"Complex Langevin analysis of 2D $\mathrm{U}(1)$ gauge theory on a torus with a θ term"

M. Hirasawa, A. Matsumoto, J. Nishimura, and A. Yosprakob JHEP09 (2020) 023

Journal Club, 2021.4.30
Y. Kuramashi

2D pure $\mathrm{U}(1)$ gauge theory w / θ-term

Lattice action of 2D pure $U(1)$ gauge theory w / θ-term

$$
\begin{gathered}
S=-\beta \sum_{x} \cos p_{x}-i \theta Q \\
p_{x}=\varphi_{x, 1}+\varphi_{x+\hat{1}, 2}-\varphi_{x+\hat{2}, 1}-\varphi_{x, 2} \\
Q=\frac{1}{2 \pi} \sum_{x} q_{x}, \quad q_{x}=p_{x} \bmod 2 \pi
\end{gathered}
$$

Periodic boundary condition $\Rightarrow Q$ is integer

Analytic result

$$
\begin{aligned}
& Z_{\text {analytic }}=\sum_{Q=-\infty}^{\infty}\left(z_{\mathrm{P}}(\theta+2 \pi Q, \beta)\right)^{V}, \\
& z_{\mathrm{P}}(\theta, \beta)=\int_{-\pi}^{\pi} \frac{d \varphi_{\mathrm{P}}}{2 \pi} \exp \left(\beta \cos \varphi_{\mathrm{P}}+i \frac{\theta}{2 \pi} \varphi_{\mathrm{P}}\right)
\end{aligned}
$$

Wiese, NPB318(1989)153

Predict a first order phase transition at $\theta=\pi$

Sign (complex action) problem

Conventional Monte Carlo method w/ reweighting technique
Plefka-Samuel, PRD56(1997)44

Doesn't work for $\theta \gtrsim 0.7 \pi$ (difficult near the transition point)
\Rightarrow A typical model with a sign problem in two dimension

Complex Langevin Method (CLM)

Partition function with real variable $x_{i}(i=1, \cdots, n)$

$$
Z=\int \prod_{i=1}^{n} d x_{i} e^{-S\left(\left\{x_{i}\right\}\right)}
$$

Langevin equation

$$
\begin{gathered}
\frac{d x_{i}(\tau)}{d \tau}=-\frac{\partial S\left(\left\{x_{i}(\tau)\right\}\right)}{\partial x_{i}}+\eta_{i}(\tau) \\
\left\langle\eta_{i}(\tau) \eta_{j}\left(\tau^{\prime}\right)\right\rangle=2 \delta_{i j} \delta\left(\tau-\tau^{\prime}\right)
\end{gathered}
$$

Long Langevin time gives an expectation value of observable

$$
\langle\mathcal{O}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\tau_{0}}^{\tau_{0}+T} d \tau O\left(\left\{x_{i}(\tau)\right\}\right)
$$

Generalization to complex action

$$
\begin{gathered}
x_{i} \in \mathbb{R} \rightarrow z_{i} \in \mathbb{C} \\
\frac{d z_{i}(\tau)}{d \tau}=-\frac{\partial S\left(\left\{z_{i}(\tau)\right\}\right)}{\partial z_{i}}+\eta_{i}(\tau)
\end{gathered}
$$

2D U(1) gauge theory with CLM

Complex Langevin eq. for link variables

$$
\begin{aligned}
\mathcal{U}_{n, \mu}(t+\Delta t) & =\mathcal{U}_{n, \mu}(t) \exp \left[i\left\{-\Delta t D_{n, \mu} S+\sqrt{\Delta t} \eta_{n, \mu}(t)\right\}\right] \\
D_{n, \mu} S & =\lim _{\epsilon \rightarrow 0} \frac{S\left(e^{i \epsilon} U_{n, \mu}\right)-S\left(U_{n, \mu}\right)}{\epsilon}
\end{aligned}
$$

Two problems
(1) Topology freezing problem
(2) Drift term may become singular \rightarrow wrong convergence problem

Naïve Implementation on T^{2}

(1) Topology freezing problem

(2) Singular drift term problem

$\beta=12$ is OK
$\beta=3$ is untrustful

Punctured Model on T^{2}

Remove one plaquette from T^{2}

Analytically, equivalent to T^{2}
for $0 \leq \theta \leq \pi$

Consistent with exact value \rightarrow but, give up the first order phase transition

Tensor renormalization group (TRG) method

YK-Yoshimura, JHEPO4(2020)089
Partition function w/ continuous indices

$$
\begin{aligned}
& \mathcal{T}\left(\varphi_{x, 1}, \varphi_{x+\hat{1}, 2}, \varphi_{x+\hat{\mathbf{2}, 1}}, \varphi_{x, 2}\right) \\
& =\exp \left(\beta \cos p_{x}+i \frac{\theta}{2 \pi} q_{x}\right) \\
& Z=\left(\prod_{x, \mu} \int_{-\pi}^{\pi} \frac{d \varphi_{x, \mu}}{2 \pi}\right) \\
& \prod_{x} \mathcal{T}\left(\varphi_{x, 1}, \varphi_{x+\hat{1}, 2}, \varphi_{x+\hat{2}, 1}, \varphi_{x, 2}\right) .
\end{aligned}
$$

Discretized partition function w/ Gauss-Legendre quadrature

$$
\begin{gathered}
\int d \varphi f(\varphi) \approx \sum_{\alpha=1}^{K} w_{\alpha} f\left(\varphi^{(\alpha)}\right) \quad \begin{array}{l}
\text { K-th order Legendre polynomial } \\
\varphi^{(\alpha)}: \alpha \text {-th node, } \mathrm{w}_{\alpha}: \text { weight }
\end{array} \\
T_{i j k l}=\frac{\sqrt{w_{i} w_{j} w_{k} w_{l}}}{(2 \pi)^{2}} \mathcal{T}\left(\varphi^{(i)}, \varphi^{(j)}, \varphi^{(k)}, \varphi^{(l)}\right) \quad Z \approx \sum_{\{\alpha\}} \prod_{x} T_{n_{x, 1} n_{x+1,2} n_{x+2} n_{x, 2}}
\end{gathered}
$$

Free energy

YK-Yoshimura, JHEPO4(2020)089
Relative error

$$
\delta f=\frac{\left|\ln Z_{\text {analytic }}-\ln Z(K, D=32)\right|}{\left|\ln Z_{\text {analytic }}\right|}
$$

Comparison btw TRG results and analytic ones at $\theta=\pi$ (most difficult point)

$\delta f<10^{-12} @(D, K)=(32,32) \Rightarrow$ Sufficient precision

Topological charge density

YK-Yoshimura, JHEP04(2020)089
Expectation value of topological charge

$$
\langle Q\rangle=-i \frac{\partial \ln Z}{\partial \theta} .
$$

Numerical derivative in terms of θ
Volume dependence of topological charge density around $\theta=\pi$

Finite gap is generated toward $\mathrm{L} \rightarrow \infty \Rightarrow$ 1st order phase transition

Topological susceptibility

YK-Yoshimura, JHEP04(2020)089
Topological susceptibility

$$
\chi(L)=-\frac{1}{V} \frac{\partial^{2} \ln Z}{\partial \theta^{2}} .
$$

FSS of peak height
$\dot{\chi}_{\max }(L)=A+B L^{\gamma / \nu}$

Critical exponent $\gamma / \nu=1.998(2) \Rightarrow 1$ st order phase transition

