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Space like form factor : 

Time like form factor : 

( q = pf � pi , q2 < 0 )h⇡(pf )|Vµ|⇡(pi)i = (pf + pi)µ F (q2)

h⇡(p1)⇡(p2); in|Vµ|0i = i(p1 � p2)µ F (q2) ( q = p1 + p2 , q2 = s > 0 )
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Time like form factor : 
h⇡(p1)⇡(p2); in|Vµ|0i = i(p1 � p2)µ F (q2) ( q = p1 + p2 , q2 = s > 0 )

格子上で time like form factor を求めるのは簡単ではない。
格子計算 (有限体積) では、漸近場が作れない。

それぞれの粒子の運動量は quantum number ではない。

無限体積 : h⇡⇡; out|⇡⇡; ini = e

i2�

格子計算で取り出せる状態 : 

|⇡(p)⇡(�p); ini , |⇡(p)⇡(�p); outi

: 相互作用のある場合の energy eigenstate|⇡⇡;EiV

h0|Vµ|⇡⇡;EiV =
X

!

C(⌦)h0|Vµ|⇡(p)⇡(�p); ini

有限体積の matrix element は、無限体積の線形結合で書ける。
( up to complex phase )
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GV (t) =

Z

V
dx3 h0|Vµ(x, t)V

†
µ (0, 0) |0i
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( ⇢(E) : density of state )

E
n 10 2 3 4

:  Lüscher’s formula

cot�(q) = � 1

⇡3/2q
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p
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|h0|Vµ|⇡⇡;EiV |2
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2. 物理
h⇡(p1)⇡(p2); in|Vµ|0i = +i(p1 � p2)F (s� i✏)

h⇡(p1)⇡(p2); out|Vµ|0i = �i(p1 � p2)F (s+ i✏)

2m <
p
s < 3m⇡

( time reversal より )

h⇡⇡; out|Vµ|0i � h⇡⇡; in|Vµ|0i = [1� h⇡⇡; in|⇡⇡; outi] h⇡⇡; out|Vµ|0i

ImF (s) = sin�(k)e�i�(k)F (s)
よって
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effective Lagragian : 
L = g⇢⇡⇡ · ⇢µ⇡(@µ⇡) ⇢

⇡

⇡

g⇢⇡⇡

decay width : 

Im⇧⇢(s) = �
g2⇢⇡⇡
6⇡

k3p
s

optical theory より、

( = total cross section )

parametarization of from factor :

( A = m2
⇢ �⇧(0) )

dispersion relation より、

Re⇧(s) = c0 + c1s+
s2

⇡
P

Z 1

4m2
⇡

ds0
Im⇧(s0)

s02(s0 � s)

=
g2⇢⇡⇡
6⇡

"
k2

�
h(
p
s)� h(m⇢)

�
�

2k2⇢
m⇢

h0(m⇢)(k
2 � k2⇢)

#

Gounaris and Sakurai
PRL 21(1968)244.

c0 , c1 は、⇧(s) の繰り込み条件から決まる( )

FGS(s) =
A

s�m2
⇢ �⇧(s)

�⇢ =
g2⇢⇡⇡
6⇡

k3⇢
m⇢

( m⇢ = 2
q

m2
⇡ + k2⇢ )

" "
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= Re⇧(0)

Re⇧(m⇢) = 0 , Re⇧0(m⇢) = 0



Gounaris and Sakurai
PRL 21(1968)244.

FGS(s) =
f0

k2h(
p
s)� k2⇢h(m⇢) + b(k2 � k2⇢)� ik3/

p
s

よって、

h(
p
s) =

2

⇡

kp
s
ln

✓p
s+ 2k

2m⇡

◆

f0 = �m2
⇡/⇡ � k2⇢h(m⇢)� bm2

⇢/4

b = �h(m⇢)� 24⇡/g2⇢⇡⇡ � 2k2⇢h
0(m⇢)/m⇢

ImF (s) = sin�(k)e�i�(k)F (s) から、

k3p
s
cot �(k) = k2h(

p
s)� k2⇢h(m⇢) + b(k2 � k2⇢)
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un-known parameter : m⇢ , g⇢⇡⇡



実験

conservation. This form is, however, not very satisfactory
since the instability of the ρ-meson is not taken into
account. To include the ππ branch cut, Gounaris and
Sakurai (GS) introduced an analytic form that takes account
of the ρ → ππ transition [28]

FGS
π ðsÞ ¼ A

s −m2
ρ − ΠρðsÞ

; A ¼ −m2
ρ − Πρð0Þ; ð8Þ

where the function ΠρðsÞ stands for the ρ meson self-
energy due to the two-pion loop diagram.
Near the resonance energy, the ρ → ππ transition ampli-

tude can be parametrized as

hπþπ−; outjρ; ε; ini ¼ gρππεμ · ðpþ − p−Þμ; ð9Þ

through which the ρππ coupling gρππ is defined. The value
of gρππ can be estimated with the experimental measure-
ment of the ρ → ππ decay width

Γρππ ¼
g2ρππ
6π

k3ρ
m2

ρ
; kρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ=4 −m2
π

q
: ð10Þ

Using the optical theorem, the imaginary part of ΠρðsÞ can
be related to the ρ → ππ amplitude, or equivalently gρππ,
through

ImΠρðsÞ ¼ −
g2ρππ
6π

k3ffiffiffi
s

p ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

π

q
: ð11Þ

The real part of ΠρðsÞ can be related to its imaginary part
using a twice-subtracted dispersion relation. Hence, FGS

π ðsÞ
has only two parameters mρ and gρππ . An explicit expres-
sion FGS

π ðsÞ is given in Appendix A. In particular, the s
dependence of the P-wave pion-pion scattering phase
induced from the GS model is given in (A8).
As shown in Fig. 1, the GS form gives a reasonably good

approximation of the experimental measurements of the
scattering phase, but jFGS

π ðsÞj is about 10% lower near
the resonance peak

ffiffiffi
s

p
¼ mρ. The deviation may arise

from the ρ − ωmixing due to the isospin breaking effect. In
[29] the ω contribution is subtracted from the CMD-2 data
and the peak value of the form factor is only ∼3% smaller
than the original one, which suggests that the ρ − ω mixing
effect is not the only source of the deviation between the GS
model and experimental data. This is further confirmed by
our lattice calculation, where the up and down quark
masses are set identical while the peak value of the GS
form factor is 27% and 20% smaller than the lattice results
at mπ ¼ 380 MeV and 290 MeV, respectively, as shown
later in Fig. 13.
One way to make the GS form closer to the experimental

data is to include the contributions from higher resonances
such as ρð1450Þ and ρð1700Þ [37,38]. After doing this, the

extended GS form does agree with the experimental
measurements but there are still some doubts on whether
the higher resonances really affect the form factor at the
ρ-resonance peak in the suggested way [29].
Another way to modify the GS form is to focus only on

the resonance region s ≈m2
ρ and assume the ρ-meson

dominance. The matrix elements in (2) are then factorized
into two parts: hπþπ−; outjρ; ε; ini and hρ; ε; injjμj0i ¼
gρ;emm2

ρεμ, where the former one is related to gρππ by (9)
and the latter yields the ρ-meson decay constant gρ;em.
Consequently, the form factor is constructed as [39,40]

FGSþVMD
π ðsÞ ¼ A

s −m2
ρ − ΠρðsÞ

; A ¼ −gρππgρ;emm2
ρ;

ð12Þ

where the numerator is given by −gρππgρ;emm2
ρ and the

denominator still uses the dressed ρ propagator. Using
gρππ ¼ 5.95ð2Þ and gρ;em ¼ 0.2017ð9Þ extracted from the
ρ → eþe− decay width as inputs, this formula gives a good
description of the experimental data near the resonance
peak but violates the charge conservation condition
at s ¼ 0.
Comparing (8) to (12), it is natural to introduce an

s-dependent AðsÞ and write the form factor as

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
E  [GeV]

0

30

60

90

120

150

180

δ 11 (E
)

LBL 73
CERN-Munich 74
GS Model

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
E  [GeV]

1

2

3

4

5

6

7

|F
π(E

)|

CMD-2 06
SND 06
KLOE 10
GS Model

FIG. 1 (color online). Comparison of the GS model with the
experimental measurements of P-wave pion-pion scattering
phase δ1ðsÞ and the modulus of the pion form factor jFπj. We
use E ¼

ffiffiffi
s

p
as the label of the x-axis. On the left-hand side,

circles are from [30], where the scattering phase is extracted from
the reactions πþp → πþπ−Δþþ, while the squares from [31] are
based on π−p → π−πþn. On the right-hand side, circles, squares
and diamonds stand for the data of jFπðsÞj, compiled using the
CMD-2 06 [32,33], SND 06 [34], and KLEO 10 eþe− data [35],
respectively. The blue curve shows the GS model (A8) and (A6),
where the Particle Data Group (PDG) [36] values mπ ¼
0.1395702ð4Þ GeV and mρ ¼ 0.7753ð3Þ GeV are inputs and
gρππ ¼ 5.95ð2Þ is estimated with the PDG value of
Γρ ¼ 0.1478ð9Þ GeV.
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FGS(s) が合わない

A = A(s) =
X

n

cn(s�m⇢)
nF (s) =

A

s�m2
⇢ �⇧(s)

F (0) = 1 から
X

n

cn(�m⇢)
n = 1
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3. 格子計算
action : 2+1 overlap fermion
a = 0.112(1) fm

m⇡ = 380 , 290MeV

V = 243 ⇥ 48

op : ⇢µ = Vµ ⇡(pa)⇡(p2),

Gij = h0|O†
i (t)Oj(0) |0i

:

=
2X

↵=1

h0|O†
i |↵ie

�E↵th↵|Oj |0i

R(t, t0) = G(t0)
�1/2 G(t)G(t0)

�1/2

R(t, t0)B = B (D(t)/D(t0)) D(t)/D(t0) E �

G(t) = A†D(t)A

D↵�(t) = �↵�e
�E↵t A↵j = h↵|Oj |0i,

D↵(t0)|A↵j |2 =

����
h
B†G(t0)

�1/2G(t)
i

↵j

����
2

· (D(t)/D(t0))
�2
↵

j = Vµ で、A↵ = h↵|Vµ |0i が求まる

jqðΓ;P; tÞ ¼ dΓ
NG

X

R̂∈G

χ$ΓðR̂Þj
q
R̂b
ðP; tÞ; ð23Þ

where q ¼ ψ̄ψ or ðππ; nÞ, and NG ¼
P

R̂∈G1. The nota-
tions follow those of [13,50]. Here the symmetry groupG is
introduced as the set of all lattice rotations and reflections
R̂. In the case of P ¼ 0, G reduces to the full cubic group
Oh. For P ≠ 0, on the other hand, G spans a subspace of
Oh, under which the momentum P is invariant or changes
only by a minus sign:

G ¼ fR̂ ∈ OhjR̂P ¼ P or R̂P ¼ −Pg: ð24Þ

Γ is the irreducible representation of the group G, while dΓ
and χΓðR̂Þ are the dimension and character of Γ, respec-
tively. The character projection makes the operator
jqðΓ;P; tÞ belong to a given representation Γ.

In a general moving frame with nonzero P, the operator
jψ̄ψb with b∥P forms a basis of a one-dimensional repre-
sentation of G. For the operators belonging to the other
representations, we take b and P such that b⊥P. In
general, jqðΓ;P; tÞ defined in (23) is a linear combination
of a few jqb with different polarization b, but with our
choice these interpolating operators can be simply
given by a single jqb. We list the operators used in our
calculation in Table I.
Using the operators ①;…;⑤ in Table I, for each set of

fjψ̄ψb ; jðππ;nÞb g, we can construct a 2 × 2 correlation matrix
with its matrix elements defined through

Cq;q0ðtÞ ¼
1

T

XT−1

t0¼0

hjqbðP; tþ t0Þj
q0
b ðP; t0Þ†i;

q; q0 ¼ ψ̄ψ or ðππ; nÞ: ð25Þ

The quark contractions for three- and four-point correlation
functions are shown in Fig. 2. Then the variational method
[51] allows us to isolate the ground state and first excited
state from the correlation matrix. From each of the five
operator sets, we can calculate two energy eigenvalues, so
that we obtain the scattering phase and the pion form
factors at ten discrete energies. As shown in (25), we
perform a time translation average to reduce the statistical
noise of the correlators. This requires the quark propa-
gator inversions at each time slice. For P ¼ 0, we average
the correlators using the three operator sets in ①, since
T−
1 is a three-dimensional representation. For P ≠ 0 we

average the correlators carrying total momentum P with
those carrying momenta R̂P (R̂ ∈ Oh), since these cor-
relators are equivalent under the symmetry. This requires
various momentum insertions in the propagator inver-
sions. All these requirements are fulfilled by using
the all-to-all propagators generated by the JLQCD
Collaboration.
Here we briefly describe the construction of the all-to-

all propagator [48,52] by the JLQCD Collaboration [21].
The quark propagator D−1ðx; yÞ can be explicitly com-
posed using the eigenmodes of the Hermitian Dirac
operator:

TABLE I. ①;…;⑤ identify the operators used in this calcu-
lation. P denotes the total three-momentum in units of 2π=L. G is
the cubic rotational group defined in (24). Since the reflection
operator is involved, G is a parity doubled little group associated
with momentum P. Γ stands for the irreducible representation of
group G. T−

1 is a three-dimensional representation while others
are one dimensional. For a given Γ, one can construct the
operators using (23). In our calculation, these interpolating
operators can be simplified as jðππ;nÞb and jψ̄ψb . The jðππ;nÞb are
specified using the momenta p1 and p2 in units of 2π=L. The j

ψ̄ψ
b

can be determined by the polarization b. Note that, although the
operators ① and ② contain the jψ̄ψb with the same polarization
b ¼ ð0; 0; 1Þ, the different total momentum Pmakes them belong
to the different representations of different groups.

No. P G Γ jðππ;nÞb : [p1, p2] jψ̄ψb : b

①

[(1, 0, 0), ð−1; 0; 0Þ] (1, 0, 0)
(0, 0, 0) Oh T−

1 [(0, 1, 0), ð0;−1; 0Þ] (0, 1,0)
[(0, 0, 1), ð0; 0;−1Þ] (0, 0, 1)

② (0, 0, 1) D4h A−
2 [(0, 0, 1), (0, 0, 0)] (0, 0, 1)

③ (1, 1, 0) D2h B−
1 [(1, 1, 0), (0, 0, 0)] 1ffiffi

2
p ð1; 1; 0Þ

④ (1, 1, 1) D3d A−
2 [(1, 1, 1), (0, 0, 0)] 1ffiffi

3
p ð1; 1; 1Þ

⑤ (1, 1, 0) D2h B−
2 [(1, 0, 0), (0, 1, 0)] 1ffiffi

2
p ð1;−1; 0Þ

FIG. 2. Quark contractions for three- and four-point correlation functions. The momenta &p1;2 are used to indicate the single pion
field. &P are used to specify the jψ̄ψb field.
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3. 計算結果

B. Extracting the eigenstates

After removing the around-the-world effects, we apply
the variational method [51] to extract the energy En and the
matrix element jh0jjqbjππ; niV j2 from the correlation matrix.
The procedure is as follows. We first build the correlation
matrix using the modified correlator in (30). By construct-
ing a ratio of the correlation matrix

Rðt; tRÞ ¼ C̄−1
2ðtRÞC̄ðtÞC̄−1

2ðtRÞ; ð31Þ

and solving the eigensystem of

Rðt; tRÞBn ¼ Dnðt; tRÞBn; n ¼ 0; 1 ð32Þ

one can determine the eigenvalues Dnðt; tRÞ and the
normalized eigenvectors Bn for t > tR. Since Rðt; tRÞ is
a Hermitian matrix, the eigenvectors Bn form an orthogonal
system, i.e. B†B ¼ 1. Then, Dnðt; tRÞ is related to the
energy eigenvalues of the ππ scattering states through

Dnðt; tRÞ ¼ DnðtÞ=DnðtRÞ; ð33Þ

with the function DnðtÞ defined as

DnðtÞ ¼ ðe−Ent þ e−EnðT−tÞÞ
!
1 −

cosh ½EnðT=2 − ðtþ ΔtÞÞ& cosh ½ΔEðT=2 − tÞ&
cosh ½EnðT=2 − tÞ& cosh ½ΔEðT=2 − ðtþ ΔtÞÞ&

"
: ð34Þ

Since ΔE and Δt are known, DnðtÞ is a function of only En and t. Using the lattice data of Dnðt; tRÞ as inputs, one can
determine En.
Note that the eigenvectors of Rðt; tRÞ can also be given by C̄

1
2ðtRÞA−1, with An;q defined as An;q ¼ hππ; njjq†b j0iV . A

relation between B and A is then established through

Bq;n ¼ Xn½C̄
1
2ðtRÞA−1&q;n ⇒ ½C̄−1

2ðtRÞB&q;n ¼ Xn½A−1&q;n ð35Þ

with a coefficient Xn to be determined. B†B ¼ 1 leads to jXnj2 ¼ D−1
n ðtRÞ. Making use of the relation (35), we obtain

½B†C̄−1
2ðtRÞC̄ðtÞ&n;q ¼ X'

nDnðtÞAn;q

⇒ DnðtRÞjAn;qj2 ¼ j½B†C̄−1
2ðtRÞC̄ðtÞ&n;qj

2D−2
n ðt; tRÞ: ð36Þ

Since Dnðt; tRÞ and B are known, (36) can be used to
extract DnðtRÞjAn;qj2. By putting the evaluated value of En

into (34), one can remove DnðtRÞ and determine jAn;qj2.
In practice, with a given reference time tR, we determine

En by fitting the data of Dnðt; tRÞ to (34) and obtain
DnðtRÞjAn;qj2 (q ¼ ψ̄ψ) from (36). A fitting window of t ∈
½tR þ a; tR þ 6a& is used in our analysis. We gradually
increase tR until the values of χ2=d:o:f: in the correlated fits
are under control. Here χ2=d:o:f: is not a unique criterion to
determine the fitting window. We also check the tR
dependence to make sure that the effective mass does
not have systematically decreasing behavior. Also, given a
pion mass, we try to have a consistent tR for different types
of correlators, since they have the same vector channel
spectral weight function and the excited states will have
similar effects on the correlators. tR is chosen in a
conservative way even at which χ2=d:o:f: does not take
its minimal value. In this way, we set tR=a ¼ 8 for mπ ¼
380 MeV and tR=a ¼ 9 for mπ ¼ 290 MeV. The fit
results are shown in Figs. 3–12 for each mass and the
operator choices ①;…⑤. In the left panel, the effective
masses for the two lowest-energy states are shown
together with the fit results (gray bands). We fix tR=a ¼
8 or 9. The effective mass at tþ a=2 means an energy

obtained from the equation that Dnðtþ aÞ=DnðtÞ ¼
Dnðtþ a; tRÞ=Dnðt; tRÞ. The right panel represents the
effective amplitude DnðtRÞjAn;qj2 as a function of t. The
gray bands show the fitted value and the fitting range. At
the t ¼ tR, the data point for the amplitude is missing
because Rðt; tRÞ defined in Eq. (31) is a unit matrix and
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FIG. 3 (color online). Effective energies and amplitudes for the
operator set ① and mπ ¼ 380 MeV.
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FIG. 4 (color online). Same as Fig. 3, but for the operator set ②
and mπ ¼ 380 MeV.
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FIG. 5 (color online). Same as Fig. 3, but for the operator set ③
and mπ ¼ 380 MeV.
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FIG. 6 (color online). Same as Fig. 3, but for the operator set ④
and mπ ¼ 380 MeV.
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FIG. 7 (color online). Same as Fig. 3, but for the operator set ⑤
and mπ ¼ 380 MeV.
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FIG. 8 (color online). Same as Fig. 3, but for the operator set ①
and mπ ¼ 290 MeV.
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FIG. 9 (color online). Same as Fig. 3, but for the operator set ②
and mπ ¼ 290 MeV.
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jFπðsÞj
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− 1 ¼

XN

n¼0

cnððs −m2
ρÞn − ð−m2

ρÞnÞ

¼ sðc1 þ c2ðs − 2m2
ρÞ þ % % %Þ: ð37Þ

In Fig. 14 we show the data of ðjFπðsÞ=FGS
π ðsÞj − 1Þ=s as a

function of s. The data points seem to be well described by
a straight line up to statistical fluctuations. We therefore fit
them to the form c1 þ c2ðs − 2m2

ρÞ. The fitting results for
c1 and c2, together with c0 determined from charge
conservation, are given in Table III. Within current sta-
tistics, the values of c2 are consistent with 0 for both pion
masses, and it is not necessary to pursue higher polynomial
terms with cn>2. Putting c0, c1 and c2 into (13), we draw the

fit curves for jFπðsÞj in Fig. 13. By including the poly-
nomial terms, the curves match the lattice data. Note that
we have imposed the charge conservation condition when
obtaining the values of cn in Table III. If we do not impose
this constraint and fit with a free c0, we find for c0 þ
c1ð−m2

ρÞ þ c2ð−m2
ρÞ2 ¼ 1.08ð14Þ at mπ ¼ 380 MeV and

1.12(16) at mπ ¼ 290 MeV. The charge conservation
condition is well reproduced by our lattice data.
As a by-product of this calculation, we evaluate the pion

mean-square charge radius (isovector part only) through

hr2πi ¼ 6
∂jFπðsÞj

∂s
!!!!
s¼0

¼ 6

"
−

1

f0

"
b
4
þ 1

3π

#
þ c1 þ c2ð−2m2

ρÞ
#
; ð38Þ

TABLE II. Center-of-mass energy E&
n, P-wave pion-pion scattering phase shift δ1 and the modulus of the pion

form factor at the pion masses mπ ¼ 380 MeV (left block) and 290 MeV (right). E&
n are given in units of MeV.

mπ ¼ 380 MeV mπ ¼ 290 MeV

No. E&
n δ1 (°) jFπðsÞj E&

n δ1 (°) jFπðsÞj
① 876(7) 133.6(2.8) 41.0(5.7) 796(12) 111.9(3.9) 14.8(1.9)

1203(8) 174.1(3.9) 1.64(.14) 1134(13) 157.8(7.0) 1.60(.26)
② 817(3) 4.95(.10) 9.28(.42) 671(4) 3.16(.25) 3.65(.14)

947(10) 158.1(3.0) 7.23(.29) 875(19) 140.1(5.2) 7.36(.85)
③ 848(9) 15.73(.87) 19.9(4.0) 718(8) 8.3(1.1) 5.35(.34)

987(10) 163.1(2.8) 3.95(.35) 936(31) 139.3(8.2) 4.83(.21)
④ 913(19) 18.9(5.4) 13.0(4.2) 750(34) 14.3(6.5) 7.6(1.9)

1047(32) 152(23) 4.2(3.2) 1054(101) 133(31) 3.78(.62)
⑤ 871(12) 52.7(5.6) 41.6(5.9) 813(13) 21.8(5.0) 14.3(1.3)

1040(10) 164.9(3.5) 3.26(.29) 964(21) 150.1(6.8) 3.73(.31)
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FIG. 13 (color online). Upper panels: Scattering phases calcu-
lated using the Lüscher formula (16) together with the fits to the
GS form (A8). Lower panels: Modulus of the pion form factor
calculated using the Lellouch-Lüscher formula (17) together with
the GS-model curves (blue dashed) and the fits to (13) (red solid).
Circles, squares, diamonds, triangles-up and triangles-left data
points correspond to the operator sets ①–⑤ given in Table I,
respectively.
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FIG. 14 (color online). Difference between the lattice data of
jFπðsÞj and the GS form (8). The data for ðjFπðsÞ=FGS

π ðsÞj − 1Þ=s
are plotted as a function of s together with the fit to the
polynomial c1 þ c2ðs − 2m2

ρÞ.
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In Fig. 14 we show the data of ðjFπðsÞ=FGS
π ðsÞj − 1Þ=s as a

function of s. The data points seem to be well described by
a straight line up to statistical fluctuations. We therefore fit
them to the form c1 þ c2ðs − 2m2

ρÞ. The fitting results for
c1 and c2, together with c0 determined from charge
conservation, are given in Table III. Within current sta-
tistics, the values of c2 are consistent with 0 for both pion
masses, and it is not necessary to pursue higher polynomial
terms with cn>2. Putting c0, c1 and c2 into (13), we draw the

fit curves for jFπðsÞj in Fig. 13. By including the poly-
nomial terms, the curves match the lattice data. Note that
we have imposed the charge conservation condition when
obtaining the values of cn in Table III. If we do not impose
this constraint and fit with a free c0, we find for c0 þ
c1ð−m2

ρÞ þ c2ð−m2
ρÞ2 ¼ 1.08ð14Þ at mπ ¼ 380 MeV and

1.12(16) at mπ ¼ 290 MeV. The charge conservation
condition is well reproduced by our lattice data.
As a by-product of this calculation, we evaluate the pion

mean-square charge radius (isovector part only) through
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form factor at the pion masses mπ ¼ 380 MeV (left block) and 290 MeV (right). E&
n are given in units of MeV.

mπ ¼ 380 MeV mπ ¼ 290 MeV

No. E&
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n δ1 (°) jFπðsÞj
① 876(7) 133.6(2.8) 41.0(5.7) 796(12) 111.9(3.9) 14.8(1.9)

1203(8) 174.1(3.9) 1.64(.14) 1134(13) 157.8(7.0) 1.60(.26)
② 817(3) 4.95(.10) 9.28(.42) 671(4) 3.16(.25) 3.65(.14)

947(10) 158.1(3.0) 7.23(.29) 875(19) 140.1(5.2) 7.36(.85)
③ 848(9) 15.73(.87) 19.9(4.0) 718(8) 8.3(1.1) 5.35(.34)

987(10) 163.1(2.8) 3.95(.35) 936(31) 139.3(8.2) 4.83(.21)
④ 913(19) 18.9(5.4) 13.0(4.2) 750(34) 14.3(6.5) 7.6(1.9)
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FIG. 13 (color online). Upper panels: Scattering phases calcu-
lated using the Lüscher formula (16) together with the fits to the
GS form (A8). Lower panels: Modulus of the pion form factor
calculated using the Lellouch-Lüscher formula (17) together with
the GS-model curves (blue dashed) and the fits to (13) (red solid).
Circles, squares, diamonds, triangles-up and triangles-left data
points correspond to the operator sets ①–⑤ given in Table I,
respectively.
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are plotted as a function of s together with the fit to the
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charge radius :

hr2⇡i = 6
@|F (S)|

@s

using the modified GS form. The first term arises from the
GS model with b and f0 defined in (A7). The second and
third terms are the polynomial corrections. The results for
hr2πi are listed in Table IV, where they are compared with
the calculation in the spacelike momentum transfer on the
same gauge ensembles [56,57]. The central values of the
timelike data seem systematically larger than the spacelike
ones but still consistent within the statistical errors.

VI. CONCLUSION

In this work, we calculate the complex phase and the
modulus of the pion form factor in the timelike momentum
region. We perform the calculation at two pion masses
mπ ¼ 380 MeV and 290 MeV and at a lattice spacing of
a ¼ 0.11 fm on Nf ¼ 2þ 1-flavor overlap fermion con-
figurations generated by the JLQCD Collaboration.
In the elastic scattering region, the complex phase of

FπðsÞ is given by the P-wave pion-pion scattering phase,
and thus can be evaluated using the standard Lüscher’s
finite-volume formula. We obtain the results at ten different
values of s from one setup in the center-of-mass frame and
four in the moving frames. From the energy dependence of
the scattering phase, we extract the gρππ coupling constant
and the ρ-resonance mass mρ.
Lattice calculation of the modulus of the pion form factor

was originally proposed in [27], and here we extend the
method to general moving frames and perform the actual
calculation using the all-to-all propagator technique.

We obtain a clear signal of the form factor and phase
indicating the vector meson resonance. The lattice data for
jFπðsÞj are not consistent with the simple GS model. To
address this discrepancy we introduce a simple polynomial
correction to the GS form, which describes the lattice data
quite well.
Though we focus on the calculation of the matrix

elements h0jjψ̄ψb jππiV , which can be directly related to
jFπðsÞj, the information hidden in the matrix elements of
the jππb -current insertion can also be useful for the study of
the resonance properties [58–60].
As an exploratory study, our work demonstrates the

feasibility of calculating the pion form factor in the timelike
region using lattice QCD. It is still challenging to make a
precise comparison to the experimental eþe− data, since we
need to calculate the form factor at the physical pion mass,
extract many more data points and control the errors both
statistically and systematically at the level of experimental
precision.
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APPENDIX A: GOUNARIS-SAKURAI MODEL

Using the twice-subtracted dispersion relation, one can
relate the real part of ΠρðsÞ to its imaginary part through

ReΠρðsÞ ¼ c0 þ c1sþ
s2

π
P
Z

∞

4m2
π

ds0
ImΠρðs0Þ
s02ðs0 − sÞ

; ðA1Þ

where P denotes the principal value of the integral.
Inserting (11) into the dispersion relation, one has

ReΠρðsÞ ¼ c0 þ c1sþ
g2ρππ
6π

!
k2hð

ffiffiffi
s

p
Þ − s

3π
þm2

π

π

#
;

ðA2Þ

where the function hð
ffiffiffi
s

p
Þ is given by

hð
ffiffiffi
s

p
Þ ¼ 2

π
kffiffiffi
s

p ln
! ffiffiffi

s
p

þ 2k
2mπ

#
; ðA3Þ

TABLE III. Coefficients c0, c1 and c2 of the model (13). c1 and
c2 are determined by fitting the lattice data of ðjFπðsÞ=FGS

π ðsÞj −
1Þ=s to the polynomials c1 þ c2ðs − 2m2

ρÞ and c0 is determined
by charge conservation condition: c0þc1ð−m2

ρÞþc2ð−m2
ρÞ2¼1.

c1 and c2 are given in units of GeV−2 and GeV−4, respectively.

mπ ¼ 380 MeV mπ ¼ 290 MeV

c0 c1 c2 c0 c1 c2
1.273(51) 0.31(10) −0.07ð17Þ 1.195(47) 0.29(19) −0.00ð27Þ

TABLE IV. Numerical results formπ,mρ, gρππ and hr2πi atmπ ¼
380 MeV (left) and 290 MeV (right). The timelike hr2πi are
evaluated using Eq. (38). The spacelike hr2πi are compiled using
the spacelike form factor, where the first error is statistical and the
second one originates from the choice of the parametrization form
of the q2 dependence of Fπðq2Þ (linear, quadratic, VMD with
polynomial corrections).

Lattice mπ ¼ “380 MeV” mπ ¼ “290 MeV”

mπ (MeV) 378.6(7) 291.8(1.1)
mρ (MeV) 875(7) 819(14)
gρππ 5.85(19) 5.78(23)
(time-like) hr2πi (fm2) 0.377(38) 0.392(41)
(space-like) hr2πi (fm2) 0.334ð10Þðþ00

−32Þ 0.366ð19Þðþ00
−42Þ

FENG et al. PHYSICAL REVIEW D 91, 054504 (2015)

054504-12

= 6

✓
� 1

f0

✓
b

4
+

1

3⇡

◆
+ c1 + c2(�2m2

⇢)

◆

4. まとめ
ρ decay をやったとき、余分な計算なしで求められる。

11

他の 系への応用。


