On Lattice Calculation of Electric Dipole Moments and Form Factors of the Nucleon

M. Abramcyky, S. Aoki, T. Blum, T. Izubuchi, H. Ohki, S. Syritsyn

arXiv:1701.07792 [hep-lat]

1. lattice QCD の Neutron electric dipole moment (NEDM) 定義再考

- 2. NEDM lattice QCD計算:形状因子、エネルギーシフト
- 3. これまでの結果の考察

Strong CP problem

強い相互作用ではCP対称性は非常に良く成り立っている

一方、CP対称性が無ければ、グルーオン場で書かれる $heta rac{lpha s}{32\pi^2}$ Tr $\left[F ilde{F}
ight]$ という 質量次元4、CP-odd の項(heta項)が作用密度に許される

⇒ 何故、現実世界ではθが非常に小さいのか?: Strong CP problem c.f.) Peccei-Quinn 対称性

実験:現実世界でどのくらい CP 対称性が破れているかを測る Neutron electric dipole moment (NEDM): $|d_n| \leq 3 \times 10^{-13} e \cdot fm$

理論: lattice QCD計算で $d_n = \frac{F_3(0)}{2m_N} = \frac{\hat{F}_3(0)\theta}{2m_N}$ を求め、 θ に制限をつける: $|\theta| \lesssim 7 \times 10^{-11}$

Guo et al.(QCDSF), PRL115:062001(2015)

この論文はlattice QCDを用いた $F_3(0)$ 計算(方法)について

形状因子による NEDM lattice QCD計算(1)

CP 対称性が破れている場合、核子質量に $位相 \alpha_5(\theta)$ が現れる

核子場の運動方程式

 $(\partial + m_N e^{-2i\alpha_5\gamma_5})N(x) = 0$

spinor(
$$\langle 0|N|p,\sigma\rangle_{CP} = Z_N \tilde{u}_{p,\sigma}$$
)の運動方程式
 $(ip+m_N e^{-2i\alpha_5\gamma_5})\tilde{u}_{p,\sigma} = \tilde{u}_{p,\sigma}(ip+m_N e^{-2i\alpha_5\gamma_5}) = 0$

カイラル回転した spinor は
$$\tilde{u}_{p,\sigma} = e^{i\alpha_5\gamma_5}u_{p,\sigma}, \ \tilde{\overline{u}}_{p,\sigma} = \overline{u}_{p,\sigma}e^{i\alpha_5\gamma_5}$$

CP対称性がある場合の運動方程式を満たす

$$(ip + m_N)u_{p,\sigma} = \overline{u}_{p,\sigma}(ip + m_N) = 0$$

spin sum

$$\sum_{\sigma} \tilde{u}_{p,\sigma} \tilde{\overline{u}}_{p,\sigma} = e^{i\alpha_5\gamma_5} \left(\sum_{\sigma} u_{p,\sigma} \overline{u}_{p,\sigma} \right) e^{i\alpha_5\gamma_5} = e^{i\alpha_5\gamma_5} \left(-ip + m_N \right) e^{i\alpha_5\gamma_5}$$

形状因子による NEDM lattice QCD計算(2)

CP 対称性が破れている場合、相関関数に<mark>位相</mark>が現れる

核子2点相関関数
$$t \gg 1$$

 $\langle 0|N(\vec{p},t)\overline{N}(0)|0 \rangle_{CP} \propto \sum_{\sigma} \langle 0|N|p,\sigma \rangle_{CP,CP} \langle p,\sigma|N|0 \rangle$
 $\propto \sum_{\sigma} \tilde{u}_{p,\sigma} \tilde{\overline{u}}_{p,\sigma} = e^{i\alpha_5\gamma_5}(-ip+m_N)e^{i\alpha_5\gamma_5}$

核子3点相関関数
$$T - t_J, t_J \gg 1$$

 $\langle 0|N(\vec{p}', T)J_{\mu}(\vec{q}, t_J)\overline{N}(0)|0 \rangle_{CP} \propto \sum_{\sigma',\sigma} \tilde{u}_{p',\sigma'} \left[\langle p', \sigma'|J_{\mu}|p, \sigma \rangle_{CP} \right] \tilde{u}_{p,\sigma}$
 $\propto e^{i\alpha_5\gamma_5} u_{p',\sigma'} \left[\langle p', \sigma'|J_{\mu}|p, \sigma \rangle_{CP} \right] \overline{u}_{p,\sigma} e^{i\alpha_5\gamma_5}$
 $J_{\mu} = \sum_{f=u,d} e_f \overline{q}_f \gamma_{\mu} q_f, q = p' - p$

 $\langle p', \sigma' | J_{\mu} | p, \sigma \rangle_{CP}$ にNEDMの情報が入っている

4

形状因子による NEDM lattice QCD計算(3)

CP対称性が破れている場合の neutron electromagnetic matrix element Quantum Field Theory, Itzykson and Zuber, p.160 $\langle p', \sigma' | J_{\mu} | p, \sigma \rangle_{CP} = \overline{u}_{p',\sigma'} \left[F_1(q^2)\gamma_{\mu} + F_2(q^2) \frac{i\sigma_{\mu\nu}q_{\nu}}{2m_N} - F_3(q^2) \frac{\gamma_5\sigma_{\mu\nu}q_{\nu}}{2m_N} + F_A(q^2) \frac{(qq_{\mu} - \gamma_{\mu}q^2)\gamma_5}{m_N^2} \right] u_{p,\sigma}$ CP-even: $F_1(q^2), F_2(q^2)$ の項 $J_{\mu} = \sum_{f=u,d} e_f \overline{q}_f \gamma_{\mu}q_f, q_{\nu} = p'_{\nu} - p_{\nu}, \sigma_{\mu\nu} = i[\gamma_{\mu}, \gamma_{\nu}]/2$ CP-odd: $F_3(q^2), F_A(q^2)$ の項

中性子電荷 $F_1(0) = 0$ NMDM* $F_2(0)/2m_N \sim -1.5/2m_N$ NEDM $F_3(0)/2m_N = d_n$

*nuetron magnetic dipole moment

 $F_A(q^2)$: anapole form factor \rightarrow 以降の話に関係ない

この論文ではこの定義を採用

形状因子による NEDM lattice QCD計算(3)

CP対称性が破れている場合の neutron electromagnetic matrix element Quantum Field Theory, Itzykson and Zuber, p.160 $\langle p', \sigma' | J_{\mu} | p, \sigma \rangle_{CP} = \overline{u}_{p',\sigma'} \left[F_1(q^2)\gamma_{\mu} + F_2(q^2) \frac{i\sigma_{\mu\nu}q_{\nu}}{2m_N} - F_3(q^2) \frac{\gamma_5\sigma_{\mu\nu}q_{\nu}}{2m_N} + F_A(q^2) \frac{(qq_{\mu} - \gamma_{\mu}q^2)\gamma_5}{m_N^2} \right] u_{p,\sigma}$ CP-even: $F_1(q^2), F_2(q^2)$ の項 $J_{\mu} = \sum_{f=u,d} e_f \overline{q}_f \gamma_{\mu}q_f, q_{\nu} = p'_{\nu} - p_{\nu}, \sigma_{\mu\nu} = i[\gamma_{\mu}, \gamma_{\nu}]/2$ CP-odd: $F_3(q^2), F_A(q^2)$ の項

中性子電荷 $F_1(0) = 0$ NMDM* $F_2(0)/2m_N \sim -1.5/2m_N$ NEDM $F_3(0)/2m_N = d_n$

*nuetron magnetic dipole moment

 $F_A(q^2)$: anapole form factor \rightarrow 以降の話に関係ない

この論文ではこの定義を採用 ← これまでの計算とは異なる

形状因子による NEDM lattice QCD計算(4)

これまでの計算で使われた
CP対称性が破れている場合の neutron electromagnetic matrix element
$$\langle p', \sigma' | J_{\mu} | p, \sigma \rangle_{CP} = \tilde{u}_{p',\sigma'} \left[F_1(q^2)\gamma_{\mu} + \tilde{F}_2(q^2) \frac{i\sigma_{\mu\nu}q_{\nu}}{2m_N} - \tilde{F}_3(q^2) \frac{\gamma_5\sigma_{\mu\nu}q_{\nu}}{2m_N} + F_A(q^2) \frac{(qq_{\mu} - \gamma_{\mu}q^2)\gamma_5}{m_N^2} \right] \tilde{u}_{p,\sigma}$$

前のペーシの
$$F_2(q^2), F_3(q^2)$$
 との関係
 $F_2(q^2) = \cos(2\alpha_5)\tilde{F}_2(q^2) - \sin(2\alpha_5)\tilde{F}_3(q^2)$
 $F_3(q^2) = \cos(2\alpha_5)\tilde{F}_3(q^2) + \sin(2\alpha_5)\tilde{F}_2(q^2)$

 $\alpha_5, \tilde{F}_3(q^2)$ を微小量とすると $F_3(q^2) = \tilde{F}_3(q^2) + 2\alpha_5 \tilde{F}_2(q^2), \quad F_2(q^2) = \tilde{F}_2(q^2)$ これまでの形状因子を用いた $F_3(0) = \tilde{F}_3(0)$ 計算には $-2\alpha_5 F_2(0)$ が含まれている

形状因子による NEDM lattice QCD計算(4)

これまでの計算で使われた
CP対称性が破れている場合の neutron electromagnetic matrix element
$$\langle p', \sigma' | J_{\mu} | p, \sigma \rangle_{CP} = \tilde{u}_{p',\sigma'} \left[F_1(q^2)\gamma_{\mu} + \tilde{F}_2(q^2) \frac{i\sigma_{\mu\nu}q_{\nu}}{2m_N} - \tilde{F}_3(q^2) \frac{\gamma_5\sigma_{\mu\nu}q_{\nu}}{2m_N} + F_A(q^2) \frac{(qq_{\mu} - \gamma_{\mu}q^2)\gamma_5}{m_N^2} \right] \tilde{u}_{p,\sigma}$$

同のページの $F_2(q^2), F_3(q^2) \ge \mathcal{O}$ 関係 $F_2(q^2) = \cos(2\alpha_5)\tilde{F}_2(q^2) - \sin(2\alpha_5)\tilde{F}_3(q^2)$ $F_3(q^2) = \cos(2\alpha_5)\tilde{F}_3(q^2) + \sin(2\alpha_5)\tilde{F}_2(q^2)$

 $\alpha_5, \tilde{F}_3(q^2) を微小量とすると$ $F_3(q^2) = \tilde{F}_3(q^2) + 2\alpha_5 \tilde{F}_2(q^2), \quad F_2(q^2) = \tilde{F}_2(q^2)$ $= \tilde{F}_3(q^2) + 2\alpha_5 \tilde{F}_2(q^2), \quad F_2(q^2) = \tilde{F}_2(q^2)$

これまでの形状因子を用いた $F_3(0) = \tilde{F}_3(0)$ 計算には $-2\alpha_5 F_2(0)$ が含まれている

詳細は省くが、

静電場をかけたエネルギーシフトから NEDM を求める場合にはこの問題は無い ことも論文では示している

シミュレーションパラメータ

$N_f = 2 + 1$ Iwasaki gauge + Domain wall fermion actions

Table I: Lattice ensembles on which the simulations were performed. Both ensembles use Iwasaki gauge action and $N_f = 2+1$ domain wall fermions. The statistics are shown for "sloppy" (low-precision) samples. The nucleon masses were extracted using 2-state fits. For the background electric field method, we quote the quantum of the electric field $\mathcal{E}_0 = \frac{6\pi}{a^2 L_f L_r}$.

$L_x^3 \times L_t \times L_5$	$a [{\rm fm}]$	am_l	am_s	$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	$\mathcal{E}_0 [\mathrm{GeV}^2]$	conf	stat	N_{ev}	$N_{ev}^{\mathcal{E}=1,2}$	N_{CG}
$16^3 \times 32 \times 16$	0.114(2)	0.01	0.032	422(7)	1.250(28)	0.110	500	16000	200	150	100
$24^3 \times 64 \times 16$	0.1105(6)	0.005	0.04	340(2)	1.178(10)	0.0388	100	3200	200	200	200

$F_3(0)$ 形状因子計算と電場を入れたエネルギーシフト計算(説明省略) 正しい計算をすれば2つの結果は一致するはず

CP-odd 演算子: Chromo-electric dipole moment (質量次元5)

$$\mathcal{O}_{CP} = \frac{1}{2} \sum_{x} \sum_{f=u,d} \bar{q}_{f}(x) F_{\mu\nu}(x) \sigma_{\mu\nu} \gamma_{5} q_{f}(x)$$

質量次元4の θ 項よりも大きな α_{5} が出てくるので F_{3} の検証に好都合

作用: $S_{\text{QCD}} + ic_{\psi G} \mathcal{O}_{CP}$ 計算方針: $c_{\psi G}, \alpha_5 = \hat{\alpha}_5 c_{\psi G}, F_3(q^2) = \hat{F}_3(q^2) c_{\psi G}$ を微小量として展開する disconnected loopは無視 CP対称性の破れた2点相関関数

$$\begin{split} \langle 0|N(\vec{p},t)\overline{N}(0)|0\rangle_{\mathcal{CP}} &= \frac{1}{Z} \int \mathcal{D}U\mathcal{D}\psi \mathcal{D}\overline{\psi}e^{-S-ic_{\psi}G}\mathcal{O}_{\mathcal{CP}}\left[N(\vec{p},t)\overline{N}(0)\right] \\ &\sim \langle 0|N(\vec{p},t)\overline{N}(0)|0\rangle - ic_{\psi}G \langle 0|N(\vec{p},t)\overline{N}(0)\mathcal{O}_{\mathcal{CP}}|0\rangle \\ &\qquad \qquad \frac{\vec{p}=0, \ t\gg 1}{Z_N^2} \left[\frac{1+\gamma_4}{2} + i\alpha_5\gamma_5\right]e^{-E_Nt} \end{split}$$

$$\hat{\alpha}_{5} = \alpha_{5}/c_{\psi G}$$
の決定: $c_{\psi G}$ 1次の係数
$$-\frac{\operatorname{Tr}\left[P_{+}\gamma_{5}\langle 0|N(\vec{0},t)\overline{N}(0)\mathcal{O}_{\mathcal{CP}}|0\rangle\right]}{\operatorname{Tr}\left[P_{+}\langle 0|N(\vec{0},t)\overline{N}(0)|0\rangle\right]} \xrightarrow{t\gg1} \hat{\alpha}_{5}$$

 $P_+ = \frac{1+\gamma_4}{2}$

CP対称性の破れた2点相関関数

陽子相関関数から求めた $\hat{\alpha}_5$ (= α_5 [論文では $c_{\psi G}$ = 1としてプロット])

 $U: \mathcal{O}_{CP}$ のuクォークの寄与, D: dクォークの寄与

Figure 10: Chiral rotation angle α_5 of the proton field induced by *u*- and *d*-quark cEDM interactions, on the $24^3 \times 64$ (left) and $16^3 \times 32$ (right) lattices. The angles α_5 for the neutron are related by the $SU(2)_f$ symmetry $u \leftrightarrow d$. The chromo-EDM interactions are not renormalized and may include mixing with other operators.

中性子の $\hat{\alpha}_5$ は陽子の $\hat{\alpha}_5$ をU→D, D→Uとすれば求められる

中性子の $\hat{\alpha}_5$ はUがほぼゼロ、Dが絶対値でかなり大きい

CP対称性の破れた3点相関関数

$$\begin{split} \langle 0|N(\vec{p}',T)J_{\mu}(\vec{q},t_{J})\overline{N}(0)|0\rangle_{\mathcal{CP}} \\ &= \frac{1}{Z} \int \mathcal{D}U\mathcal{D}\psi \mathcal{D}\overline{\psi}e^{-S-ic_{\psi}G}\mathcal{O}_{\mathcal{CP}}\left[N(\vec{p}',T)J_{\mu}(\vec{q},t_{J})\overline{N}(0)\right] \\ &\sim \langle 0|N(\vec{p}',T)J_{\mu}(\vec{q},t_{J})\overline{N}(0)|0\rangle - ic_{\psi}G}\langle 0|N(\vec{p}',T)J_{\mu}(\vec{q},t_{J})\overline{N}(0)\mathcal{O}_{\mathcal{CP}}|0\rangle \\ &\propto (1+i\alpha_{5}\gamma_{5})\frac{-ip'+m_{N}}{2E'_{N}}F_{\mu}(q)\frac{-ip+m_{N}}{2E_{N}}(1+i\alpha_{5}\gamma_{5}) \\ &\qquad E_{N}^{(\prime)} = \sqrt{m_{N}^{2}+(p^{(\prime)})^{2}}, \ (T-t_{J},t_{J}\gg1) \\ &\qquad F_{\mu}(q) = F_{1}(q^{2})\gamma_{\mu} + F_{2}(q^{2})\frac{i\sigma_{\mu\nu}q_{\nu}}{2m_{N}} - F_{3}(q^{2})\frac{\gamma_{5}\sigma_{\mu\nu}q_{\nu}}{2m_{N}} (F_{A}(q^{2})\,\mathrm{kf},\mathrm{kf}) \end{split}$$

$$\begin{split} \widehat{F}_{3}(q^{2}) &= F_{3}(q^{2})/c_{\psi G} \mathcal{O}$$
決定: $c_{\psi G}$ 1次の係数 (1+\tau) $\widehat{F}_{3}(q^{2}) = \mathcal{N}$ Tr $\left[P_{z+} \langle 0 | N(\vec{p}', T) J_{4}(\vec{q}, t_{J}) \overline{N}(0) \mathcal{O}_{\mathcal{CP}} | 0 \rangle \right] - \widehat{\alpha}_{5} G_{E}(q^{2})$ $\tau &= \frac{q^{2}}{4m_{N}^{2}}, P_{z+} = \frac{1+\gamma_{4}}{2} \left[-i\gamma_{1}\gamma_{2} \right], G_{E}(q^{2}) = F_{1}(q^{2}) - \tau F_{2}(q^{2})$ \mathcal{N} は $E_{N}, m_{N}, q, 2$ 点関数の比で決まる定数

CP対称性の破れた3点相関関数

 $\hat{F}_3(q^2) (= F_3(q^2)[c_{\psi G} = 1]) \ge q^2 \to 0$ 外挿

 $U: \mathcal{O}_{CP}$ のuクォークの寄与, D: dクォークの寄与

Figure 12: Linear Q^2 fits to the neutron EDFF F_3 (same data as in Fig. 11) including only the three smallest $Q^2 > 0$ points and source-sink separations T = 8a, 10a. Results for the $24^3 \times 64$ (left) and $16^3 \times 32$ (right) lattices.

 $\widehat{F}_{3}(q^{2})$ はUよりDが大きい($\widehat{\alpha}_{5}$ と似た傾向)

良い精度で $\hat{F}_3(0)$ が計算できている

2つの $\hat{F}_3(0)$ 計算の比較 $\varepsilon/\varepsilon_0 = \pm 1, \pm 2$:静電場を用いたエネルギーシフト計算 OLD: $F_3 = \hat{F}_3(q^2) = \hat{F}_3(q^2) - 2\hat{\alpha}_5 F_2(q^2)$

Figure 15: Comparison of the neutron EDFF $F_{3n}(Q^2)$ computed with the conventional ("OLD") [5–11] and the "NEW" formula (C12) to the neutron EDM ζ computed from the energy shift (see Fig. 14). The "OLD" $F_{3n}(Q^3)$ data are extrapolated with the dipole fit, and the "NEW" with the linear fit. Data points are shifted horizontally for legibility. Results for the $24^3 \times 64$ (left) and $16^3 \times 32$ (right) lattices.

Uは $\hat{\alpha}_5$ がほぼゼロなので、NEW \approx OLD。エネルギーシフトとも一致 DはNEW \approx エネルギーシフト \neq OLD $\tilde{F}_3(q^2)$ には大きな $2\alpha_5F_2(q^2)$ の寄与が含まれる

これまでの計算結果考察

 $F_3(0) = \tilde{F}_3(0) + 2\alpha F_2(0)$

		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	F_2	α	$ ilde{F}_3 $	F_3
[10]	n	373	1.216(4)	$-1.50(16)^{b}$	-0.217(18)	-0.555(74)	0.094(74)
[5]	n	530	1.334(8)	-0.560(40)	$-0.247(17)^{a}$	-0.325(68)	-0.048(68)
	p	530	1.334(8)	0.399(37)	$-0.247(17)^{a}$	0.284(81)	0.087(81)
[6]	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
[8]	n	465	1.246(7)	$-1.491(22)^{c}$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
	n	360	1.138(13)	$-1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

[10] Alexandrou *et al.*, PRD93:074503(2016), [5] Shintani *et al.*, PRD72:014504(2005) [6] Berruto *et al.*, PRD73:054509(2006), [8] Guo *et al.*, PRL115:062001(2015) \tilde{F}_3 は統計的に有意な値が得られているが、

 F_3 は統計的にゼロに近い値になる

→ これまで考えていた以上に統計的に難しい計算(かもしれない)

これまでの計算結果考察

 $F_3(0) = \tilde{F}_3(0) + 2\alpha F_2(0)$

		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	F_2	α	$ ilde{F}_3 $	F_3
[10]	n	373	1.216(4)	$-1.50(16)^{b}$	-0.217(18)	-0.555(74)	0.094(74)
[5]	n	530	1.334(8)	-0.560(40)	$-0.247(17)^{a}$	-0.325(68)	-0.048(68)
	p	530	1.334(8)	0.399(37)	$-0.247(17)^{a}$	0.284(81)	0.087(81)
[6]	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
[8]	n	465	1.246(7)	$-1.491(22)^{c}$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
	n	360	1.138(13)	$-1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

[10] Alexandrou *et al.*, PRD93:074503(2016), [5] Shintani *et al.*, PRD72:014504(2005) [6] Berruto *et al.*, PRD73:054509(2006), [8] Guo *et al.*, PRL115:062001(2015) \tilde{F}_3 は統計的に有意な値が得られているが、

F3は統計的にゼロに近い値になる

→ これまで考えていた以上に統計的に難しい計算(かもしれない)

これまでに行われた*F*₃とエネルギーシフトの比較

 $\tilde{F}_{3n}(q^2 = 0.58 \text{GeV}^2) = -0.325(68)[5]$ 。Shintani *et al.*, PRD75:034507(2007)では、 同じ作用・ β 、 $m_N = 2.1 \text{GeV}$ でエネルギーシフトから $F_{3n}(0) = -0.364(170)$ が得られている 1. lattice QCD の Neutron electric dipole moment (NEDM) 定義再考 $F_3(0) = \tilde{F}_3(0) + 2\alpha F_2(0)$

2. NEDM lattice QCD計算:形状因子、エネルギーシフト

 $F_3(0)$ 形状因子計算はエネルギーシフトの結果と一致

3. これまでの結果の考察

これまでの計算で \tilde{F}_3 から F_3 を再見積りすると統計的にゼロに近い値 \rightarrow これまで考えていた以上に統計的に難しい計算(かもしれない)