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目的:
Machine Learning を使って2点関数から3点関数を予測する

結果:
概ね良好な結果が得られた
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Machine Learning in Lattice QCD

Machine Learning:
Training dataを使って適当(適切)な予測モデル(F )を作る方法

{Oi, Xi}の組N個
Machine Learning−−−−−−−−−−−−−→
F (Xi)=OP

i ≈Oi

OP
j = F (Xj)

Xj:Training data N個と重ならないM個

Machine Learningを使ったLattice QCD関係の研究

1. Lefschetz Thimble
Alexandru, Bedaque, Lamm, Lawrence, PRD96:9:094505(2017)
Mori, Kashiwa, Ohnishi, PTEP2018:2:023B04(2018)
Kashiwa, Mori, Ohnishi, PRD99:1:014033(2019)

2. Order parameter or action paramters from configuration
Wetzel, Scherzer, PRB96:18:184410(2017)
Tanaka, Tomiya, JPSJ86:6:063001(2017)
Shanahan, Trewartha, Detmold, PRD97:9:094506(2018) 大野さん文献紹介(2018.6.8)

3. AdS/CFT
Hashimoto, Sugishita, Tanaka, Tomiya, PRD98:4:046019(2018)

今回の話はこれまでよりもシンプルな応用
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Nucleon chargeの計算

核子2点相関関数 t ≫ 1

C2(t) = ⟨0|N(t)N(0)|0⟩ = Z2
Ne−MN t, ZN = ⟨0|N(0)|N⟩

核子3点相関関数 τ − t, t ≫ 1 → 励起状態を落とすため
CΓ
3 (τ, t) = ⟨0|N(τ)JΓ(t)N(0)|0⟩ = Z2

Ne−MNτgΓ
quark bilinear current JΓ = Vector, Axialvector, Tensor, Scalar

gΓ =
CΓ
3 (τ, t)

C2(τ)
=

gV 電荷
gA axial charge (最も基本的な量)
gT 標準模型を超えた物理探索で重要
gS 標準模型を超えた物理探索で重要

1. 励起状態の寄与を調べる → CΓ
3 (τ, t)のτ依存性を調べる必要

2. τごとにCΓ
3 (τ, t)の計算が必要(異なるΓ, tは同時に計算できる)

3. でも計算コストは抑えたい

⇒ 既知のデータからCΓ
3 (τ, t)を正しく予測できれば計算コストを抑えることが可能

!

"

Figure 39: The two- and three-point correlation functions (illustrated by Feynman diagrams)
that need to be calculated to extract the ground state nucleon matrix elements. (Left) the
nucleon two-point function. (Middle) the connected three-point function with source-sink
separation τ and operator insertion time slice t. (Right) the disconnected three-point function.

fields (and more generally also of gluon fields), the predominant change in the corresponding
couplings under a scale transformation is due to QCD. To define the operators and their
couplings at the hadronic scale µ, one constructs renormalized operators, whose MEs are
finite in the continuum limit. This requires calculating both multiplicative renormalization
factors, including the anomalous dimensions and finite terms, and the mixing with other
operators. We discuss the details of the renormalization factors needed for each of the six
operators reviewed in this report in Sec. 10.1.3.

Once renormalized operators are defined, the MEs of interest are extracted using expecta-
tion values of two-point and three-point correlation functions illustrated in Fig. 39, where the
latter can have both quark line connected and disconnected contributions. In order to isolate
the ground state ME, these correlation functions are analyzed using their spectral decom-
position. The current practice is to fit the n-point correlation functions (or ratios involving
three- and two-point functions) including contributions from one or two excited states.

The ideal situation occurs if the time separation τ between the nucleon source and sink
positions, and the distance of the operator insertion time from the source and the sink, t
and τ − t, respectively, are large enough such that the contribution of all excited states is
negligible. In the limit of large τ , the ratio of noise to signal in the nucleon two and three-

point correlation functions grows exponentially as e(MN−3
2Mπ)τ [815, 816], where MN and Mπ

are the masses of the nucleon and the pion, respectively. Therefore, in particular at small
pion masses, maintaining reasonable errors for large τ is challenging, with current calculations
limited to τ ! 1.5 fm. In addition, the mass gap between the ground and excited (including
multi-particle) states is smaller than in the meson sector and at these separations, excited-
state effects can be significant. The approach commonly taken is to first obtain results with
high statistics at multiple values of τ , using the methods described in Sec. 10.1.1. Then,
as mentioned above, excited-state contamination is removed by fitting the data using a fit
form involving one or two excited states. The different strategies that have been employed to
minimize excited-state contamination are discussed in Sec. 10.1.2.

Usually, the quark-connected part of the three-point function (corresponding to the plot
in the centre of Fig. 39) is computed via the so-called “sequential propagator method”, which
uses the product of two quark propagators between the positions of the initial and the final
nucleons as a source term for another inversion of the lattice Dirac operator. This implies
that the position of the sink timeslice is fixed at some chosen value. Varying the value of the
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2点関数と3点関数の相関

C2(τ)とCΓ
3 (τ, τ/2)には強い相関がある(特にCV

3 )
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FIG. 1. Absolute value of the correlation coe�cients between
the proton C2pt and C3pt on a09m310 ensemble.

and any possible finite sample bias, using a bootstrap
procedure [10] that independently selects N labeled and
M �N unlabeled items for each bootstrap sample.

As a first example, we demonstrate that this method
reduces the computing cost for the isovector (u�d) com-
bination of the axial (A), vector (V), scalar (S) and tensor
(T) charges of the nucleon [11, 12]. On the lattice, the
nucleon charges are extracted from the ratio of the three-
point (CA,S,T,V

3pt

(⌧, t)) to two-point (C
2pt

(⌧)) correlation
functions of the nucleon. In the three-point function,
a quark bilinear operator q̄�q is inserted at Euclidean
time t between the nucleon source and sink. The desired
ground-state result is obtained by removing the excited
state contamination [13, 14] using calculations at mul-
tiple source-sink separations, ⌧ , and extrapolating the
results to ⌧ ! 1.

The results presented use correlations functions al-
ready calculated on the a09m310 ensemble generated
by the MILC Collaboration [15, 16] at lattice spacing
a ⇡ 0.089 fm and pion mass M⇡ ⇡ 313 MeV [11, 12].
The data consists of 144832 measurements on 2263 gauge
configurations. On each configuration, 64 measurements
from randomly chosen and widely separated source po-
sitions were made. The quark propagators were calcu-
lated using the Multigrid inverter [17, 18] ported in the
Chroma software suite [19] with a sloppy stopping crite-
rion. The bias introduced by using a sloppy convergence
condition is much smaller than the statistical uncertainty
for nucleon observables [12, 20] and, therefore, neglected
in this study. If necessary, however, it can be easily in-
corporated by modifying Eq. (1).

The correlation coe�cients between the various C
3pt

measured at t = ⌧/2 = 5a and the C
2pt

at various
values of ⌧ , are shown in Fig. 1. The strongest corre-
lation is with the value of C

2pt

near the sink of C
3pt

at ⌧ = 10a, and not near the t = 5a of operator in-
sertion. Such correlations allow the prediction of C

3pt

from C
2pt

using a Boosted Decision Tree (BDT) Regres-

� DM BC-Prediction Raw-Prediction Bias

S 0.936(10) 0.933(15) 0.931(45) +0.002(46)

A 1.2011(41) 1.1997(48) 1.1999(109) �0.0003(105)

T 1.0627(34) 1.0638(39) 1.0642(79) �0.0004(78)

V 1.0462(36) 1.0455(36) 1.0453(39) +0.0002(20)

TABLE I. Average of C�
3pt(10a, 5a)/hC2pt(10a)i on the unla-

beled data set. DM is the directly measured result, and Raw-

Prediction is the ML prediction from the C2pt measurements
without BC. Bias is the estimated size of bias calculated on
the BC data set, and BC-Prediction is the ML prediction with
BC.

sion algorithm based on the Classification and Regres-
sion Trees (CART) algorithm [21] enhanced by Gradient
boosting [22, 23], which is available in scikit-learn python
ML library [24]. BDT is a powerful regression algorithm
with small number of tuning parameters and low risk of
overfitting. For the prediction of C

3pt

, we use 100 boost-
ing stages of depth-3 trees with learning rate of 0.1. It
is also fast: for the data sizes we are considering, it only
takes a couple of minutes on a laptop to find an appropri-
ate predictor and evaluate it on the unlabeled samples.
Note that, in this example, the pattern of correlation is
such that a linear regression algorithm (such as LASSO
[25, 26] or Ridge [27]) gives predictions with reasonable
precision. Such a simplification does not occur for the
second example described later.
We choose 680 of the 2263 configurations, separated

by 3 configurations in trajectory order, as the labeled
data. To determine the number of training configura-
tions, we found that the variance was flat between 60
and 120 configurations. We therefore picked 60 config-
urations from the labeled set for training and 620 for
bias correction. The 1583 unlabeled configurations were
used for prediction. The BDT regression algorithm was
trained to predict CA,S,T,V

3pt

(⌧, t)/N for all ⌧ and t with
{C

2pt

(⌧)/N for ⌧/a = 0, 1, 2, . . . , 20} as input. The nor-
malization N ⌘ hC

2pt

(⌧)i was needed to make numbers
of O(1) for numerical stability of the BDT in the scikit-
learn library. The training and prediction steps treat
data from each source position as independent, whereas
the bias corrected estimates for each bootstrap sample
are obtained using configuration averages in Eq. (1). The
errors are given by the bootstrap resampling method.

Data in Table I show that the statistical errors in the
prediction and the bias correction terms are large, but
the error in the BC estimate is much smaller and essen-
tially identical to that in the directly measured (DM)
estimates. This implies strong correlations between the
two terms. Fig. 2 shows that the statistical fluctuations
in the DM data are larger than the prediction error
(PE ⌘ CDM

3pt

� CPred

3pt

) of the ML algorithm. The ratios
of the standard deviations of the PE and DM data
at t = ⌧/2 = 5a are �

PE

/�
DM

= 0.79, 0.49, 0.44 and

CΓ,u
3 , CΓ,d

3 はu, dクォークカレントの計算

この相関を使ってC2(t)からCΓ
3 (τ, t)を予測するモデルを作りたい

⇒ Machine Learning

4



Bias Correction

• Simple average

例) XiをN +M配位、OiをN配位で計算
Traning Data N個を使って予測モデルF (Xi) = OP

i を作る

O =
1

M

∑
i∈M

OP
i (Xi)Prediction Bias

• !(#$) = '$( ≈ '$
• Simple average

' = 1
+ ,

$-./0

./1
'$(

is not correct due to prediction bias
• Prediction = TrueAnswer + Noise + Bias
• ML prediction may have bias

'$( ≠ '$
Bias = '$( − '$ Hi
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s
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w
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s

Low Variance High Variance
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Bias Correction

• Simple average
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OP
i はBias(⟨Oi⟩ − ⟨OP

i ⟩ ̸= 0)を持つかもしれないので補正項をいれる
Traning Data Nt個を使って予測モデルF (Xi) = OP

i を作る

O =
1

M

∑
i∈M

OP
i (Xi) +

1

Nb

∑
i∈Nb

(Oi −OP
i (Xi))

第2項はF (Xi)が適切なら小さいはず(効果は後で見る)

NtとNbは重ならないように選ぶ
Bias Correction

• Average of predictions on test data with bias correction

! = 1
$ %

&'()*

()+
!&, +

1
./

%
&'(0)*

(0)(1
!& − !&,

• Expectation value, ! = !&, + !& − !&, = !&
• Training data should not overlap with bias correction data
• Not efficient: small training/bias correction data

Nt M

(4&, !&) (4&)

[Training Data] [Test Data]
Nb

[Bias Correction Data]

(4&, !&)
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シミュレーションパラメータ

• Mπ ≈ 310 MeV, a ≈ 0.089 fm, Clover on HISQ

• CΓ
3 (τ, t) with τ = 8,10,12,14

• 2263配位 (64測定/配位)

3 配位飛ばし 680 配位を選択
Traning Data Nt = 60, Bias Correction Data Nb = 620

Test Data M = 1583

• 統計誤差評価はBootstrap

• Machine Learning

Boosted Decision Tree Regression algorithmというものを使った
調整パラメータが少なく、overfittingの危険性が低い

数値安定性のため CΓ
3 (τ, t)/N , C2(τ)/N と規格化 (N = ⟨C2(τ)⟩)

モデル生成+予測 = ノートパソコンで数分

直接計算した結果と Machine Learning で予測した結果を比較し再現性を調べる
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結果1 τ = 10

Training Data 60 配位 + Bias Correction Data 620 配位

X = C2(τ)(0 ≤ τ ≤ 20), O = CΓ
3 (τ, t)(τ = 8,10,12,14,0 ≤ t ≤ τ,Γ = S,A, T, V )

Test Data 1583 配位

インプット: X = C2(τ)(0 ≤ τ ≤ 20), 予測: OP = CΓ
3 (τ, t)(τ = 8,10,12,14,0 ≤ t ≤ τ)

gΓ = CΓ
3 (τ = 10, t = 5)/C2(τ = 10)のTest Data結果
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FIG. 1. Absolute value of the correlation coe�cients between
the proton C2pt and C3pt on a09m310 ensemble.

and any possible finite sample bias, using a bootstrap
procedure [10] that independently selects N labeled and
M �N unlabeled items for each bootstrap sample.

As a first example, we demonstrate that this method
reduces the computing cost for the isovector (u�d) com-
bination of the axial (A), vector (V), scalar (S) and tensor
(T) charges of the nucleon [11, 12]. On the lattice, the
nucleon charges are extracted from the ratio of the three-
point (CA,S,T,V

3pt

(⌧, t)) to two-point (C
2pt

(⌧)) correlation
functions of the nucleon. In the three-point function,
a quark bilinear operator q̄�q is inserted at Euclidean
time t between the nucleon source and sink. The desired
ground-state result is obtained by removing the excited
state contamination [13, 14] using calculations at mul-
tiple source-sink separations, ⌧ , and extrapolating the
results to ⌧ ! 1.

The results presented use correlations functions al-
ready calculated on the a09m310 ensemble generated
by the MILC Collaboration [15, 16] at lattice spacing
a ⇡ 0.089 fm and pion mass M⇡ ⇡ 313 MeV [11, 12].
The data consists of 144832 measurements on 2263 gauge
configurations. On each configuration, 64 measurements
from randomly chosen and widely separated source po-
sitions were made. The quark propagators were calcu-
lated using the Multigrid inverter [17, 18] ported in the
Chroma software suite [19] with a sloppy stopping crite-
rion. The bias introduced by using a sloppy convergence
condition is much smaller than the statistical uncertainty
for nucleon observables [12, 20] and, therefore, neglected
in this study. If necessary, however, it can be easily in-
corporated by modifying Eq. (1).

The correlation coe�cients between the various C
3pt

measured at t = ⌧/2 = 5a and the C
2pt

at various
values of ⌧ , are shown in Fig. 1. The strongest corre-
lation is with the value of C

2pt

near the sink of C
3pt

at ⌧ = 10a, and not near the t = 5a of operator in-
sertion. Such correlations allow the prediction of C

3pt

from C
2pt

using a Boosted Decision Tree (BDT) Regres-

� DM BC-Prediction Raw-Prediction Bias

S 0.936(10) 0.933(15) 0.931(45) +0.002(46)

A 1.2011(41) 1.1997(48) 1.1999(109) �0.0003(105)

T 1.0627(34) 1.0638(39) 1.0642(79) �0.0004(78)

V 1.0462(36) 1.0455(36) 1.0453(39) +0.0002(20)

TABLE I. Average of C�
3pt(10a, 5a)/hC2pt(10a)i on the unla-

beled data set. DM is the directly measured result, and Raw-

Prediction is the ML prediction from the C2pt measurements
without BC. Bias is the estimated size of bias calculated on
the BC data set, and BC-Prediction is the ML prediction with
BC.

sion algorithm based on the Classification and Regres-
sion Trees (CART) algorithm [21] enhanced by Gradient
boosting [22, 23], which is available in scikit-learn python
ML library [24]. BDT is a powerful regression algorithm
with small number of tuning parameters and low risk of
overfitting. For the prediction of C

3pt

, we use 100 boost-
ing stages of depth-3 trees with learning rate of 0.1. It
is also fast: for the data sizes we are considering, it only
takes a couple of minutes on a laptop to find an appropri-
ate predictor and evaluate it on the unlabeled samples.
Note that, in this example, the pattern of correlation is
such that a linear regression algorithm (such as LASSO
[25, 26] or Ridge [27]) gives predictions with reasonable
precision. Such a simplification does not occur for the
second example described later.
We choose 680 of the 2263 configurations, separated

by 3 configurations in trajectory order, as the labeled
data. To determine the number of training configura-
tions, we found that the variance was flat between 60
and 120 configurations. We therefore picked 60 config-
urations from the labeled set for training and 620 for
bias correction. The 1583 unlabeled configurations were
used for prediction. The BDT regression algorithm was
trained to predict CA,S,T,V

3pt

(⌧, t)/N for all ⌧ and t with
{C

2pt

(⌧)/N for ⌧/a = 0, 1, 2, . . . , 20} as input. The nor-
malization N ⌘ hC

2pt

(⌧)i was needed to make numbers
of O(1) for numerical stability of the BDT in the scikit-
learn library. The training and prediction steps treat
data from each source position as independent, whereas
the bias corrected estimates for each bootstrap sample
are obtained using configuration averages in Eq. (1). The
errors are given by the bootstrap resampling method.

Data in Table I show that the statistical errors in the
prediction and the bias correction terms are large, but
the error in the BC estimate is much smaller and essen-
tially identical to that in the directly measured (DM)
estimates. This implies strong correlations between the
two terms. Fig. 2 shows that the statistical fluctuations
in the DM data are larger than the prediction error
(PE ⌘ CDM

3pt

� CPred

3pt

) of the ML algorithm. The ratios
of the standard deviations of the PE and DM data
at t = ⌧/2 = 5a are �

PE

/�
DM

= 0.79, 0.49, 0.44 and

DM: Direct Measurement[目標とする結果], BC-Prediction: Bias Corrected average,

Raw-Prediction: Simple average, Bias: Bias Correction

Biasは小さいが誤差が大きい。Raw-PredictionもDMより誤差が大きい
BC-Prediction = Raw-Prediction + Bias は誤差がDMと同程度

→ DMを再現できた (Biasは入れる必要がある)
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and any possible finite sample bias, using a bootstrap
procedure [10] that independently selects N labeled and
M �N unlabeled items for each bootstrap sample.

As a first example, we demonstrate that this method
reduces the computing cost for the isovector (u�d) com-
bination of the axial (A), vector (V), scalar (S) and tensor
(T) charges of the nucleon [11, 12]. On the lattice, the
nucleon charges are extracted from the ratio of the three-
point (CA,S,T,V

3pt

(⌧, t)) to two-point (C
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(⌧)) correlation
functions of the nucleon. In the three-point function,
a quark bilinear operator q̄�q is inserted at Euclidean
time t between the nucleon source and sink. The desired
ground-state result is obtained by removing the excited
state contamination [13, 14] using calculations at mul-
tiple source-sink separations, ⌧ , and extrapolating the
results to ⌧ ! 1.

The results presented use correlations functions al-
ready calculated on the a09m310 ensemble generated
by the MILC Collaboration [15, 16] at lattice spacing
a ⇡ 0.089 fm and pion mass M⇡ ⇡ 313 MeV [11, 12].
The data consists of 144832 measurements on 2263 gauge
configurations. On each configuration, 64 measurements
from randomly chosen and widely separated source po-
sitions were made. The quark propagators were calcu-
lated using the Multigrid inverter [17, 18] ported in the
Chroma software suite [19] with a sloppy stopping crite-
rion. The bias introduced by using a sloppy convergence
condition is much smaller than the statistical uncertainty
for nucleon observables [12, 20] and, therefore, neglected
in this study. If necessary, however, it can be easily in-
corporated by modifying Eq. (1).

The correlation coe�cients between the various C
3pt

measured at t = ⌧/2 = 5a and the C
2pt

at various
values of ⌧ , are shown in Fig. 1. The strongest corre-
lation is with the value of C
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3pt
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sertion. Such correlations allow the prediction of C

3pt

from C
2pt

using a Boosted Decision Tree (BDT) Regres-

� DM BC-Prediction Raw-Prediction Bias

S 0.936(10) 0.933(15) 0.931(45) +0.002(46)

A 1.2011(41) 1.1997(48) 1.1999(109) �0.0003(105)

T 1.0627(34) 1.0638(39) 1.0642(79) �0.0004(78)

V 1.0462(36) 1.0455(36) 1.0453(39) +0.0002(20)

TABLE I. Average of C�
3pt(10a, 5a)/hC2pt(10a)i on the unla-

beled data set. DM is the directly measured result, and Raw-

Prediction is the ML prediction from the C2pt measurements
without BC. Bias is the estimated size of bias calculated on
the BC data set, and BC-Prediction is the ML prediction with
BC.

sion algorithm based on the Classification and Regres-
sion Trees (CART) algorithm [21] enhanced by Gradient
boosting [22, 23], which is available in scikit-learn python
ML library [24]. BDT is a powerful regression algorithm
with small number of tuning parameters and low risk of
overfitting. For the prediction of C

3pt

, we use 100 boost-
ing stages of depth-3 trees with learning rate of 0.1. It
is also fast: for the data sizes we are considering, it only
takes a couple of minutes on a laptop to find an appropri-
ate predictor and evaluate it on the unlabeled samples.
Note that, in this example, the pattern of correlation is
such that a linear regression algorithm (such as LASSO
[25, 26] or Ridge [27]) gives predictions with reasonable
precision. Such a simplification does not occur for the
second example described later.
We choose 680 of the 2263 configurations, separated

by 3 configurations in trajectory order, as the labeled
data. To determine the number of training configura-
tions, we found that the variance was flat between 60
and 120 configurations. We therefore picked 60 config-
urations from the labeled set for training and 620 for
bias correction. The 1583 unlabeled configurations were
used for prediction. The BDT regression algorithm was
trained to predict CA,S,T,V

3pt

(⌧, t)/N for all ⌧ and t with
{C

2pt

(⌧)/N for ⌧/a = 0, 1, 2, . . . , 20} as input. The nor-
malization N ⌘ hC

2pt

(⌧)i was needed to make numbers
of O(1) for numerical stability of the BDT in the scikit-
learn library. The training and prediction steps treat
data from each source position as independent, whereas
the bias corrected estimates for each bootstrap sample
are obtained using configuration averages in Eq. (1). The
errors are given by the bootstrap resampling method.

Data in Table I show that the statistical errors in the
prediction and the bias correction terms are large, but
the error in the BC estimate is much smaller and essen-
tially identical to that in the directly measured (DM)
estimates. This implies strong correlations between the
two terms. Fig. 2 shows that the statistical fluctuations
in the DM data are larger than the prediction error
(PE ⌘ CDM

3pt

� CPred

3pt

) of the ML algorithm. The ratios
of the standard deviations of the PE and DM data
at t = ⌧/2 = 5a are �

PE

/�
DM

= 0.79, 0.49, 0.44 and

DM: Direct Measurement[目標とする結果], BC-Prediction: Bias Corrected average,

Raw-Prediction: Simple average, Bias: Bias Correction

Biasは小さいが誤差が大きい。Raw-PredictionもDMより誤差が大きい
BC-Prediction = Raw-Prediction + Bias は誤差がDMと同程度

→ Raw-Prediction と Bias は強く相関している
相関の原因はモデルF (X)と配位のauto correlation?
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結果2 τ = 8,10,12,14

インプット:X = C2(τ)(0 ≤ τ ≤ 20), 予測:OP = CΓ
3 (τ, t)(τ = 8,10,12,14,0 ≤ t ≤ τ)

インプット:X = C2(τ)(0 ≤ τ ≤ 20)+CΓ
3 (12, t), 予測:OP = CΓ

3 (τ, t)(τ = 8,10,14,0 ≤ t ≤ τ)

統計誤差はTraning+BCのOiも含めたもの

gΓ = CΓ
3 (τ, t)/C2(τ)の結果 (線は τ → ∞フィット)

DM[Traning+BC] DM[Full] Input C2 Input C2, CΓ
3 (12)

4

(a) Labeled Data (b) DM (c) Pred.[C
2pt

] (d) Pred.[C
2pt

,C
3pt

(12)]
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FIG. 3. Removing excited state contamination using the two-state fit for (a) DM on the labeled data, (b) DM on full data, (c)
DM on labeled data combined with ML predictions from C2pt on unlabeled data, and (d) DM on labeled data combined with
ML predictions from C2pt and C3pt(⌧ = 12a) on unlabeled data.
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FIG. 4. Distribution of Im
⇥
CP,"

2pt (10a)
⇤

(left) and

Im
⇥
CP,"5

2pt (10a)
⇤
(right), averaged over sources in each con-

figuration, are shown in light gold and the prediction error in
dark red. The ratio of the standard deviations �PE/�2pt ⇡
0.18 for OcEDM and 0.4 for O�5 .

stopping condition, whose e↵ects are again ignored. Out
of the 400 configurations, 120 configurations, separated
by 3 configurations in trajectory order, are chosen as the
labeled data, and the remaining 280 configurations are
used as the unlabeled data. From the labeled data, 70
randomly chosen configurations are used for training, and
the remaining 50 configurations are used for bias correc-
tion.

The BDT regression algorithm is trained to predict
the imaginary parts of CP,"

2pt

and CP,"5
2pt

using both the

real and imaginary parts of C
2pt

and CP
2pt

. Note that
in the absence of the CPV terms, CP

2pt

and the imagi-
nary part of C

2pt

average to zero, but, they have nonzero

correlations with the target imaginary parts of CP,"
2pt

and

CP,"5
2pt

. The BDT regression algorithm with 500 boosting
stages of depth-3 trees with learning rate of 0.1 gives a
good prediction as shown in Fig. 4. In this case it works
better than linear regression algorithms. Again, for nu-
merical stability, all data fed into the BDT algorithm are
normalized by hC

2pt

(⌧)i.

Using the predicted CP,"
2pt

and CP,"5
2pt

on all timeslices,
we calculate the CPV phases ↵ and ↵

5

by taking their
ratio with C

2pt

, because C","5
2pt

di↵er from C
2pt

at O("2).
Fig. 5 shows the comparison between the CPV phase cal-
culated from the DM data, the labeled data and the ML
predicted data. The horizontal lines give the averages
over the plateau region where the excited state contam-
ination is small. Results for ↵ and ↵

5

are summarized
in Table III. To get the improved ML predictions, we
combine the prediction on the 280 unlabeled configura-
tions with the DM data on the 120 labeled configura-
tions. These combined data are analyzed following the
same Bootstrap resampling procedure used in the first

DMを概ね再現できた
CΓ
3 (12)をインプットに加えると再現性は若干改善する
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結果2 τ = 8,10,12,14

インプット:X = C2(τ)(0 ≤ τ ≤ 20), 予測:OP = CΓ
3 (τ, t)(τ = 8,10,12,14,0 ≤ t ≤ τ)

インプット:X = C2(τ)(0 ≤ τ ≤ 20)+CΓ
3 (12, t), 予測:OP = CΓ

3 (τ, t)(τ = 8,10,14,0 ≤ t ≤ τ)

統計誤差はTraning+BCのOiも含めたもの

gΓ(τ → ∞)の結果
3
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FIG. 2. Statistical distribution of C3pt(10a, 5a) (light gold)
and the prediction error (dark red).

0.12 for S, A, T and V, respectively. This pattern of
smaller variance leads us to believe that, with further
optimization, the reduction in computation cost, 35% in
this first study, can be increased significantly.

In Fig. 3, we compare the improved predictions of
CA,S,T,V

3pt

at all ⌧ and t (column (c)) with the labeled data
and the DM data shown in columns (a) and (b), respec-
tively. Here, the improved predictions are obtained by
combining the DM on labeled data with the BC predic-
tions on the unlabeled data.1 The observed dependence
on ⌧ and t is due to contributions from excited states of
the nucleon, and the desired ground state result is given
by the limit ⌧ ! 1. This can be obtained by fitting the
data at various t and ⌧ using the spectral decomposition
of CA,S,T,V

3pt

. Fig. 3 shows such a fit assuming only the
lowest two states contribute to the spectral decomposi-
tion, i.e., the two-state fit described in [11, 12, 28]. The
lines show the results of this fit for the various ⌧ and
the grey band gives the ⌧ ! 1 value. We find that the
predicted data give answers consistent with the DM data
but with larger errors. We also find that the predicted
data, and consequently the two-state fit, is improved by
including the DM data for even one value of ⌧ = 12 in
the training as shown in Fig. 3 column (d), i.e., we used
a modified BDT to predict C

3pt

(⌧/a = 8, 10, 14) using

the C
2pt

(⌧) and CA,S,T,V
3pt

(⌧/a = 12). The corresponding
increases in the cost has to be balanced by the reduction
in errors on a case by case basis.

For data with 4 values of ⌧ considered here, the cal-
culations required in the ML prediction estimates are
53% and 65% of that of the direct measurement for the
prediction from C

2pt

and the prediction from C
2pt

and

CA,S,T,V
3pt

(⌧/a = 12) data, respectively. Taking into ac-
count the 10% increase in the statistical uncertainty in

1 Note that the direct measurements on the labeled data and the
predictions on the unlabeled data are not identically distributed
because the prediction is not exact. Since the bias-corrected
mean is the same, we perform a simultaneous fit with common
fit parameters on the two di↵erent data sets.

DM Pred.[C2pt] Pred.[C2pt,C3pt(12)]

gS 0.989(18) 0.973(29) 0.981(20)

gA 1.2303(51) 1.2289(83) 1.2304(61)

gT 1.0311(51) 1.0347(68) 1.0326(54)

gV 1.0443(19) 1.0439(22) 1.0440(21)

TABLE II. Comparison of ⌧ ! 1 extrapolated nucleon
charges calculated from the ML predictions and the DM.

the latter case, ML analysis provides about 35% reduc-
tion in the computational cost.
The second example is taken from the calculation of

the matrix element of the chromo electric dipole moment
(cEDM) operator, O

cEDM

⌘iq̄(�µ⌫G
µ⌫)�

5

q where Gµ⌫ is
the gluon field strength tensor, within the neutron state.
It arises in theories beyond the standard model and vi-
olates parity (P) and time-reversal (T) symmetries, or
equivalently, charge (C) and CP symmetries in theories
invariant under CPT. Since any CP violating (CPV) op-
erator gives a contribution to the neutron electric dipole
moment (nEDM), a bound or a non-zero value for nEDM
in coming experiments will constrain novel CP violation
[29–31]. So far only preliminary lattice QCD calculations
exist and cost-e↵ectively improving the statistical signal
is essential [32–34]. We have proposed a Schwinger source
method approach (SSM) [35, 36] that exploits the fact
that the cEDM operator is a quark bilinear. In the SSM,
e↵ects of the cEDM interaction are incorporated into the
two- and three-point functions by modifying the Dirac
clover fermion action: D

clov

! D
clov

+ i"�µ⌫�5G
µ⌫ . Be-

cause of quantum e↵ects, cEDM mixes with the oper-
ator O�5⌘iq̄�

5

q [37]. Thus we also need calculations
with D

clov

! D
clov

+ i"
5

�
5

. Both " and "
5

are tiny co-
e�cients, so working in a linear approximation in them
su�ces.
With CP violation, the Dirac equation for the neu-

tron spinor u becomes (ipµ�µ +me�i↵�5)u = 0, i.e., the
neutron mass acquires a CP-odd phase ↵ (↵

5

), which is
expected to be linear in " ("

5

) for small " ("
5

). At lead-
ing order, these phases can be obtained from the four
two-point functions, C

2pt

, CP
2pt

, CP,"
2pt

and CP,"5
2pt

, where
the superscript P indicates an additional factor of �

5

in
the spin projection [38]. The correlator CP,"

2pt

( CP,"5
2pt

)
is constructed using quark propagators with the O

cEDM

(O�5) term and is expected to be imaginary and vanish
as " ! 0 ("

5

! 0). As a first step, we show predictions
of the BDT regression algorithm for these two using only
C

2pt

and CP
2pt

.

For the training and prediction, we use the C
2pt

, CP
2pt

,

CP,"
2pt

and CP,"5
2pt

measured in Refs. [35, 36] on 400 MILC
HISQ lattices at a = 0.12 fm and M⇡ = 310 MeV (the
a12m310 ensemble) with clover fermions. On each con-
figuration, these correlators are constructed using 64 ran-
domly chosen widely separated sources with a sloppy

DMを概ね再現できた (統計誤差は若干大きくなる)

C2 + CΓ
3 (12)ではDMより誤差が10–20%大きくなる
→ 計算コストは 35% 抑制できた(統計誤差増加分を考慮)

論文ではCP violating C2(t)の結果も議論しているが同じような結論なので省略
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まとめ

– Machine Learningを使って、C2からCΓ
3を概ね再現できた

統計誤差を再現するためにはBias Correctionが必要
OP
i とBiasには強い相関がある(理由はよくわからない)

統計誤差は若干大きくなる

– インプットを増やすと再現性は若干改善する

– C2 + CΓ
3 (12)では直接計算より誤差が10%大きくなる
→ 計算コストを 35% 抑制(統計誤差増加分を考慮)
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