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Introduction
陽子についてのいろいろな謎
例
陽子の荷電半径：なぜ２つの実験で7σ(4％)も異なるのか　　　　　　　　　　　

陽子のスピン問題：クォークスピンの寄与が非常に小さい

陽子の質量起源：相互作用が陽子の質量にどれだけ寄与し
ているか

etc…



Introduction
ハドロン 

→クォーク＋グルーオン

クォーク質量：数MeV 

核子質量：938MeV  

相互作用の効果が非常に大きい！ 
→クォークーグルーオンの相互作用や陽子の中でのグルー
オンの自己相互作用がどれだけ陽子質量に関わるか？



Introduction
色々わからない陽子の第一原理計算

陽子の荷電半径：誤差は大きいが2つの実験値と無矛盾　　　　　　　　　　

陽子のスピン問題：誤差は大きいがJN=1/2を再現

陽子の質量起源：?
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Mass decomposition
Phys. Rev. Lett. 74, 1071 (1995) 
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Mass decomposition

Tµ⌫ = T̄µ⌫ + T̂µ⌫

EMTをtraceless partとtrace partに分解

行列要素は以下の通り(Peskin 18.5 p.630, p.642)
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以上から陽子の質量は以下のように分解できる



Mass decomposition
traceless part → quark part とgluon partに分解
T̄µ⌫ = T̄ g

µ⌫ + T̄ q
µ⌫

行列要素は以下の通り(Peskin 18.5, p.642)

hP |T̄ f
µ⌫ |P i = �hxif (µ)

M

✓
PµP⌫ � 1

4
�µ⌫M

2

◆
, (f = q, g)
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Mass decomposition
trace partについて
トレースアノマリー (Peskin 19.5)
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for the zero momentum case. The Hamiltonian of QCD can
be decomposed as [1]

HQCD ≡ −
Z
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with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
terms are separately scale and renormalization scheme
independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms

Hq ¼ HE þHm; ð9Þ

with

HE ¼
X

u;d;s…

Z
d3xψ̄ð ~D · ~γÞψ ;

Hm ¼
X

u;d;s…

Z
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N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:

M ¼ −hT44i ¼ hHqiþ hHgiþ hHaiþ hHγ
mi

¼ hHEiþ hHmiþ hHgiþ hHai; ð11Þ
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hHai ¼ hHγ
miþ hHa
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as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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for the zero momentum case. The Hamiltonian of QCD can
be decomposed as [1]
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with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
terms are separately scale and renormalization scheme
independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms
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N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:

M ¼ −hT44i ¼ hHqiþ hHgiþ hHaiþ hHγ
mi
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1

4
M ¼ −hT̂44i ¼

1

4
hHmiþ hHai; ð12Þ

with all the hHi defined by hPjHjPi=hPjPi and
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as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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Mass decomposition
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for the zero momentum case. The Hamiltonian of QCD can
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with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
terms are separately scale and renormalization scheme
independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms

Hq ¼ HE þHm; ð9Þ
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N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:

M ¼ −hT44i ¼ hHqiþ hHgiþ hHaiþ hHγ
mi

¼ hHEiþ hHmiþ hHgiþ hHai; ð11Þ
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with all the hHi defined by hPjHjPi=hPjPi and

hHai ¼ hHγ
miþ hHa
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as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
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independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms
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N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:
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as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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※但し

HE +Hm = Hq



set up
2+1 Domain Wall (sea quarks) 

HYP smearing (5 steps)

 Overlap (valence quarks) 
m⇡ 2 (250, 400)MeV

m⇡ 2 (140, 400)MeV

5 quark masses on the 24I and 32I
6 quark masses on the 32ID and 48I

m⇡L > 3.8

※MS bar (2GeV)での結果

※Gradient flow 未使用



Result 
クォーク質量の寄与 Phys. Rev. D 94, 054503 (2016) 

ここでは、σ項の計算結果を流用している

⇡N and strangeness sigma terms at the physical point with chiral fermions

Yi-Bo Yang1, Andrei Alexandru2, Terrence Draper1, Jian Liang1, and Keh-Fei Liu1

(�QCD Collaboration)
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I. INTRODUCTION

The ⇡N sigma term �

⇡N

for the light quark is defined
as

�

⇡N

⌘ m̂hN |ūu+ d̄d|Ni, (1)

where m̂ = (m
u

+m

d

)/2 is the averaged light quark mass,
|Ni represents the nucleon state which is normalized as
hN |Ni = L

3 in this case for the unpolarized nucleon at
rest, and ūu and d̄d are the quark bilinear operators. The
strangeness sigma term �

sN

is similarly defined with f

N

s

being its fraction of the nucleon mass

�

sN

⌘ m

s

hN |s̄s|Ni, f

N

s

=
�

sN

m

N

. (2)

As measures of both explicit and spontaneous chiral
symmetry breakings in the baryon sector, �

⇡N

and �

sN

are fundamental quantities which pertain to a wide range
of issues in hadron physics, such as the quark mass con-
tribution in the baryon which is related to the Higgs
coupling to the observable matter [1–3], the pattern of
SU(3) breaking [2], ⇡N and KN scatterings [4, 5], and
kaon condensate in dense matter [6]. Using a sum rule
for the nucleon mass, the heavy quark mass contribu-
tion can be deduced from that of the light flavors, in
the leading order of the strong coupling and the heavy
quark limit [1, 7]. At the same time, precise values of the
quark mass term for various flavors, from light to heavy,
are of significant interest for dark matter searches [8–
10], where the popular candidates for dark matter (such
as the weakly interacting massive particle) interact with
the observable world through the Higgs couplings, so that
the precise determination of the �

⇡N

and �

sN

can pro-
vide remarkable constraints on the direct detection of the
dark matter candidates.

Phenomenologically, the �

⇡N

term is typically ex-
tracted from the ⇡N scattering amplitude. To lowest
order in m

2

⇡

, the unphysical on-shell isospin-even ⇡N

scattering amplitude at the Cheng-Dashen point corre-
sponds to �(q2 = 2m2

⇡

) [4, 5] which can be determined
from ⇡N scattering via fixed-q2 dispersion relation [5].
�

⇡N

at q2 = 0 can be extracted through a soft correlated
two-pion form factor [11–13]. Also, baryon chiral per-
turbation theory and Cheng-Dashen theorem have been
used to analyze the ⇡N scattering amplitude for �

⇡N

(0).
They give �

⇡N

values in the range ⇠ 45� 64 MeV, while
the most recent analysis [14] gives 59.1(3.5) MeV.
Both �

⇡N

and �

sN

are amenable to lattice QCD cal-
culations and there are two ways to calculate them. One
is via the Feynman-Hellman theorem and the other is
by directly calculating the matrix elements through the
ratio of 3-pt and 2-pt correlation functions.
Following the Feynman-Hellman theorem (FH)

�

⇡N

= m

q

@m

N

(m
q

)

@m

q

|
mq=m̂

phys (3)

where m̂phys is the quark mass corresponding to the phys-
ical m

⇡

, one can calculate the nucleon mass at di↵erent
quark masses and obtain �

⇡N

. A number of such calcu-
lations have been performed [15–20], and analyses with
chiral extrapolation based on lattice data have also been
carried out [2, 3, 21–23]. Similarly, there have also been
a number of direct calculations of �

⇡N

scalar matrix ele-
ments (ME) over the years [24–29], that use Wilson-type
fermions which explicitly break chiral symmetry. The
most recent three lattice calculations obtained consistent
results regardless of whether with the FH theorem [20] or
direct matrix element calculation [28, 29], but the com-
mon value is around 37(4) MeV and is almost 5� smaller
than the recent phenomenological analysis [14] mentioned
above.
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hT44i≡

hPj
R
d3xT44ð~xÞjPi
hPjPi

¼ −M;

hT̄44i ¼ −3=4M; hT̂44i ¼ −1=4M; ð4Þ

with

T̄44 ¼
1

4
ψ̄γð4D

↔

4Þψ −
1

16
ψ̄γðμD

↔

μÞψ þ F4αF4α −
1

4
F2

¼
X

u;d;s

!
ψ̄γ4 ~D4ψ þ 1

4
mψ̄ψ

"
þ 1

2
ðE2 − B2Þ; ð5Þ

T̂44 ¼
1

4
Tμμ

¼ 1

4

#
−ð1þ γmÞ

X

u;d;s…

mψ̄ψ þ βðgÞ
g

ðE2 þ B2Þ
$
; ð6Þ

for the zero momentum case. The Hamiltonian of QCD can
be decomposed as [1]

HQCD ≡ −
Z

d3xT44ð~xÞ ¼ Hq þHg þHa
g þHγ

m; ð7Þ

Hq ¼ −
X

u;d;s…

Z
d3xψ̄ðD4γ4Þψ ;

Hg ¼
Z

d3x
1

2
ðB2 − E2Þ;

Ha
g ¼

Z
d3x

−βðgÞ
4g

ðE2 þ B2Þ;

Hγ
m ¼

X

u;d;s…

Z
d3x

1

4
γmmψ̄ψ ð8Þ

with Hq, Hg, Ha
g , and Hγ

m denoting the total contributions
from the quarks, the glue field energy, the QCD glue trace
anomaly, and the quark mass anomaly, respectively. Note
that the sum of the first two and the sum of the last two
terms are separately scale and renormalization scheme
independent, while each term separately is not. Using
the equation of motion (EOM), Hq can be further divided
into quark energy and mass terms

Hq ¼ HE þHm; ð9Þ

with

HE ¼
X

u;d;s…

Z
d3xψ̄ð ~D · ~γÞψ ;

Hm ¼
X

u;d;s…

Z
d3xmψ̄ψ : ð10Þ

N.B.: the quark energy HE includes both kinetic and
potential energies due to the covariant derivative. Given

the above division, a hadron mass can be decomposed into
the following matrix elements:

M ¼ −hT44i ¼ hHqiþ hHgiþ hHaiþ hHγ
mi

¼ hHEiþ hHmiþ hHgiþ hHai; ð11Þ

1

4
M ¼ −hT̂44i ¼

1

4
hHmiþ hHai; ð12Þ

with all the hHi defined by hPjHjPi=hPjPi and

hHai ¼ hHγ
miþ hHa

gi ð13Þ

as the total trace anomaly. Each matrix element can be
calculated with lattice QCD. Since hadron masses can be
obtained from the two-point correlators on the lattice, we
calculate hHqi (or hHEi) and hHmi through the three-point
correlators and extract hHai and hHgi from Eqs. (11)–(12)
in this work. We will directly calculate these glue matrix
elements in the future.
The structure of the rest of the paper is organized as

follows. The numerical details of the simulation, including
the fermion action and configurations used, and the
systematic uncertainties, will be discussed in Sec. II. In
Sec. III, the results such as the condensates in the mesons,
the decomposition of the PS/V mesons, and their difference
(the splitting) are provided. A short summary and outlook
are presented in Sec. IV.

II. NUMERICAL DETAILS

In this work, we use the valence overlap fermion on 2þ1
flavor domain-wall fermion (DWF) configurations [6] to
carry out the calculation [7]. The effective quark propagator
of the massive overlap fermion is the inverse of the operator
ðDc þmÞ [8,9], where Dc is chiral, i.e. fDc; γ5g ¼ 0 [10],
and is expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 −Dov=2
with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð14Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. We set κ ¼ 0.2,
which corresponds to ρ ¼ 1.5.
The lattice we use has a size 243 × 64 with lattice

spacing a−1 ¼ 1.77ð5Þ GeV set by Ref. [11]. The light
sea u=d quark mass mla ¼ 0.005 corresponds to
mπ ∼ 330 MeV. We have calculated the PS and V meson
masses and the corresponding hHmi; hHqi, and hHEi at 12
valence quark mass parameters that correspond to the
renormalized masses mR

q ≡mMS
q ð2 GeVÞ ranging from

0.016 to 1.1 GeVafter the nonperturbative renormalization
procedure in Ref. [12]. The smallest one is slightly smaller
than the sea quark mass and corresponds to a pion mass at
281 MeV, and the largest quark mass is close to that of the
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FIG. 4. The summary figures of the light/strange quark con-
tent at 18 quark masses on the three ensembles (24I/32I/48I
as defined in Table I), as a function of the square of the pion
mass. Both the lattice spacing and sea quark mass depen-
dence are mild. The curve in each figure shows the behavior
in the infinite volume and continuum limits without the par-
tially quenching e↵ect. In each case, the band of the total
error is almost the same as that of the statistical error, and
thus is barely visible.

III. RESULTS

Fig. 4 shows the computed �

⇡N

and �

sN

data points for
the three ensembles, as a function of m2

⇡

corresponding
to the valence quark mass.

The chiral behavior of �
⇡N

as a function of m
⇡

can be
deduced from the chiral behavior of the nucleon mass it-
self (as suggested by partially quenched SU(2) �PT [46–
48]), by taking the derivative with respect to both valence
and sea quark masses,

�

⇡N

(mv

l

,m

s

l

, a, L) = C

⇡

0

m

2

⇡,vv

+ C

⇡

1

m

3

⇡,vv

+C

⇡

2

m

2

⇡,vs

m

mix

⇡,vs

+ C

⇡

3

a

2

+C

⇡

4

(
m

2

⇡,vv

L

�m

3

⇡,vv

)e�m⇡,vvL
, (8)

with lattice spacing a and lattice size L depen-
dence. The symbol m

⇡,vv

appearing in the above equa-
tion is the valence-valence pion mass and m

mix

⇡,vs

=q
m

2

⇡,vs

+ a

2�
mix

is the mixed valence-sea pion mass.

(The value of �
mix

in our case is small and contributes a

shift of only ⇠10 MeV to the pion mass at 300 MeV for
the 32I lattice [49].)
The chiral log term is dropped since it can be fully ab-

sorbed by the polynomial terms within our present data
precision, and will be considered as a systematic uncer-
tainty. Even for the fit of the proton mass itself where a
higher precision is attainable, the coe�cient of the chiral-
log term obtained by Ref. [48] is still consistent with zero
with large uncertainty. The functional form of the vol-
ume dependence is derived from the leading order of the
proton mass [50, 51] in �PT.
For �

sN

, we used the same functional form for the chi-
ral behavior as in Ref. [1] and added a volume-dependent
term

�

sN

(mv

l

,m

s

l

, a, L) = C

s

0

+ C

s

1

m

2

⇡,vv

+ C

s

2

m

2

⇡,vs

+ C

s

3

a

2

+C

s

4

e

�m⇡,vvL
. (9)

We fit all the data points of �

⇡N

and �

sN

with
m

⇡

< 350 MeV simultaneously with a correlated fit, with
1000 bootstrap re-samples on each ensemble, and the fi-
nal �2

/d.o.f. is 0.89 with 16 degrees of freedom. The
values of the parameters are summarized in Table III.
The curves in the infinite volume and continuum limit
without the partial quenching e↵ect are plotted in Fig. 4,
with bands corresponding to the total error. All the data
points stay on that curve within one or two standard de-
viations, which means that the finite lattice spacing, sea
quark mass and volume dependences are mild.

TABLE III. The fitted parameters for �⇡N and �sN . All the
parameters are in units of a power of GeV.

�⇡N C⇡
0 C⇡

1 C⇡
2 C⇡

3 C⇡
4

– 2.9(5) -3.3(1.5) -0.2(7) -0.00(3) 47(111)
�sN Cs

0 Cs
1 Cs

2 Cs
3 Cs

4

– 0.037(13) 0.00(2) 0.13(6) -0.02(3) -19(138)

We estimate the systematic errors of �
⇡N

and �

sN

as
follows:
Discretization errors: We estimate the systematic er-

rors by the di↵erences between the fitting predictions in
the continuum limit and those from the ensemble with
the smallest lattice spacing (32I).
Finite volume corrections: Similarly, we estimate the

systematic errors by the di↵erence between the fitting
predictions on the ensemble with the largest volume (48I)
and those in the infinite volume limit.
Chiral extrapolation: The di↵erence between the fit-

ting predictions at the physical pion mass of the 48I en-
semble, and those from the interpolations of the neigh-
boring quark masses are considered as systematic errors.
Strange quark mass: The strange quark mass we used

is 101(3)(6) MeV. Since the scalar element will be smaller
when the corresponding quark mass is larger, there is just
a 1.0 MeV deviation if we change the strange quark mass
by 1�.
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proton mass [50, 51] in �PT.
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We fit all the data points of �
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with
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< 350 MeV simultaneously with a correlated fit, with
1000 bootstrap re-samples on each ensemble, and the fi-
nal �2

/d.o.f. is 0.89 with 16 degrees of freedom. The
values of the parameters are summarized in Table III.
The curves in the infinite volume and continuum limit
without the partial quenching e↵ect are plotted in Fig. 4,
with bands corresponding to the total error. All the data
points stay on that curve within one or two standard de-
viations, which means that the finite lattice spacing, sea
quark mass and volume dependences are mild.

TABLE III. The fitted parameters for �⇡N and �sN . All the
parameters are in units of a power of GeV.

�⇡N C⇡
0 C⇡

1 C⇡
2 C⇡

3 C⇡
4

– 2.9(5) -3.3(1.5) -0.2(7) -0.00(3) 47(111)
�sN Cs

0 Cs
1 Cs

2 Cs
3 Cs

4

– 0.037(13) 0.00(2) 0.13(6) -0.02(3) -19(138)

We estimate the systematic errors of �
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and �
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as
follows:
Discretization errors: We estimate the systematic er-

rors by the di↵erences between the fitting predictions in
the continuum limit and those from the ensemble with
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Finite volume corrections: Similarly, we estimate the

systematic errors by the di↵erence between the fitting
predictions on the ensemble with the largest volume (48I)
and those in the infinite volume limit.
Chiral extrapolation: The di↵erence between the fit-

ting predictions at the physical pion mass of the 48I en-
semble, and those from the interpolations of the neigh-
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Strange quark mass: The strange quark mass we used

is 101(3)(6) MeV. Since the scalar element will be smaller
when the corresponding quark mass is larger, there is just
a 1.0 MeV deviation if we change the strange quark mass
by 1�.



Result 
クォーク質量の寄与The quark mass term

σπN  = 45.9(7.4)(2.8) MeV σsN  =  40.2(11.7)(3.5) MeV

⟨Hm(u,d,s)⟩ / MN  =  9(2)%

Y. Yang, et.al. [!QCD], Phys. Rev. D 94, 054503 (2016) 

The best result without the systematic uncertainty from the explicit breaking

クォーク質量の寄与 
〈Hm〉/M =(45.9+40.2)/938=0.09(2)

QCD アノマリーの寄与は自動的に決まる 〈Ha〉/M =0.23(1)



Result 
Longitudinal momentum fraction

Table 1. The parameters for the RBC/UKQCD configurations[8]: spatial/temporal size, lattice spacing, the sea
strange quark mass under MS scheme at 2 GeV, the pion mass with the degenerate light sea quark (both in unit

of MeV), and the number of configurations used in this proceeding.

Symbol L3 ⇥ T a (fm) m(s)
s m⇡ Nc fg

24I 243 ⇥ 64 0.1105(3) 120 330 203
32I 323 ⇥ 64 0.0828(3) 110 300 309

32ID 323 ⇥ 64 0.1431(7) 89.4 171 200
48I 483 ⇥ 96 0.1141(2) 94.9 139 81

quark propagators, 1 step of HYP smearing is applied on all the configurations to improve the signal.
Numerical details regarding the calculation of the overlap operator, eigenmode deflation in inversion
of the quark matrix, and the Z(3) grid smeared source with low-mode substitution (LMS) to increase
statistics are given in [13–15].

The matrix elements we need are obtained from the ratio of the three-point function to the two-
point function

R(t f , t) =
h0| R d3y�e�(~y, t f )O(t)

P
~x2G �̄S (~x, 0)|0i

h0| R d3y�e�(~y, t f )
P
~x2G �̄S (~x, 0)|0i , (7)

where � is the standard proton interpolation field and �̄S is the field with gaussian smearing applied
to all three quarks. All the correlation functions from the source points ~x in the grid G are combined
to improve the the signal-to-noise ratio (SNR). O(t) is the current operator located at time slice t and
�e is the unpolarized projection operator of the nucleon. When t f is large enough, R(t f , t) approaches
the bare nucleon matrix element matrix element hN |O|Ni.

For each quark mass on each ensemble, we construct R(t f , t) for several sink-source separations
t f from 0.7 fm to 1.5 fm and all the current insertion times t between the source and sink, combine all
the data to do the two-state fit, and then obtain the matrix elements we want with the excited-states
contamination under control. The more detailed discussion of the simulation setup and the two-state
fit can be found in our previous work [6, 9, 16].

To improve the signal in the disconnected insertion case needed for the gluon, strange and also
the light sea quarks cases, all the time slices are looped over for the proton two-point functions. With
5 steps of the HYP smearing, the signal of the glue operator is further improved as evidenced in
Ref. [16].

3 Results

The quark and gluon momentum fractions in the nucleon can be defined by the traceless diagonal part
of the EMT matrix element in the rest frame [17],

hxitrq,g ⌘ Tr[�ehN | 43 T̄ q,g
44 |Ni]

MTr[�ehN |Ni] , (8)

T̄ q
44 =

Z
d3x (x)

1
2

(
3
4
�4
 !
D 4 � 1

4

X

i=1,2,3

�i
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D i) (x), T̄ g44 =

Z
d3x

1
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(B(x)2 � E(x)2),

Table 1. The parameters for the RBC/UKQCD configurations[8]: spatial/temporal size, lattice spacing, the sea
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48I 483 ⇥ 96 0.1141(2) 94.9 139 81

quark propagators, 1 step of HYP smearing is applied on all the configurations to improve the signal.
Numerical details regarding the calculation of the overlap operator, eigenmode deflation in inversion
of the quark matrix, and the Z(3) grid smeared source with low-mode substitution (LMS) to increase
statistics are given in [13–15].

The matrix elements we need are obtained from the ratio of the three-point function to the two-
point function
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where � is the standard proton interpolation field and �̄S is the field with gaussian smearing applied
to all three quarks. All the correlation functions from the source points ~x in the grid G are combined
to improve the the signal-to-noise ratio (SNR). O(t) is the current operator located at time slice t and
�e is the unpolarized projection operator of the nucleon. When t f is large enough, R(t f , t) approaches
the bare nucleon matrix element matrix element hN |O|Ni.

For each quark mass on each ensemble, we construct R(t f , t) for several sink-source separations
t f from 0.7 fm to 1.5 fm and all the current insertion times t between the source and sink, combine all
the data to do the two-state fit, and then obtain the matrix elements we want with the excited-states
contamination under control. The more detailed discussion of the simulation setup and the two-state
fit can be found in our previous work [6, 9, 16].

To improve the signal in the disconnected insertion case needed for the gluon, strange and also
the light sea quarks cases, all the time slices are looped over for the proton two-point functions. With
5 steps of the HYP smearing, the signal of the glue operator is further improved as evidenced in
Ref. [16].

3 Results

The quark and gluon momentum fractions in the nucleon can be defined by the traceless diagonal part
of the EMT matrix element in the rest frame [17],

hxitrq,g ⌘ Tr[�ehN | 43 T̄ q,g
44 |Ni]

MTr[�ehN |Ni] , (8)
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� : standard proton interpolation field
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where M is the proton mass, or alternatively by the o↵-diagonal part of the EMT matrix elements,

hxio↵q,g ⌘ Tr[�ehP|T q,g
4i |Pi]

PiTr[�ehP|Pi] (9)

T q
4i =

Z
d3x (x)

1
4
�{4
 !
D i} (x), T g4i =

Z
d3x✏i jkE j(x)Bk(x),

where |Pi is the nucleon state with momentum P and Pi is a non-zero component of P. These two
definitions should give the same result in the continuum due to the rotational symmetry. But they can
be di↵erent under the lattice regularization which breaks this symmetry and should be renormalized
separately to get consistent results.

In Ref. [18], we provided the 1-loop renormalization and mixing calculation of T̄44 and T̄4i. The
rotational symmetry breaking e↵ects in the renormalization constant of the quark operator and the
mixing from quark to gluon are small, while that in the gluon to quark mixing case is large. The glue
renormalization constant turns out to be ⇠2 at the 1-loop level and is thus not reliable. The renor-
malization condition provided in Ref. [18] can also be used for the non-perturbative renormalization
calculation, and the preliminary result shows that the renormalization constant of the gluon operator
with 1-step HYP smearing is about 1.3 [19]. That with more steps of the HYP smearing is under in-
vestigation and would be closer to 1, since the corresponding bare gluon matrix elements are slightly
increased compared to the 1-step HYP smearing case.

Figure 1. The contributions of di↵erent quark flavors and glue to the proton momentum fraction. The left panel
shows the lattice results renormalized in the MS scheme at 2 GeV with 1-loop perturbative calculation and proper
normalization of the glue. The experimental values are illustrated in the right panel, as a function of the MS scale.
Our results agree with the experimental values at 2 GeV.

In view of the uncertainty in the glue renormalization, we calculate the renormalized quark mo-
mentum fractions with the 1-loop perturbative calculation including the mixing of the bare glue mo-
mentum fraction and apply the momentum sum rule to determine the renormalized glue momentum
fraction. The resulting renormalized momentum fractions of the u, d, s quarks, and glue in the MS
scheme at 2 GeV are illustrated in the left panel of Fig. 1, while the right panel shows the correspond-
ing experimental values as a function of Q [20]. We note that they agree with each other well within
uncertainties.
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off-diagonal part
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※繰り込みスケールが異なるのでoperator mixingの解析が必要



Result 
operator mixing analysisした結果

where M is the proton mass, or alternatively by the o↵-diagonal part of the EMT matrix elements,

hxio↵q,g ⌘ Tr[�ehP|T q,g
4i |Pi]

PiTr[�ehP|Pi] (9)
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4i =

Z
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D i} (x), T g4i =

Z
d3x✏i jkE j(x)Bk(x),

where |Pi is the nucleon state with momentum P and Pi is a non-zero component of P. These two
definitions should give the same result in the continuum due to the rotational symmetry. But they can
be di↵erent under the lattice regularization which breaks this symmetry and should be renormalized
separately to get consistent results.

In Ref. [18], we provided the 1-loop renormalization and mixing calculation of T̄44 and T̄4i. The
rotational symmetry breaking e↵ects in the renormalization constant of the quark operator and the
mixing from quark to gluon are small, while that in the gluon to quark mixing case is large. The glue
renormalization constant turns out to be ⇠2 at the 1-loop level and is thus not reliable. The renor-
malization condition provided in Ref. [18] can also be used for the non-perturbative renormalization
calculation, and the preliminary result shows that the renormalization constant of the gluon operator
with 1-step HYP smearing is about 1.3 [19]. That with more steps of the HYP smearing is under in-
vestigation and would be closer to 1, since the corresponding bare gluon matrix elements are slightly
increased compared to the 1-step HYP smearing case.

Figure 1. The contributions of di↵erent quark flavors and glue to the proton momentum fraction. The left panel
shows the lattice results renormalized in the MS scheme at 2 GeV with 1-loop perturbative calculation and proper
normalization of the glue. The experimental values are illustrated in the right panel, as a function of the MS scale.
Our results agree with the experimental values at 2 GeV.

In view of the uncertainty in the glue renormalization, we calculate the renormalized quark mo-
mentum fractions with the 1-loop perturbative calculation including the mixing of the bare glue mo-
mentum fraction and apply the momentum sum rule to determine the renormalized glue momentum
fraction. The resulting renormalized momentum fractions of the u, d, s quarks, and glue in the MS
scheme at 2 GeV are illustrated in the left panel of Fig. 1, while the right panel shows the correspond-
ing experimental values as a function of Q [20]. We note that they agree with each other well within
uncertainties.

Momentum fraction は実験値と概ね一致

arXiv: 1612.02855 



Result 
Longitudinal momentum fraction 
→クォークやグルーオンのエネルギーThe quark/gluon energy

from the momentum fractions

The quark energy

The glue field energy

The total energy

From the last section, 

Then

⟨Hm⟩ / MN  =  9(2)% ⟨x⟩q = 50(7)% and ⟨x⟩g = 50(7)%

⟨HE+Hg⟩ / MN  =  69(2)%, 
⟨HE⟩ / MN  =  31(5)%, 

⟨Hq⟩ / MN=⟨HE+Hm⟩ / MN  =  40(5)%, 
⟨Hg⟩ / MN  =  37(5)%

Preliminary 

The quark/gluon energy
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The quark energy

The glue field energy

The total energy

From the last section, 

Then

⟨Hm⟩ / MN  =  9(2)% ⟨x⟩q = 50(7)% and ⟨x⟩g = 50(7)%

⟨HE+Hg⟩ / MN  =  69(2)%, 
⟨HE⟩ / MN  =  31(5)%, 

⟨Hq⟩ / MN=⟨HE+Hm⟩ / MN  =  40(5)%, 
⟨Hg⟩ / MN  =  37(5)%

Preliminary 

クォークのエネルギーの寄与

→〈HE〉/M =　0.31(5)

グルーオンのエネルギーの寄与
→〈Hg〉/M =　0.37(5)



Result 
Hamiltonianのタイプ別の寄与

Figure 2. The pie chart of the proton mass decomposition, in terms of the quark mass, quark energy, glue field
energy and trace anomaly.

With these momentum fractions, we can apply Eqs. (5) and (6) to obtain the quark and glue
energy contributions in the proton mass, and combine with the quark mass contribution [6] to obtain
the entire picture of the proton mass decomposition, as illustrated in Fig. 2.

4 Summary

In summary, we present a simulation strategy to calculate the proton mass decomposition. The renor-
malization and mixing between the quark and glue energy can be calculated perturbatively or non-
perturbatively, while the quark mass contribution and the trace anomaly are renormalization group
invariant. Based on this strategy, the lattice simulation is processed on four ensembles with three
lattice spacings and volumes, and several pion masses including the physical pion mass, to control the
systematic uncertainties. With 1-loop perturbative calculation and proper normalization on the glue,
we obtained the proton mass decomposition, with the quark mass and trace anomaly contributing
9(2)% and 23(1)% respectively, while the fractional contributions of the quark and glue field energies
are 31(5)% and 37(5)% in the MS scheme at 2 GeV. As a check of validity of the present calculation,



Result 
粒子別の寄与

クォークの寄与は 
〈HE〉＋〈Hm〉 

グルーオンの寄与は 
〈Hg〉＋〈Ha〉 
で見積もった



Summary

〈HE〉/M = 0.31(5)
〈Hg〉/M = 0.37(5)

〈Hm〉/M = 0.09(2)
〈Ha〉/M = 0.23(1)

Lattice QCDで陽子の質量起源を複数の格子間隔、 
π中間子質量(殆ど物理点での値も含む)の下で計算した

寄与は以下の通り

※重いクォークの効果を入れていない

PS/Vメソンも同様の解析を行っている Phys Rev D.91.074516



back up



Result 
Renormalization

of the momentum fractions 
From the lattice bare quantities with the chiral fermion and HYP smeared 

Iwasaki gluon to that under the MS-bar scheme, 
at a scale μ=1/a,

• With the global fit, ⟨x⟩q = 50(7)% at MS-bar 2GeV. 

• For the gluon operator renormalization at 1-loop level, the value and the 
uncertainty (from the estimate of the 4-gluon vertex tadpole contribution) are 
large and then indicate the convergence problem. 

• The bare value of ⟨x⟩g  is 54(11)% and that deduced from the momentum fraction 
sum rule is ⟨x⟩g = 50(7)%.

Y. Yang, et.al. [!QCD], arXiv: 1612.02855


