Journal Club 2020/12/11 Shinichiro Akiyama

# Topological phase transitions in four dimensions

N. Defenu, A. Trombettoni, and D. Zappala,

arXiv: 2003.04909 [cond-mat.quant-gas]

#### **Abstract**

4D sine-Gordon model w/ higher-derivative term may exhibit a topological phase transition analogous to the KT transition in 2D

### Lifshitz point

Hornreich-Luban-Shtrikman, PRL35(1975)1678

### General form of the free energy density (m: scalar order parameter)

$$f(m) = a_2 m^2 + a_4 m^4 + a_6 m^6 + \dots + c_1 (\partial m)^2 + c_2 (\partial^2 m)^2 + \dots$$

| Critical point     | described just by $(a_2, a_4, c_1)$                       |
|--------------------|-----------------------------------------------------------|
| Tri-critical point | characterized by the $a_6$ term w/ the vanishing of $a_4$ |
| Lifshitz point     | characterized by the $c_2$ term w/ the vanishing of $c_1$ |

-> the Lifshitz point is analogous to a tri-critical point

### Critical dimensions

- $\checkmark d=2$  is the lower critical dimension of the scalar field theory -> there is no long-range ordered phase, but the KT transition occurs
- $\checkmark$  For the d-dim. scalar field theory, d=4 is the conjectured lower critical dimension of the Lifshitz point

Q. Is there any KT(-like) transition in 4D higher-derivative scalar field theory?

cf. Zappala, PRD98(2018)085005

### Kosterlitz-Thouless transition

$$T > T_{\mathrm{KT}} \Rightarrow \mathsf{paramagnetic}$$

 $T > T_{\rm KT} \Rightarrow$  paramagnetic  $T < T_{\rm KT} \Rightarrow$  vortex & anti-vortex pair

XY model (@ low T)

$$H = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) \approx \frac{J}{2} \int d\mathbf{r} (\partial \theta)^2$$

$$\checkmark \langle \cos(\theta_r - \theta_0) \rangle = \left(\frac{r}{a}\right)^{-T/2\pi J}$$
 @  $T < T_{\text{KT}}$ 

-> Line of fixed points

$$\to \eta = 1/4 @ T = T_{KT} (= \frac{\pi J}{2})$$

# KT theory in 2D

#### XY model

$$H = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) \approx \frac{J}{2} \int d\mathbf{r} (\partial \theta)^2$$



vortex ⇔ Coulomb charge

### Coulomb gas model

$$H = -\pi J \sum_{i \neq j} n_i n_j \log \left| \frac{r_i - r_j}{a} \right| \qquad \Longrightarrow \qquad S[\phi] = \int [(\partial \phi)^2 + g_0 (1 - \cos \beta \phi)]$$



### sine-Gordon model

$$S[\phi] = \int [(\partial \phi)^2 + g_0(1 - \cos \beta \phi)]$$

KT transition @  $\beta_c^2 = 8\pi$ 

Coleman, PRD11(1975)2088

# Outline of this study

#### **Quartic XY model**

$$H[\theta] = \frac{\mathcal{K}}{2} \int d^4 x \, \Delta \theta(x) \Delta \theta(x)$$



(ii) A possible relationship?

#### Coulomb gas model

$$H = -\pi J \sum_{i \neq j} n_i n_j \log \left| \frac{r_i - r_j}{a} \right|$$

#### **Higher-derivative sine-Gordon model**

$$S[\phi] = \int [(\Delta \phi)^2 + g_0(1 - \cos \beta \phi)]$$

-> (i) investigation w/ the FRG

# (i) 4D higher-derivative sine-Gordon model w/ the FRG

### **Running action**

$$\Gamma_k[\varphi] = \int d^4x \left[ \frac{w_k}{2} (\Delta \varphi)^2 + V_k(\varphi) \right]$$

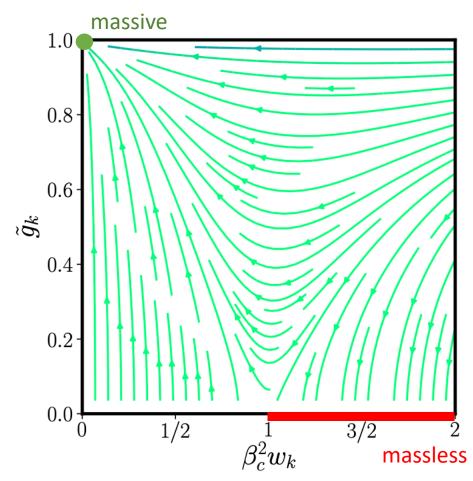
with 
$$V_k(\varphi) = g_k(1 - \cos \varphi)$$

#### FRG flow equations

$$\partial_t w_k = -\frac{9}{160\pi^2} \frac{\tilde{g}_k^2}{(1 - \tilde{g}_k^2)^{\frac{3}{2}}}$$

$$(4 + \partial_t)\tilde{g}_k = \frac{1}{8\pi^2 w_k \tilde{g}_k} \left( 1 - \sqrt{1 - \tilde{g}_k^2} \right)$$

with  $t = -\log(k/\Lambda)$  and  $\tilde{g}_k = g_k/k^4$ 



a line of attractive Gaussian fixed points for  $\beta_c^2 w_k > 1$  w/  $\tilde{g}_k = 0$ 

$$\beta_c^2 = 64\pi^2$$
 ( cf.  $\beta_c^2 = 8\pi$  in 2D sine-Gordon model )

# (ii) A topological configuration in 4D quartic XY model

$$H[\theta] = \frac{\mathcal{K}}{2} \int d^4x \, \Delta\theta(x) \Delta\theta(x)$$

Claim:  $A_{\chi'}(x) = \frac{1}{2} \left( \alpha_4 - \frac{\pi}{2} \right) \cot \alpha_4$  gives a specific field configuration

$$\checkmark H[A_{\chi'}] = \mathcal{K}\pi^2 \ln \frac{R}{r_0}$$
 (  $R$ : large dist. cutoff,  $r_0$ : short dist. cutoff )

$$\checkmark S[A_{\chi'}] = \ln \left[ C\left(\frac{R^4}{r_0^4}\right) \right]$$

$$\checkmark \delta F = H - \mathcal{K}S = (\mathcal{K}\pi^2 - 4) \ln \frac{R}{r_0} + \text{const.}$$

$$\checkmark \mathcal{K}_c = \frac{4}{\pi^2}$$

$$x_1 - x_1' = r \sin \alpha_4 \sin \alpha_3 \sin \alpha_2$$
  

$$x_2 - x_2' = r \sin \alpha_4 \sin \alpha_3 \cos \alpha_2$$
  

$$x_3 - x_3' = r \sin \alpha_4 \cos \alpha_3$$

$$x_4 - x_4' = r \cos \alpha_4$$

# (ii) Relation to the sine-Gordon model

$$H[\mathcal{G}^C] = \frac{\mathcal{K}}{2} \int d^4x \, \Delta \mathcal{G}^C(x) \, \Delta \mathcal{G}^C(x)$$

$$\mathcal{G}^{\mathcal{C}}(x) = \Sigma_i n_i \; G(x - x_i) \; \text{w/} \; n_i \in \mathbb{Z}$$

$$\Delta_x G(x - x') = -\frac{1}{(x - x')^2}$$

can be identified as the higher-derivative sine-Gordon model via  ${\it Z}$ 

$$Z \sim \int [\mathrm{d}\phi] \exp\left[-\frac{w}{2} \int \mathrm{d}^4 r \,\Delta\phi(r) \Delta\phi(r) + 2y \int \mathrm{d}^4 r \cos\phi(r)\right]$$

$$\checkmark \frac{1}{w} \coloneqq (2\pi)^4 \mathcal{K}$$

$$\checkmark (2\pi)^4 \mathcal{K}_c = (2\pi)^4 \frac{4}{\pi^2} = 64\pi^2 (= \beta_c^2)$$

$$\checkmark \eta = \frac{1}{8\pi^2\mathcal{K}} \Rightarrow \eta = \frac{1}{32} @ \mathcal{K} = \mathcal{K}_c$$
 holds on the line of fixed points

### Summary

4D systems might exhibit a topological phase analogous to the KT phase in 2D

|                         | 4D (conjecture) | 2D      |
|-------------------------|-----------------|---------|
| $eta_c^2$ (sine-Gordon) | $64\pi^2$       | $8\pi$  |
| $\mathcal{K}_c$ (XY)    | $4/\pi^2$       | $2/\pi$ |
| η                       | 1/32            | 1/4     |

A delicate point is the following relationship

<u>4D quartic XY model</u>

$$H[\theta] = \frac{\mathcal{K}}{2} \int d^4 x \, \Delta \theta \Delta \theta$$

4D higher-derivative sine-Gordon model

$$H[\theta] = \frac{\mathcal{K}}{2} \int d^4 x \, \Delta \theta \Delta \theta \qquad \stackrel{?}{\Longleftrightarrow} \qquad S[\phi] = \int d^4 x [(\Delta \phi)^2 + g_0 (1 - \cos \beta \phi)]$$



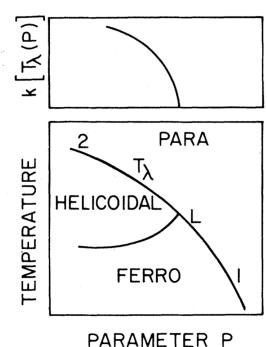
### Lifshitz point

Hornreich-Luban-Shtrikman, PRL35(1975)1678

### Coexistence of three phases

- ✓ homogeneous phase ( order parameter is spatially uniform )
- ✓ disordered phase ( order parameter is zero )
- ✓ inhomogeneous phase

  ( order parameter is spatially modulated w/ a finite wave vector )



# FRG flow equations

#### **Running action**

$$\Gamma_k[\varphi] = \int d^4x \left[ \frac{w_k}{2} (\Delta \varphi)^2 + g_k (1 - \cos \varphi) \right]$$

$$=: V_k(\varphi)$$

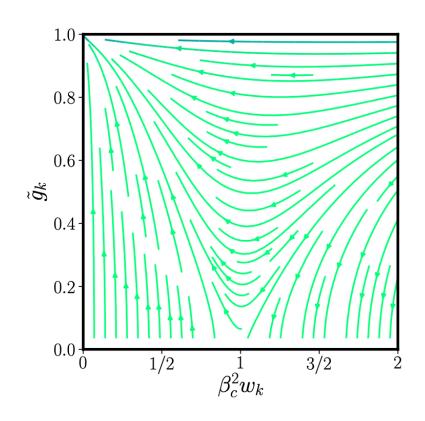
#### **FRG flow**

$$\partial_t V_k(\varphi) = \int \frac{\mathrm{d}^d q}{(2\pi)^d} G(q) \partial_t R_k(q)$$

$$\partial_t w_k = \lim_{p \to 0} \int_{-\pi}^{\pi} \frac{\mathrm{d} \varphi}{2\pi} \int \frac{\mathrm{d}^d q}{(2\pi)^d} \partial_t R_k(q)$$

$$\times G(q)^2 V_k'''(\varphi)^2 \frac{\mathrm{d}^4}{\mathrm{d} p^4} G(p+q)$$

$$G(q) = \frac{1}{w_k q^4 + V_k''(\varphi) + R_k(q)}$$



with the RG scale  $t=-\log\frac{k}{\Lambda'}$ , the regulator  $R_k(q)=k^4$  and taking  $d\to 4^+$