Q is quantized to an integer, the
result is @41#

Z~u ,b ,V !5 (
m52`

`

@z~u12pm ,b!#V, ~3.3!

where

z~u ,b!5
*2p

p ~d f p/2p!exp~ i f pu/2p!exp@2bcos~ f p!#
*2p

p ~d f p/2p!exp@2bcos~ f p!#
.

~3.4!

Here, f p can be thought of as the field strength for a single
plaquette: Up5exp(ifp). In the infinite volume limit, the free
energy difference per unit volume f (u) is given by

f ~u ,b!52ln@z~u ,b!# . ~3.5!

In particular, at b50, one obtains @18#

f ~u ,0 !52lnF
2
u
sinS

u

2 D G , ~3.6!

when 2p,u<p .

We have performed Monte Carlo studies of the U~1!
gauge theory to gain insight into computer simulations for a
system with a u term. The action consisted of the sum of the
actions in Eqs. ~3.1! and ~3.2!. Two values of b were con-
sidered: b50.0 and b51.0. Three simulation methods were
employed: naive, binning, and binning with a trial-
probability function. Heat-bath updating was used with the
naive and binning methods. The Metropolis algorithm was
used with the trial-probability-binning method. The trial-
probability distribution P0(Q) was chosen to be a Gaussian:
P0(Q)}exp(2kQ2), where the constant k was appropriately
selected. After thermalizing the system, the number of
sweeps ranged from tens of million to several hundred mil-
lion. One sweep corresponded to updating once all the link
variables of the lattice. The number crunching was done on
IBM and Sun desktop workstations.
Figure 1 plots the free energy versus u for b51.0, for a

periodic 16316 lattice. For the naive method, the data points
correspond to short horizontal line segments. A total of 75
million updating sweeps were performed. The error bars
were computed using a jackknife method @46# by dividing
the run into 15 data sets, each of which involved 5 million
sweeps. The solid line is the exact analytic result. Analytic
and Monte Carlo results agree for u less than 2.1. The agree-
ment, which is excellent, cannot be seen on the scale of Fig.
1. For example, at u50.5, fMC50.002 420 04(53) versus
f exact50.002 419 6, at u51.0, fMC50.009 668 5(46) ver-
sus f exact50.009 668 2, at u51.5, fMC50.021 699(61) ver-
sus f exact50.021714, and at u52.0, fMC50.0386(37) ver-
sus f exact50.0385, where the statistical uncertainty in the last
two digits is displayed in parentheses.6 For u beyond 2.1,
error bars grew and the partition function became negative.
One sees that the ‘‘barrier u’’ ub is about 2.1. The statistical
error in PMC(0) was 331025. Using this error in Eq. ~2.10!
to estimate ub , one finds ub'2.05. The agreement of the
theoretical ub with the Monte Carlo value confirms the data-
analysis discussion of Sec. II. One can also check Eq. ~2.13!

6For example, the u52.0 result is fMC50.038660.0037.

FIG. 1. U~1! free energy vs u at b51.0 for
the naive and binning methods.

48 56JAN C. PLEFKA AND STUART SAMUELPlefka-Samuel, PRD56(1997)44

f(θ) − f(0)
V=16×16@β=1.0

symmetric w.r.t. 𝜃=𝜋



Complex Langevin Method (CLM)

Partition function with real variable 𝑥! (𝑖 = 1,⋯ , 𝑛)

Langevin equation

Long Langevin time gives an expectation value of observable

Generalization to complex action

Parisi-Wu, Sci.Sinica24(1981)483
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drift problem, which occurs in the CLM when the quark mass is small. We also discuss how

this problem can be overcome by the gauge cooling using new types of norm. In section 4,

we present our results and show that the exact results of the cRMT can be reproduced for

quark mass much smaller than that achievable without gauge cooling. We also present the

eigenvalue distribution of the Dirac operator measured during the Langevin process, and

show that the singularity of the drift term is avoided in differently ways depending on the

norm adopted. In section 5, we derive a generalized Banks-Casher relation, which connects

the chiral condensate in the chiral limit to the asymptotic behavior of the eigenvalue dis-

tribution of the Dirac operator at the origin. We show that the relation is indeed satisfied

in the cRMT, and discuss its implication in the context of this work. Section 6 is devoted

to a summary and discussions. Some preliminary results of this work have already been

presented in a proceeding contribution [38].

2 The method and the model

In this section, we briefly review some basic features of the CLM and discuss its application

to the cRMT.

2.1 The complex Langevin method (CLM)

Let us consider a system of n real variables xi, (i = 1, · · · , n) defined by the partition

function

Z =

∫ n∏

i=1

dxi e
−S({xi}) . (2.1)

The basic idea of the stochastic quantization is to investigate this system using the Langevin

equation [26]
dxi(τ)

dτ
= −∂S({xi(τ)})

∂xi
+ ηi(τ) , (2.2)

where τ is a fictitious time dubbed the Langevin time, and ηi(τ) is a Gaussian random

noise normalized by 〈ηi(τ)ηj(τ ′)〉 = 2δijδ(τ − τ ′). When the action S({xi}) is real, one can
show that the average of an observable over sufficiently long Langevin time agrees with the

expectation value of the observable in the original path integral [27]; namely

〈O〉 = lim
T→∞

1

T

∫ τ0+T

τ0

dτ O({xi(τ)}) , (2.3)

where τ0 represents the Langevin time necessary for thermalization and T represents the

total Langevin time used for averaging.

Since the method does not rely on the probability interpretation of the factor e−S({xi}),

it has a chance to be generalized to the case of complex action [3, 4]. When the action

is complex, however, the drift term − ∂S
∂xi

in (2.2) becomes complex, and one has to allow

the dynamical variables to take complex values as xi ∈ R → zi ∈ C during the Langevin

process. The Langevin equation (2.2) should then be replaced by

dzi(τ)

dτ
= −∂S({zi(τ)})

∂zi
+ ηi(τ) , (2.4)
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show that the singularity of the drift term is avoided in differently ways depending on the

norm adopted. In section 5, we derive a generalized Banks-Casher relation, which connects

the chiral condensate in the chiral limit to the asymptotic behavior of the eigenvalue dis-

tribution of the Dirac operator at the origin. We show that the relation is indeed satisfied

in the cRMT, and discuss its implication in the context of this work. Section 6 is devoted

to a summary and discussions. Some preliminary results of this work have already been

presented in a proceeding contribution [38].

2 The method and the model

In this section, we briefly review some basic features of the CLM and discuss its application

to the cRMT.

2.1 The complex Langevin method (CLM)

Let us consider a system of n real variables xi, (i = 1, · · · , n) defined by the partition

function

Z =

∫ n∏

i=1

dxi e
−S({xi}) . (2.1)

The basic idea of the stochastic quantization is to investigate this system using the Langevin

equation [26]
dxi(τ)

dτ
= −∂S({xi(τ)})

∂xi
+ ηi(τ) , (2.2)

where τ is a fictitious time dubbed the Langevin time, and ηi(τ) is a Gaussian random

noise normalized by 〈ηi(τ)ηj(τ ′)〉 = 2δijδ(τ − τ ′). When the action S({xi}) is real, one can
show that the average of an observable over sufficiently long Langevin time agrees with the

expectation value of the observable in the original path integral [27]; namely

〈O〉 = lim
T→∞

1

T

∫ τ0+T

τ0

dτ O({xi(τ)}) , (2.3)

where τ0 represents the Langevin time necessary for thermalization and T represents the

total Langevin time used for averaging.

Since the method does not rely on the probability interpretation of the factor e−S({xi}),

it has a chance to be generalized to the case of complex action [3, 4]. When the action

is complex, however, the drift term − ∂S
∂xi

in (2.2) becomes complex, and one has to allow

the dynamical variables to take complex values as xi ∈ R → zi ∈ C during the Langevin

process. The Langevin equation (2.2) should then be replaced by

dzi(τ)

dτ
= −∂S({zi(τ)})

∂zi
+ ηi(τ) , (2.4)
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3 Applying the CLM to the 2D U(1) gauge theory

Since the θ term is purely imaginary in general, it makes Monte Carlo studies of gauge

theories extremely difficult due to the sign problem. We overcome this problem by using the

complex Langevin method (CLM) [14–19], which extends the idea of stochastic quantization

to systems with complex actions. In this section, we discuss how to apply the CLM to

2D U(1) gauge theory with a θ term and show some results, which suggest that a naive

implementation of the method fails.

3.1 The complex Langevin equation

The first step of the CLM is to complexify the dynamical variables. In the present case

of U(1) gauge theory, we extend the link variables Un,µ ∈ U(1) to Un,µ ∈ C \ {0}, which
corresponds to extending the gauge field Aµ(x) ∈ R to Aµ(x) ∈ C in the continuum theory.

Then we consider a fictitious time evolution Un,µ(t) of the link variables governed by the

complex Langevin equation

Un,µ(t+∆t) = Un,µ(t) exp
[
i
{
−∆tDn,µS +

√
∆t ηn,µ(t)

}]
, (3.1)

where ηn,µ(t) is a real Gaussian noise normalized by 〈ηn,µ(s)ηk,ν(t)〉 = 2δn,kδµ,νδs,t. The

term Dn,µS is the drift term defined by

Dn,µS = lim
ε→0

S(eiεUn,µ)− S(Un,µ)

ε
, (3.2)

first for the unitary link variables Un,µ(t), and then it is defined for the complexified link

variables Un,µ(t) by analytic continuation in order to respect holomorphicity. Using the

action (2.13), we obtain Dn,µS = Dn,µSg +Dn,µSθ, where the first term is given as

Dn,1Sg =− i
β

2
(Pn − P−1

n − Pn−2̂ + P−1
n−2̂

) ,

Dn,2Sg =− i
β

2
(−Pn + P−1

n + Pn−1̂ − P−1
n−1̂

) . (3.3)

The second term Dn,µSθ depends on the definition of the topological charge. If one

uses the log definition (2.11), eq. (3.2) for the θ term becomes a δ-function, which vanishes

identically except for configurations with Pn = −1 for some n, reflecting the topological

nature of the definition. Such configurations are precisely the ones that appear when the

topology change occurs within the configuration space of Un,µ. It is not straightforward to

extend such a term to a holomorphic function of Un,µ.

On the other hand, if one uses the sine definition (2.12), the drift term becomes

Dn,1Sθ =− i
θ

4π
(Pn + P−1

n − Pn−2̂ − P−1
n−2̂

) ,

Dn,2Sθ =− i
θ

4π
(−Pn − P−1

n + Pn−1̂ + P−1
n−1̂

) , (3.4)

which may be viewed as an approximation of the δ-function mentioned above. Moreover,

it can be readily extended to a holomorphic function of Un,µ. For this reason, we use the

sine definition for the non-punctured model.
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Figure 1. The results obtained by the CLM for the non-punctured model using the sine definition
Qsin of the topological charge. (Left) The histogram of the magnitude u of the drift term defined
by (3.12) is shown for (β, L) = (3, 10), (12, 20) with θ = π. (Right) The histogram of ReQsin is
shown for (β, L) = (12, 20) with θ = π. The exact result obtained for (β, L) = (12, 20) with θ = 0
is shown by the solid line for comparison.

3.4 Results with the naive implementation

In this section, we present our results obtained by the CLM, which is implemented naively

using the non-punctured model explained above as opposed to the punctured model, which

we use later. As for the definition of the topological charge, we adopt the sine defini-

tion (2.12) for the reason given in section 3.1.

We have performed simulations at various θ for (β, L) = (3, 10), (12, 20) corresponding

to a fixed physical volume Vphys ≡ L2/β = 102/3. Below we show our results only for θ = π,

where the sign problem becomes severest, but the situation is the same for all values of θ.

In figure 1(Left), we show the histogram of the magnitude u of the drift term. The

distribution falls off rapidly for (β, L) = (12, 20), but it decays slowly with a power law for

(β, L) = (3, 10). Thus the criterion for correct convergence is satisfied for (β, L) = (12, 20)

but not for (β, L) = (3, 10) due to the large drifts.

In figure 1(Right), we plot the histogram of ReQsin obtained by the CLM for (β, L) =

(12, 20) with θ = π, which has a sharp peak at ReQsin ∼ 0. In the same figure, we also

plot the exact result for (β, L) = (12, 20) with θ = 0 for comparison, which exhibits a few

sharp peaks at integer values within the range −2 ! ReQsin ! 2. From these two plots, we

conclude that the transitions between different topological sectors are highly suppressed in

the simulation, which causes a problem with the ergodicity.

This occurs also at θ = 0 for large β, and it is called the “topology freezing problem”

in the literature. In fact, the results one obtains by simulations suffering from this problem

correspond to the expectation values restricted to the topological sector specified by the

initial configuration. This is true for both θ = 0 and θ $= 0. In this case, however, the

effect of the θ term cancels between the numerator and the denominator of the expectation

values, and the calculation essentially reduces to that of the real Langevin method at θ = 0.

For (β, L) = (3, 10) with θ = π, on the other hand, the histogram of ReQsin obtained

by the CLM has broad peaks that overlap with each other, which looks similar to the exact
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Figure 2. The results for various observables obtained by the CLM for the non-punctured model
with the sine definition Qsin. The average plaquette (Top), the imaginary part of the topological
charge density (Middle), the topological susceptibility (Bottom) are plotted against θ for (β, L) =
(3, 10) (Left) and (12, 20) (Right). The exact results for the same (β, L) are shown by the dashed
lines for comparison.

result for (β, L) = (3, 10) with θ = 0. This implies that the topology freezing problem does

not occur for (β, L) = (3, 10). See also figure 3.

Below we define the observables we investigate in this paper. First, we define the

average plaquette by

w =
1

V

∂

∂β
logZ . (3.14)
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Hereafter, V denotes the number of plaquettes in the action, which is V = L2 for the

non-punctured model and V = L2 − 1 for the punctured model we define in section 4.1.

The topological charge density is defined by

1

V
〈Q〉 = −i

1

V

∂

∂θ
logZ , (3.15)

which is zero at θ = 0 and purely imaginary for θ $= 0. Finally, the topological susceptibility

is defined by

χ =
1

V

(
〈Q2〉 − 〈Q〉2

)
= − 1

V

∂2

∂θ2
logZ , (3.16)

which is real for all θ. In fact, the topological susceptibility χ is related to the topological

charge density (3.15) through

χ = −i
1

V

∂

∂θ
〈Q〉 . (3.17)

Note, however, that this relation can be violated if the CLM fails to calculate the expec-

tation values correctly.

In figure 2, we show the results obtained by the CLM for the non-punctured model.

We also plot the exact results for comparison, which are derived in appendix A.4. In

the left column, we present our results for (β, L) = (3, 10), which suffer from the incorrect

convergence, whereas in the right column, we present our results for (β, L) = (12, 20), which

suffer from the topology freezing problem. In either case, our results do not reproduce the

exact results as anticipated. Note that our results at θ = 0 agree with the exact results

for (β, L) = (3, 10) but not for (β, L) = (12, 20). This is because the topology freezing

problem occurs for large β even at θ = 0, where the sign problem is absent.

Thus we find that the CLM with the naive implementation fails for both (β, L) = (3, 10)

and (β, L) = (12, 20) for different reasons. For (β, L) = (3, 10), the topology change

occurs but the criterion for correct convergence is not satisfied due to the large drifts. For

(β, L) = (12, 20), the criterion for correct convergence is satisfied, but the ergodicity is

violated due to the topology freezing problem. We have searched for a parameter region in

which neither of the problems occur, but we could not find one. In fact, we will see in the

next section that these problems are related to each other at least in the present model.

3.5 The appearance of large drifts and the topology change

In this section, we provide more in-depth discussions on the relationship between the

appearance of large drifts and the topology change in the non-punctured model. Let us

first recall that the drift terms are given by (3.3) and (3.4), which depend on Pn. When

β is large, the gauge action Sg favors configurations with Pn ∼ 1 for all n, which implies

that the drift terms are small.

On the other hand, the notion of topological sectors can be defined by the real part

of (2.11), which takes integer values, even for complexified configurations that are generated

in the CLM. In order for a transition between different topological sectors to occur, one

of the plaquettes has to cross the branch cut; namely the phase of the plaquette has to

jump from −π to π or vice versa. When this occurs, large drift terms can appear as can
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Figure 5. The exact results for various observables obtained by using the log definition Qlog of
the topological charge. The average plaquette (Top), the imaginary part of the topological charge
density (Middle), the topological susceptibility (Bottom) obtained for the non-punctured (solid line)
and punctured (dashed line) models are plotted against θ for L = 10 (Left) and L = 20 (Right)
with the same β = 12. Note that the results for the punctured model are actually independent of
L. For the non-punctured model, we also plot the results in the infinite volume limit L → ∞ with
β = 12 by the dash-dotted lines for comparison.
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Figure 6. The topological charge distribution for θ = 0 obtained by the CLM for the punctured
model using the log definition Qlog is plotted for (β, L) = (3, 10) (Left) and (β, L) = (12, 20)
(Right). The solid lines represent the exact results obtained by evaluating (5.4) using the partition
function (4.4).

where we have ignored the issue of δ-function discussed in section 3.1. This is justified if all

the plaquettes in the action never cross the branch cut; i.e., |Im logPn| ≤ π− ε for ∀n $= K

with a strictly positive ε during the Langevin simulation. We will see that this assumption

is justified at sufficiently large β in section 5.3.

Note that the drift term from the θ term appears only for the link variables surrounding

the puncture, and it is actually a constant independent of the configuration. While these

properties are peculiar to the log definition Qlog, similar properties hold also for the sine

definition Qsin at large β, where all the plaquettes Pn approach unity except for PK , which

corresponds to the puncture. We discuss the case with the sine definition in appendix B,

where we see that the obtained results are qualitatively the same as those obtained with

the log definition.

5.2 The θ dependence of the partition function

As we have seen in section 4.2, the punctured model is equivalent to the non-punctured

model in the infinite volume limit for |θ| < π, beyond which the equivalence ceases to hold.

In particular, the punctured model does not have the 2π periodicity in θ, which exists in

the non-punctured model.

In order to understand this point better, we discuss the θ dependence of the partition

function in this section. Let us first note that the partition function for arbitrary θ is related

to the topological charge distribution ρ(q) for θ = 0 through Fourier transformation as

Z(θ) =

∫
dUe−Sg [U ]+iθQ[U ]

=

∫
dUe−Sg [U ]

∫
dq eiθqδ(Q[U ]− q)

= Z(0)

∫
dq eiθqρ(q) . (5.3)

Therefore, the absence of the 2π periodicity in θ in the punctured model is directly related

to its property that the topological charge can take non-integer values even if we use the
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Tensor renormalization group (TRG) method

Partition function w/ continuous indices

Discretized partition function w/ Gauss-Legendre quadrature 

2

For periodic boundary conditions, the topological charge
Q becomes an integer:

Q =
∑

x

( px

2π
+ nx

)
=

∑

x

nx (5)

The tensor may be given with continuous indices,

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

= exp
(

β cos px + i
θ

2π
qx

)
. (6)

The partition function is represented as

Z =

(
∏

x,µ

∫ π

−π

dϕx,µ

2π

)

∏

x

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2). (7)

B. Gauss-Legendre quadrature method

I order to obtain a finite dimensional tensor network,
we discretize all the integrals in Eq. (7) using a numerical
quadrature. In general, an integral of a function f(ϕ) can
be evaluated by

∫
dϕf(ϕ) ≈

N∑

n=1

wnf
(
ϕ(n)

)
(8)

where ϕ(n) and wn are n-th node and the associated
weight, respectively. In this work, we use the Gauss-
Legendre quadrature for discretization. A discretized lo-
cal tensor can be expressed as

Tijkl =
√

wiwjwkwl

(2π)2
T

(
ϕ(i), ϕ(j), ϕ(k),ϕ(l)

)
, (9)

and we get a finite dimensional tensor network

Z ≈
∑

{n}

∏

x

Tnx,1nx+1̂,2nx+2̂nx,2 (10)

with {n} a set of indices associated with the Gauss-
Legendre quadrature.

C. Improved method

We have developed further improvement for the above
method. In the singular value decomposition (SVD) pro-
cedure to prepare the initial tensor before starting the
iterative TRG steps we employ the following eigenvalue
decomposition:

Mijkl =
√

wiwjwkwl

(2π)4

∫ π

−π
dϕ1dϕ2T

(
ϕ(i),ϕ(j),ϕ1,ϕ2

)
T ∗

(
ϕ(k),ϕ(l), ϕ1,ϕ2

)
. (11)

This formula is also expressed as

Mij,kl = lim
N ′→∞

N ′∑

m,n=1

TijmnTklmn. (12)

This procedure is expected to reduce the discretization
errors in Mijkl.

To evaluate Eq. (11), we use the character expan-
sion [22, 23]:

T (ϕ1,ϕ2,ϕ3, ϕ4)

=
∞∑

m,n=−∞
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Mijkl =
√

wiwjwkwl

(2π)4

∞∑

n=−∞
ein(ϕ(i)+ϕ(j)−ϕ(k)+ϕ(l))




∞∑

m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)



 . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−12 or Jn−m,n−m′/J0 < 10−12.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose K = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and K provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [20]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| lnZanalytic − ln Z(K,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as K increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of K. Thirdly,

our choice of a parameter set of (D,K) = (32, 32) yields
δf < 10−12, which means that the free energy is deter-
mined at sufficiently high precision. Hereafter we present
the results obtained with (D,K) = (32, 32).
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FIG. 1. Relative error of free energy as a function of K with
D = 32 on a 1024 × 1024 lattice. K is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge 〈Q〉 at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

〈Q〉 = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of 〈Q〉/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [20]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:

〈Q〉
V

∣∣∣∣
β=0

= −i

(
1
2

cot
(

θ

2

)
− 1

θ

)
. (20)

Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy
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SU~1!5b(
p

~Up1Up*!, ~3.1!

where Up is the product of the U~1! link phases around the
plaquette p and where b is the inverse coupling.
Define a local topological density np via

np[
1
i ln(Up)/2p, where 2p, 1

i ln(Up)<p. The total topo-
logical charge Q is given by Q5(pnp . The u term Su term is
iuQ , that is @45#

Su term5
u

2p(
p
ln~Up!. ~3.2!

Equation ~3.2! is the lattice analog of the continuum u-term
action i(u/2p)*d2xF .
In d52 dimensions, gauge theories are exactly solvable

even in the presence of a u term. For periodic boundary
conditions, in which case Q is quantized to an integer, the
result is @41#

Z~u ,b ,V !5 (
m52`

`

@z~u12pm ,b!#V, ~3.3!

where

z~u ,b!5
*2p

p ~d f p/2p!exp~ i f pu/2p!exp@2bcos~ f p!#
*2p

p ~d f p/2p!exp@2bcos~ f p!#
.

~3.4!

Here, f p can be thought of as the field strength for a single
plaquette: Up5exp(ifp). In the infinite volume limit, the free
energy difference per unit volume f (u) is given by

f ~u ,b!52ln@z~u ,b!# . ~3.5!

In particular, at b50, one obtains @18#

f ~u ,0 !52lnF
2
u
sinS

u

2 D G , ~3.6!

when 2p,u<p .

We have performed Monte Carlo studies of the U~1!
gauge theory to gain insight into computer simulations for a
system with a u term. The action consisted of the sum of the
actions in Eqs. ~3.1! and ~3.2!. Two values of b were con-
sidered: b50.0 and b51.0. Three simulation methods were
employed: naive, binning, and binning with a trial-
probability function. Heat-bath updating was used with the
naive and binning methods. The Metropolis algorithm was
used with the trial-probability-binning method. The trial-
probability distribution P0(Q) was chosen to be a Gaussian:
P0(Q)}exp(2kQ2), where the constant k was appropriately
selected. After thermalizing the system, the number of
sweeps ranged from tens of million to several hundred mil-
lion. One sweep corresponded to updating once all the link
variables of the lattice. The number crunching was done on
IBM and Sun desktop workstations.
Figure 1 plots the free energy versus u for b51.0, for a

periodic 16316 lattice. For the naive method, the data points
correspond to short horizontal line segments. A total of 75
million updating sweeps were performed. The error bars
were computed using a jackknife method @46# by dividing
the run into 15 data sets, each of which involved 5 million
sweeps. The solid line is the exact analytic result. Analytic
and Monte Carlo results agree for u less than 2.1. The agree-
ment, which is excellent, cannot be seen on the scale of Fig.
1. For example, at u50.5, fMC50.002 420 04(53) versus
f exact50.002 419 6, at u51.0, fMC50.009 668 5(46) ver-
sus f exact50.009 668 2, at u51.5, fMC50.021 699(61) ver-
sus f exact50.021714, and at u52.0, fMC50.0386(37) ver-
sus f exact50.0385, where the statistical uncertainty in the last
two digits is displayed in parentheses.6 For u beyond 2.1,
error bars grew and the partition function became negative.
One sees that the ‘‘barrier u’’ ub is about 2.1. The statistical
error in PMC(0) was 331025. Using this error in Eq. ~2.10!
to estimate ub , one finds ub'2.05. The agreement of the
theoretical ub with the Monte Carlo value confirms the data-
analysis discussion of Sec. II. One can also check Eq. ~2.13!

6For example, the u52.0 result is fMC50.038660.0037.

FIG. 1. U~1! free energy vs u at b51.0 for
the naive and binning methods.
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m,m′=−∞
Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)



 . (15)

In the practical calculation, the sums of n,m and m′ can
be truncated when the contributions of the terms are
small enough. In this work we discard the contributions
of Im,m′/I0 < 10−10 or Jn−m,n−m′/J0 < 10−10.

III. NUMERICAL ANALYSIS

A. Setup

The partition function of Eq. (7) is evaluated with the
TRG method at β =0.0 and 10.0 as a function of θ on a
V = L × L lattice, where L is enlarged up to 1024. We
choose N = 32 for the polynomial order of the Gauss-
Legendre quadrature in Eq. (8). The SVD procedure in
the TRG method is truncated with D = 32. We have
checked that these choices of D and N provide us suffi-
ciently converged results for all the parameter sets em-
ployed in this work. Since the scaling factor of the TRG
method is

√
2, the allowed lattice size for the partition

function is L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The peri-
odic boundary condition is employed in both directions
so that the topological charge Q is quantized to be an
integer.

B. Free energy

The analytic result for the partition function of Eq. (7)
is given by [21]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ,β))V , (16)

zP(θ,β) =
∫ π

−π

dϕP

2π
exp

(
β cos ϕP + i

θ

2π
ϕP

)
, (17)

where zP(θ,β) denotes the one-plaquette partition func-
tion with ϕP ∈ [−π,π]. In Fig. 1 we plot the magnitude
of the relative error for the free energy defined by

δf =
| ln Zanalytic − lnZ(N,D = 32)|

| lnZanalytic|
(18)

at θ = π on a 1024 × 1024 lattice. There are a couple
of important points to be noted. Firstly, the deviation
quickly diminishes as N increases even at θ = π, around
which the Monte Carlo approaches do not work effec-
tively due to large statistical errors [24]. Secondly, our
method yields more precise results than the plain Gauss-
Legendre quadrature method at any value of N . Thirdly,

our choice of a parameter set of (D,N) = (32, 32) yields
δf = 1.35 × 10−14, which means that the free energy is
determined at sufficiently high precision. Hereafter we
present the results obtained with (D,N) = (32, 32).
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FIG. 1. Relative error of free energy as a function of N with
D = 32 on a 1024 × 1024 lattice. N is the polynomial order
of the Gauss-Legendre quadrature in Eq. (8).

C. Topological charge density

The expectation value of the topological charge 〈Q〉 at
β = 10.0 is obtained by the numerical derivative of the
free energy with respect to θ:

〈Q〉 = −i
∂ lnZ

∂θ
. (19)

In Fig. 2 we show the volume dependence of 〈Q〉/V
around θ = π, where the analytic calculation predicts
the first order phase transition at any value of β [21]. We
observe that a finite discontinuity emerges with mutual
crossings of curves between different volumes at θ = π
as the lattice size L is increased. This feature indicates
there is a first order phase transition at θ = π.

It may be interesting to calculate the topological
charge density in the strong coupling limit β = 0.0, whose
analytical result was obtained by Seiberg in the infinite
volume limit [2]:
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Figure 3 compares the numerical result at β = 0.0 with
the analytic expression of Eq. (20). The discrepancy
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FIG. 2. Topological charge density with 8 ≤ L ≤ 256 as a
function of θ at β = 10.0.

around θ = π with small lattice size of L = 4 essentially
vanishes once we increase the lattice size up to L = 64.
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FIG. 3. Topological charge density with 4 ≤ L ≤ 64 as a
function of θ at β = 0.0. Solid curve denotes the analytic
result of Eq. (20) obtained in the infinite volume limit.

D. Topological susceptibility

We investigate the properties of the phase transition by
applying the finite size scaling analyses to the topological
susceptibility:

χ(L) = − 1
V

∂2 lnZ

∂θ2
. (21)

Figure 4 shows the topological susceptibility as a func-
tion of θ for various lattice sizes. We observe the peak
structure and its height χmax(L) grows as L increases. In
order to determine the peak position θc(L) and the peak
height χmax(L) at each L, we employ the quadratic ap-
proximation of the topological susceptibility around the
peak position:

χ(L) ∼ χmax(L) + R (θ − θc(L))2 (22)

with R a constant.
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We expect that the peak height scales with L as

χmax(L) ∝ Lγ/ν , (23)

where γ and ν are the critical exponents. The L de-
pendence of the peak height χmax(L) is plotted in Fig. 5.
The solid curve represents the fit result obtained with the
fit function of χmax(L) = A + B lnLγ/ν choosing the fit
range of 128 ≤ L ≤ 1024. The results for the fit parame-
ters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5

and γ/ν = 1.998(2). The value of the exponent γ/ν =
1.998(2) is consistent with two, which is the expected
critical exponent in the first-order phase transition in the
two-dimensional system.

IV. SUMMARY AND OUTLOOK

We have applied the TRG method to study the 2D pure
U(1) gauge theory with a θ term. We have confirmed that
this model has a first-order phase transition at θ = π as
predicted from the analytical calculation. The successful
analysis of the model with the complex action provides
us additional evidence that the TRG method is free from
the sign problem. It should be interesting to apply the
TRG method to other various models which have been
hardly investigated by the Monte Carlo approach because
of the sign problem.
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We expect that the peak height scales with L as
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where γ and ν are the critical exponents. The L depen-
dence of the peak height χmax(L) is plotted in Fig. 5.
The solid curve represents the fit result obtained with
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and γ/ν = 1.998(2). The value of the exponent γ/ν =
1.998(2) is consistent with two, which is the expected
critical exponent in the first-order phase transition in the
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IV. SUMMARY AND OUTLOOK

We have applied the TRG method to study the 2D pure
U(1) gauge theory with a θ term. We have confirmed that
this model has a first-order phase transition at θ = π as
predicted from the analytical calculation. The successful
analysis of the model with the complex action provides
us additional evidence that the TRG method is free from
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hardly investigated by the Monte Carlo approach because
of the sign problem.

ACKNOWLEDGMENTS

One of the authors (YK) thanks Yuya Shimizu for
providing the results obtained by the plain Gauss-
Legendre quadrature method. Numerical calculation for

YK-Yoshimura, JHEP04(2020)089


