Machine Learning Estimators for Lattice QCD Observables arXiv:1807.05971v2 [hep-lat]

B. Yoon, T. Bhattacharya, R. Gupta

目的:

Machine Learning を使って2点関数から3点関数を予測する

結果: 概ね良好な結果が得られた

Machine Learning in Lattice QCD

Machine Learning:

Training dataを使って適当(適切)な予測モデル(F)を作る方法

$$\{O_i, X_i\}$$
の組N個 (Machine Learning)
 $F(X_i) = O_i^P \approx O_i$ $O_j^P = F(X_j)$

 X_j :Training data N 個と重ならない M 個

Machine Learningを使ったLattice QCD関係の研究

- Lefschetz Thimble Alexandru, Bedaque, Lamm, Lawrence, PRD96:9:094505(2017) Mori, Kashiwa, Ohnishi, PTEP2018:2:023B04(2018) Kashiwa, Mori, Ohnishi, PRD99:1:014033(2019)
- 2. Order parameter or action paramters from configuration Wetzel, Scherzer, PRB96:18:184410(2017) Tanaka, Tomiya, JPSJ86:6:063001(2017) Shanahan, Trewartha, Detmold, PRD97:9:094506(2018) 大野さん文献紹介(2018.6.8)
- 3. AdS/CFT

Hashimoto, Sugishita, Tanaka, Tomiya, PRD98:4:046019(2018)

今回の話はこれまでよりもシンプルな応用

Nucleon chargeの計算

核子2点相関関数 $t \gg 1$ $C_2(t) = \langle 0|N(t)\overline{N}(0)|0\rangle = Z_N^2 e^{-M_N t}, \quad Z_N = \langle 0|N(0)|N\rangle$

核子3点相関関数 $\tau - t, t \gg 1 \rightarrow \overline{M}$ 起状態を落とすため $C_3^{\Gamma}(\tau, t) = \langle 0|N(\tau)J_{\Gamma}(t)\overline{N}(0)|0 \rangle = Z_N^2 e^{-M_N \tau} g_{\Gamma}$

quark bilinear current J_{Γ} = Vector, Axialvector, Tensor, Scalar

- 1. 励起状態の寄与を調べる $\rightarrow C_3^{\Gamma}(\tau,t)$ の τ 依存性を調べる必要
- 2. τ ごとに $C_{3}^{\Gamma}(\tau, t)$ の計算が必要 (異なる Γ, t は同時に計算できる)
- 3. でも計算コストは抑えたい

⇒ 既知のデータから $C_{3}^{\Gamma}(\tau,t)$ を正しく予測できれば計算コストを抑えることが可能

2点関数と3点関数の相関

$C_2(\tau) \geq C_3^{\Gamma}(\tau, \tau/2)$ には強い相関がある(特に C_3^V)

この相関を使って $C_2(t)$ から $C_3^{\Gamma}(\tau, t)$ を予測するモデルを作りたい ⇒ Machine Learning

4

Bias Correction

• Simple average 例) $X_i \& N + M$ 配位、 $O_i \& N$ 配位で計算 Traning Data N 個を使って予測モデル $F(X_i) = O_i^P \& f$ 作る $\overline{O} = \frac{1}{M} \sum_{i \in M} O_i^P(X_i)$

Bias Correction

$$\overline{O} = \frac{1}{M} \sum_{i \in M} O_i^P(X_i) + \frac{1}{N_b} \sum_{i \in N_b} (O_i - O_i^P(X_i))$$

第2項は $F(X_i)$ が適切なら小さいはず(効果は後で見る) $N_t \ge N_b$ は重ならないように選ぶ

シミュレーションパラメータ

- $M_{\pi} \approx 310$ MeV, $a \approx 0.089$ fm, Clover on HISQ
- $C_3^{\Gamma}(\tau, t)$ with $\tau = 8, 10, 12, 14$
- 2263配位 (64 測定/配位)
 - 3 配位飛ばし 680 配位を選択

Traning Data $N_t = 60$, Bias Correction Data $N_b = 620$

Test Data M = 1583

- ・
 統計誤差評価はBootstrap
- Machine Learning

Boosted Decision Tree Regression algorithm というものを使った 調整パラメータが少なく、overfittingの危険性が低い 数値安定性のため $C_3^{\Gamma}(\tau,t)/\mathcal{N}, C_2(\tau)/\mathcal{N}$ と規格化 ($\mathcal{N} = \langle C_2(\tau) \rangle$) モデル生成十予測 = ノートパソコンで数分

直接計算した結果と Machine Learning で予測した結果を比較し再現性を調べる

結果1 $\tau = 10$

Training Data 60 配位 + Bias Correction Data 620 配位

 $X = C_2(\tau) (0 \le \tau \le 20), \ O = C_3^{\Gamma}(\tau, t) (\tau = 8, 10, 12, 14, 0 \le t \le \tau, \Gamma = S, A, T, V)$ Test Data 1583 配位

インプット: $X = C_2(\tau) (0 \le \tau \le 20)$, 予測: $O^P = C_3^{\Gamma}(\tau, t) (\tau = 8, 10, 12, 14, 0 \le t \le \tau)$

 $g_{\Gamma} = C_3^{\Gamma}(\tau = 10, t = 5)/C_2(\tau = 10)$ のTest Data 結果

Γ	DM	BC-Prediction	Raw-Prediction	Bias
\mathbf{S}	0.936(10)	0.933(15)	0.931(45)	+0.002(46)
А	1.2011(41)	1.1997(48)	1.1999(109)	-0.0003(105)
Т	1.0627(34)	1.0638(39)	1.0642(79)	-0.0004(78)
V	1.0462(36)	1.0455(36)	1.0453(39)	+0.0002(20)

DM: Direct Measurement[目標とする結果], BC-Prediction: Bias Corrected average, Raw-Prediction: Simple average, Bias: Bias Correction

Biasは小さいが誤差が大きい。Raw-PredictionもDMより誤差が大きい BC-Prediction = Raw-Prediction + Bias は誤差がDMと同程度 → DMを再現できた (Biasは入れる必要がある)

結果1 $\tau = 10$

Training Data 60 配位 + Bias Correction Data 620 配位

 $X = C_2(\tau) (0 \le \tau \le 20), \ O = C_3^{\Gamma}(\tau, t) (\tau = 8, 10, 12, 14, 0 \le t \le \tau, \Gamma = S, A, T, V)$ Test Data 1583 配位

インプット: $X = C_2(\tau) (0 \le \tau \le 20)$, 予測: $O^P = C_3^{\Gamma}(\tau, t) (\tau = 8, 10, 12, 14, 0 \le t \le \tau)$

 $g_{\Gamma} = C_3^{\Gamma}(\tau = 10, t = 5)/C_2(\tau = 10)$ のTest Data 結果

Γ	DM	BC-Prediction	Raw-Prediction	Bias
S	0.936(10)	0.933(15)	0.931(45)	+0.002(46)
А	1.2011(41)	1.1997(48)	1.1999(109)	-0.0003(105)
Т	1.0627(34)	1.0638(39)	1.0642(79)	-0.0004(78)
V	1.0462(36)	1.0455(36)	1.0453(39)	+0.0002(20)

DM: Direct Measurement[目標とする結果], BC-Prediction: Bias Corrected average, Raw-Prediction: Simple average, Bias: Bias Correction

Biasは小さいが誤差が大きい。Raw-PredictionもDMより誤差が大きい BC-Prediction = Raw-Prediction + Bias は誤差がDMと同程度 \rightarrow Raw-Prediction と Bias は強く相関している 相関の原因はモデルF(X)と配位のauto correlation?

結果2 τ = 8, 10, 12, 14

インプット: $X = C_2(\tau)(0 \le \tau \le 20)$, 予測: $O^P = C_3^{\Gamma}(\tau, t)(\tau = 8, 10, 12, 14, 0 \le t \le \tau)$ インプット: $X = C_2(\tau)(0 \le \tau \le 20) + C_3^{\Gamma}(12, t)$, 予測: $O^P = C_3^{\Gamma}(\tau, t)(\tau = 8, 10, 14, 0 \le t \le \tau)$ 統計誤差は Traning+BC の O_i も含めたもの

 $C_{3}^{\Gamma}(12)$ をインプットに加えると再現性は若干改善する

結果2 τ = 8, 10, 12, 14

インプット: $X = C_2(\tau)(0 \le \tau \le 20)$, 予測: $O^P = C_3^{\Gamma}(\tau, t)(\tau = 8, 10, 12, 14, 0 \le t \le \tau)$ インプット: $X = C_2(\tau)(0 \le \tau \le 20) + C_3^{\Gamma}(12, t)$, 予測: $O^P = C_3^{\Gamma}(\tau, t)(\tau = 8, 10, 14, 0 \le t \le \tau)$ 統計誤差は Traning+BCの O_i も含めたもの

$g_{\Gamma}(\tau \to \infty)$ の結果

	DM	$\operatorname{Pred}[C_{2\mathrm{pt}}]$	$Pred.[C_{2pt}, C_{3pt}(12)]$
g_S	0.989(18)	0.973(29)	0.981(20)
g_A	1.2303(51)	1.2289(83)	1.2304(61)
g_T	1.0311(51)	1.0347(68)	1.0326(54)
g_V	1.0443(19)	1.0439(22)	1.0440(21)

DMを概ね再現できた(統計誤差は若干大きくなる) $C_2 + C_3^{\Gamma}(12)$ ではDMより誤差が10-20%大きくなる \rightarrow 計算コストは 35% 抑制できた(統計誤差増加分を考慮)

論文では CP violating $C_2(t)$ の結果も議論しているが同じような結論なので省略

まとめ

- Machine Learningを使って、 C_2 から C_3^{Γ} を概ね再現できた 統計誤差を再現するためには Bias Correction が必要 O_i^P と Biasには強い相関がある (理由はよくわからない) 統計誤差は若干大きくなる
- インプットを増やすと再現性は若干改善する
- $C_2 + C_3^{\dagger}(12)$ では直接計算より誤差が10%大きくなる \rightarrow 計算コストを 35% 抑制(統計誤差増加分を考慮)