
Journal Club 2018/10/5 Akiyama Shinichiro  

Coarse-graining renormalization 
by higher-order singular value decomposition

Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang
Phys. Rev. B 86 045139 (2012)



Contents

1. Introduction

2. Tensor Network Method (Ex. 2D Ising model)

I) Construction of Tensor Network Representation

II) Higher-Order Tensor Renormalization Group

3. Conclusion



The application for QFT is a recent hot topic!

Quantum Field Theory

Renormalization Group
(Gell-Mann-Low Eq.)

Wilsonian RG 
scale-dependent “effective theory”

Critical Phenomena

Block Spin Transformation
(Real space RG)

Functional RG 
In the previous journal club, 

Suzuki san talked about this.

Density Matrix RG
1D quantum systems

Tensor Network Method
Attacking higher dimension!



The “Tensor Network Method” discussed here consists of 
2 steps : 

� Convert the system on the real space 
into the “virtual” network by Singular Value Decomposition

� Compress the network,
preserving relevant elements in the long-scale physics 



Step1 Move on to the TN representation

Ex) 2D classical Ising Model (with periodic boundary): !" = ±1

Singular value decomposition for the transfer matrix element :

� Change of variables from ! to & (bond d.o.f.).
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For each site in the real space, we define the 4-rank tensor :

: Ising variable

Real Space Tensor 
Network

: 4-rank tensor 

One obtains the TN representation of the partition function :
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Step2 Higher-Order Tensor Renormalization Group (HOTRG)

=:

=:

=:
When we map a 4-rank tensor by         ,
proper approximation is necessary.

A naïve strategy to approach 
a square network, starting by # .



The basic idea of the transformation is 

“2 local tensors ⇒ 1 Coarse-grained tensor”

And we want to obtain accurate thermodynamic properties.

(i) Align 2 local tensors vertically and contract them :

"($) : 2$×2$-site lattice 

⇒(($) : 2$×2$)*-site lattice 
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(ii) Let us define the block spin transformation!
Unfolding ! into matrices in two ways, consider ℳℳ# such that  

$1
$2

%$1
%$2

and by the eigen value decomposition,

$′1
$′2

'$′1
'$′2

Here, diagonal elements of Λ)s are arranged in the descending order.
Corresponding vectors in +)s are also done in the same way.
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(iii) Define the block spin transformation. 

where '()* is an integer we can choose freely.

+, < +. ⇒ !(#$%) ≔ !,

⇒ Using a part of unitary matrix, we define the transformation

where 1, 13 ∈ 1,2,⋯ , '()* .
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If one aligns 2 local tensors vertically, it is necessary to do 
horizontally in the next.

In this way, 2"-times HOTRG calculation gives the partition 
function on the 2#×2# square lattice by 

……

% ≈ Tr )(+#)

In the 2D HOTRG calculation, 
memory ~./012

computational time ~./013

……



In the 3D HOTRG,

! ≈ Tr %('()

memory ~+,-./
computational time ~+,-.00

In the 4D HOTRG,

! ≈ Tr %(1()

memory ~+,-.2
computational time ~+,-.03



Exact solution VS HOTRG

!

Free energy density "(!, %&'() = − !, ln/(!, %&'()
, = 212×212

Replication Test (S.A.)



Exact solution VS HOTRG

Relative error

!

"#(!) = # !, ()*+ = 24 − #/01)+(!)
#/01)+(!)

Replication Test (S.A.)

In the vicinity of !) ≈ 2.269, eigen values of ℳℳ7 decreases slowly. 



Conclusion

�HOTRG exploits a kind of block-spin transformation and 
it is easy to reach the thermodynamic limit.
�In principle, HOTRG can be applied for higher 

dimensional systems.
�However, large-!"#$ calculation in higher dimensional 

systems is computationally challenging.
�Research for the “finite-!"#$ scaling” is of great 

interest!
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!-state Ferromagnetic Potts Model on Cubic Lattice

⇒ Ising Model

! = 3

! = 2

⇒ &' is the center symmetry of ()(3)

The initial local tensor is given by

, = −.

/0

12324 where 5/ ∈ 0,1,⋯ , ! − 1
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HOTRG calculation

The partition function on the cube is given by

Contract 2 tensors vertically and one has to truncate the size of 
the tensor corresponding to the rest directions :   

! ≈ Tr %('()



After enough times of iteration, consider the !"#$×!"#$ matrix,

the degeneracy of & plays a good indicator of the transition point

Ordered phase ⇒ () symmetry is broken spontaneously

Disordered phase ⇒ () symmetry is preserved

The largest eigenvalue of & is 3-fold degenerated, * = 3

The largest eigenvalue of & is unique, * = 1

&../ ≔1
23
42233../(6)

* ≔ (Tr & ):
Tr &:



⇒ Distinguishable 2 phases are confirmed

S. Wang, Z. Y. Xie, J. Chen, B. Normand, and T. Xiang (2014)



!"#$ = 14

⇒ Numerical derivative

⇒ Adding the source term
to the Boltzmann weight,
i.e. the initial tensor )(+).

⇒ Numerical derivative w.r.t. the 
magnetic field.
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S. Wang, Z. Y. Xie, J. Chen, B. Normand, and T. Xiang (2014)



Investigation of the !"#$–dependence of %", but ……
the lack of convergence !

%" = 1.8166(5)

S. Wang, Z. Y. Xie, J. Chen, B. Normand, and T. Xiang (2014)



[ 5 ] A. Bazavov and B. A. Berg, Phys. Rev. D 75, 094506 (2007) 
[14] H. W. J. Blote and R. H. Swendsen, Phys. Rev. Lett. 43, 799 (1979)
[18] W. Janke and R. Villanova, Nucl. Phys. B 489, 679 (1997)
[19] T. Nishino, K. Okunishi, Y. Hieida, N. Maeshima, and Y. Akutsu, Nucl. Phys. B 575, 504 (2000); 

A. Gendiar and T. Nishino, Phys. Rev. E 65, 046702 (2002)
[45] I. Ono and K. Ito, J. Phys. C 15, 4417 (1982)
[46] W. G. Wilson and C. A. Vanse, Phys. Rev. B 36, 587 (1987)
[47] N. A. Alves, B. A. Berg, and R. Villanova, Phys. Rev. B 43, 5846 (1991)
[48] S. Miyashita, D. D. Betts, and C. J. Elliott, J. Phys. A 12, 1605 (1979)

Comparison of the estimated jump of internal energy and transition point  
S. Wang, Z. Y. Xie, J. Chen, B. Normand, and T. Xiang (2014)



! = 2 Potts Model ⇔ Ising Model

Regarding %& = 0 as (& = −1 and %& = 1 as (& = +1 ,

hold. 
That is, the Hamiltonian of 2-state Potts Model can be written as 

This is nothing but the Ising model.

, = −-.
&/
012,14 − ℎ.

&
012,6 where %& ∈ 0,1

, = − -
2.&/

(&(/ +
ℎ
2.&

(& + Const.

012,14 =
1 + (&(/

2 012,6 =
1 − (&
2



Singular Value Decomposition (SVD)

For any complex !"×!$ -matrix % can be written as the product

where
1. &(") is an !"×!" unitary matrix. 

2. &($) is an !$×!$ unitary matrix. 

3. ) is an !"×!$-matrix such that 

(i) Pseudo-diagonality :

(ii) Ordering :

*+ ′s are singular values of % and the --th column vectors of 
&(") and &($) are, resp., --th left and right singular vector.

% = &("))&($)/

) = diag *", *$,⋯ , *678(9:,9;)

*" ≥ *$ ≥ ⋯ ≥ *678 9:,9; ≥ 0



SVD introduces virtual dof

Consider the system consisting of subsystems ! and ".
Setting the pure state of the total system as

| ⟩% = '
(∈*

'
+∈,

% -, / | ⟩- ⊗ | ⟩/

If % -, / = 1 - 2 / , then the state is separable. Actually,

| ⟩% = '
(∈*

1 - | ⟩- ⊗ '
+∈,

2 / | ⟩/



SVD introduces virtual dof

Regarding ! ", $ as a matrix element. By SVD,  

! ", $ =&
'()

*
+' " ,'-' $

If . > 1, the state is not pure. However, as a matrix,  

! = 1Σ34 = 1Σ)/6 3Σ)/6 4 =: 81 934

This looks very similar with ! ", $ = + " - $ .



Higher-Order Singular Value Decomposition (HOSVD)
Any complex !"×!$×⋯×!&-tensor ' can be written as the product

where
1. ((*) is a unitary !*×!* -matrix. 

2. , is a complex !"×!$×⋯×!&-tensor such that

(ii) Ordering :

(i) Fixing the --th index of ,, say ,./01, and if 2 ≠ 4, then  

'.5.6⋯.7 = 9
:5:6⋯:7

,:5:6⋯:7 (:5.5
(") (:6.6

($) ⋯(:7.7
(&)

9
.5.6⋯.7

,.5.6⋯./;51./<5⋯.7,.5.6⋯./;5=./<5⋯.7 = 0

,./01 ≔ 9
.5.6⋯.7

,.5.6⋯./;51./<5⋯.7,.5.6⋯./;51./<5⋯.7

,./0" ≥ ,./0$ ≥ ⋯ ≥ ,./0A/ ≥ 0



TRG VS HOTRG

“Tensor Renormalization Group”
M. Levin and C. P. Nave, Phys. Rev. Lett. 99 120601 (2007)

In TRG, SVD for !""#$$# itself is a key in compressing the network.

!""#$$# ≈ &
'()

*+,-
.'/"#$,' .'1$#",' or !""#$$# ≈ &

'()

*+,-
.'/"$,' .'1"#$#,'



TRG VS HOTRG

On the other hand, HOTRG exploits HOSVD of ! = ∑$$, so 
$ itself is not decomposed.

Ex) 2D Ising model 

Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang (2012)



Density Matrix Renormalization Group (1/9)

DMRG is a kind of variational method in which one optimizes the 
variational wave function expressed by the matrix product of a 
part of a unitary matrix, which diagonalizes a density matrix.

For any projection operator !, such that
!" = ! and Tr! = &

the inequality,
Tr' ≥ Tr!'

holds. 

The ground state and its energy of the 1D quantum systems can 
be obtained with high accuracy! 

Fundamental Fact



Ex) 1D !-site " = 1/2 Heisenberg Model 

! −( sites( sites

Subsystem ) Subsystem *

+, = ∑./0120 "⃗. 4 "⃗.50

The matrix representation of +, is given by 21×21 symmetric 
matrix.

Density Matrix Renormalization Group (2/9)



| ⟩#$ : the basis of the Hilbert space for the total system

%&'&('( ≔ #$ *% #+$+

For the density matrix ,- = e01 *2, the element -&'&('( describes 
the following development:

3 = 4

3 = 0

#

#+

$

$+

-6&&( -7''(

Density Matrix Renormalization Group (3/9)



! = Tr %& = Tr'()) %&'())

Let us compress 2,×2, matrix %&' into .×. matrix /& .
Since %&' is symmetric, 

∃ 12 = 4⃗5, 4⃗7,⋯ , 4⃗79 s.t. 12: %&' 12 = diag ?5, ?7,⋯ , ?79

Assuming the diagonal elements are arranged in the descending 
order,

@! ≔B
CD5

E
?C

gives the best approximation of !. So, we choose .×. matrix /& as  

/& = diag ?5, ?7,⋯ , ?E

Density Matrix Renormalization Group (4/9)



This selection is equally expressed by the transformation

!" = %⃗&, %⃗(,⋯ , %⃗*

The matrix !" truncates the size of +,-. 
Defining . ≔ !" !"0, this transformation is expressed by

12 = Tr-. +,-

5, ≔ !"0 +,- !"

The projection . can be seen as a block spin transformation 
from the original system to the coarse-grained system.

Density Matrix Renormalization Group (5/9)



Let us consider the following example

!

"

#

$

%

&' &( &) &* &+ s-

Starting the case . = 2 and 123 is diagonalized iteratively.

Ex) 4 = 6

Density Matrix Renormalization Group (6/9)



Finally, we approach the total !" and

#$%&' ( !" #$%&' = diag(e0123, e0125,⋯ )

This indicates that the energy eigen state is given by 

Ψ959:9;9<9=9>? = @
ABCD

#959:,A$A9;,B%B9<,C&C9=,D'D9>,?

which satisfies

EFΨ? = G?Ψ?

Density Matrix Renormalization Group (7/9)



Now the eigen state is expressed by the unitary matrix product

In the zero-temperature limit, one expects 

Ψ"#"$"%"&"'"() = +
,-./

0"#"$,,2,"%,-3-"&,.4."',/5/"(,)

gives a good approximation of Ψ6!

7Ψ"#"$"%"&"'"(6 = +
,-./

80"#"$,, 82,"%,- 93-"&,. 84."',/ 75/"(,6

Density Matrix Renormalization Group (8/9)



This is called “Matrix Product State” ansatz. 

Here, the all elements of the tilde matrices play the role of 
variational parameters. The goal of DMRG is  to minimize 

!Ψ#$#%#&#'#(#)⋯+ = -
./01⋯

23#$#%,. 25.#&,/ 67/#',0 280#(,1 !91#),: ⋯

The real DMRG algorithm starts with the ansatz: the ground 
state of the 1D quantum many-body system is given by 

; =
!Ψ+ <= !Ψ+

!Ψ+ !Ψ+

Density Matrix Renormalization Group (9/9)



Finite−" scaling (semi-infinite 1D quantum chain)

In the numerical analysis of critical phenomena, we have to care 
the correction originating from finite size and finite " (# of states).
Ground state energy is modified by these corrections as

# = #% +
'
() +

*
( +(")

+ " =.
/0123

4
5/

The second term is the finite-size correction and the third term is 
the finite-" correction:



Focusing on the finite-! correction, it is known that !-dependence 
of the entanglement entropy is given by

" ∼ 1
12
& + 1

log! =: &-6 log!

Finite−! scaling (semi-infinite 1D quantum chain)

For the semi-infinite 1D chain, the Calabrese-Cardy formula says

" ∼ &
6 log0

From these,

0 ∼ !1


