Tensor Renormalization Group Centered About a Core Tensor

Wangwei Lan and Glen Evenbly
arXiv: 1906.09283 [quant-ph]

Quantum Field Theory

Renormalization Group
(Gell-Mann-Low Eq.)

Wilsonian RG scale-dependent "effective theory"

Functional RG
Application of
Tensor Network to QFT is
a recent hot topic!

Critical Phenomena

Block Spin Transformation (Real space RG)

Density Matrix RG
1D quantum systems

Tensor Network Scheme
Attacking higher dimension!

Brief review of TN rep. (1/2)

Ex) 2D classical spin model (with periodic boundary)

$$
Z=\sum_{\{\sigma\}} \prod_{\langle i j\rangle} \exp \left[-\beta K\left(\sigma_{i}, \sigma_{j}\right)\right]
$$

Decomposition of the transfer matrix element :

$$
\exp \left[-\beta K\left(\sigma_{i}, \sigma_{j}\right)\right]=\sum_{l} W\left(\sigma_{i}, l\right) W\left(\sigma_{j}, l\right)
$$

Integrating out σ^{\prime} s, one obtains a local tensor;

$$
T_{l_{1} l_{2} l_{3} l_{4}}:=\sum_{\sigma_{i}= \pm 1} W\left(\sigma_{i}, l_{1}\right) W\left(\sigma_{i}, l_{2}\right) W\left(\sigma_{i}, l_{3}\right) W\left(\sigma_{i}, l_{4}\right)
$$

RG trans. in tensor contraction

Matrix decomposition technique (linear algebra) is very useful

Tensor Renormalization Group (TRG) $\boldsymbol{O}\left(\chi^{6} \ln L\right)($ Levin-Nave, 2007)

χ : bond dimension L : lattice size

Higher dimension
(D-dimensional) Higher-order TRG $\boldsymbol{O}\left(\chi^{4 D-1} \ln L\right)($ Xie et al, 2012)

Tensor Network Renormalization $O\left(\chi^{7} \ln L\right)($ Evenbly-Vidal, 2015)

Cost reduction

TRG with randomized SVD
$O\left(\chi^{5} \ln L\right)($ Morita et al, 2018)
(D-dimensional) Anisotropic TRG
$\boldsymbol{O}\left(\chi^{2 D+1} \ln L\right)($ Adachi et al, 2019)

Core-Tensor RG

$O\left(\chi^{4} L\right)$ (Lan-Evenbly, 2019)

Algorithm of CTRG (1/3)

Algorithm of CTRG (2/3)

NOTE : Red legs run up to χ, but black ones do up to $d(\chi \gg d)$
(a)

(d)

- ${ }^{2}$

A

$$
\text { (A) } \equiv
$$

(b)

(c)

Algorithm of CTRG (3/3)

Projectors are directly decided by EVD
(a)

(b)

(c)

Truncation error is minimized!

Benchmark Results (2D Ising)

Benchmark Results (2D Ising)

$$
L=128 \quad L=256
$$

- 2 curves are crossing! (how about comparison with HOTRG?)

Outlook

"We hypothesize that a version of CTRG generalized for higher spatial dimensions could reproduce results of equivalent accuracy to HOTRG, but with a much lower cost scaling in bond dimension χ."

Comments

- Choice of boundary condition \& Choice of $\forall L \in \mathbb{N}$

- Can be seen as a variant of CTMRG (Nishino-Okunishi, 1996), whose cost scales with $O\left(\chi^{3} L\right)$
http://quattro.phys.sci.kobeu.ac.jp/dmrg.html

Singular Value Decomposition (SVD)

For any complex $I_{1} \times I_{2}$-matrix A can be written as the product

$$
A=U^{(1)} S U^{(2)^{\dagger}}
$$

where

1. $U^{(1)}$ is an $I_{1} \times I_{1}$ unitary matrix.
2. $U^{(2)}$ is an $I_{2} \times I_{2}$ unitary matrix.
3. S is an $I_{1} \times I_{2}$-matrix such that
(i) Pseudo-diagonality: $\quad S=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\min \left(I_{1}, I_{2}\right)}\right)$
(ii) Ordering: $\quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \left(I_{1}, I_{2}\right)} \geq 0$
σ_{i} 's are singular values of A and the i-th column vectors of $U^{(1)}$ and $U^{(2)}$ are, resp., i-th left and right singular vector.

Higher-Order Singular Value Decomposition (HOSVD)
Any complex $I_{1} \times I_{2} \times \cdots \times I_{n}$-tensor A can be written as the product
where

$$
A_{i_{1} i_{2} \cdots i_{n}}=\sum_{j_{1} j_{2} \cdots j_{n}} S_{j_{1} j_{2} \cdots j_{n}} U_{j_{1} i_{1}}^{(1)} U_{j_{2} i_{2}}^{(2)} \cdots U_{j_{n} i_{n}}^{(n)}
$$

1. $U^{(k)}$ is a unitary $I_{k} \times I_{k}$-matrix.
2. S is a complex $I_{1} \times I_{2} \times \cdots \times I_{n}$-tensor such that
(i) Fixing the k-th index of S, say $S_{i_{k}=\alpha}$, and if $\alpha \neq \beta$, then

$$
\sum_{i_{1} i_{2} \cdots i_{n}} S_{i_{1} i_{2} \cdots i_{k-1} \alpha i_{k+1} \cdots i_{n}} S_{i_{1} i_{2} \cdots i_{k-1} \beta i_{k+1} \cdots i_{n}}=0
$$

(ii) Ordering :

$$
\begin{gathered}
\left\|S_{i_{k}=\alpha}\right\|:=\sqrt{\sum_{i_{1} i_{2} \cdots i_{n}} S_{i_{1} i_{2} \cdots i_{k-1}} \alpha i_{k+1} \cdots i_{n}} S_{i_{1} i_{2} \cdots i_{k-1} \alpha i_{k+1} \cdots i_{n}} \\
\left\|S_{i_{k}=1}\right\| \geq\left\|S_{i_{k}=2}\right\| \geq \cdots \geq\left\|S_{i_{k}=I_{k}}\right\| \geq 0
\end{gathered}
$$

SVD introduces virtual dof

Consider the system consisting of subsystems X and Y. Setting the pure state of the total system as

$$
|\psi\rangle=\sum_{x \in X} \sum_{y \in Y} \psi(x, y)|x\rangle \otimes|y\rangle
$$

If $\psi(x, y)=u(x) v(y)$, then the state is separable. Actually,

$$
|\psi\rangle=\left(\sum_{x \in X} u(x)|x\rangle\right) \otimes\left(\sum_{y \in Y} v(y)|y\rangle\right)
$$

SVD introduces virtual dof

Regarding $\psi(x, y)$ as a matrix element. By SVD,

$$
\psi(x, y)=\sum_{l=1}^{N} u_{l}(x) \sigma_{l} v_{l}(y)
$$

If $N>1$, the state is not pure. However, as a matrix,

$$
\psi=U \Sigma V^{\dagger}=\left(U \Sigma^{1 / 2}\right)\left(V \Sigma^{1 / 2}\right)^{\dagger}=: \widetilde{U} \tilde{V}^{\dagger}
$$

This looks very similar with $\psi(x, y)=u(x) v(y)$.

