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Muon g − 2

muon 磁気モーメント M⃗ = gµ
e

2mµ
S⃗

古典的には gµ = 2、量子効果により僅かに2からずれる: aµ = (gµ − 2)/2

実験(BNLなど)で非常に高い精度で測定されている

aµ[exp] = 116592091(63)× 10−11

将来 Fermi Lab や J-PARC の実験で誤差は 10× 10−11 程度になると期待
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Muon g − 2 理論
Slide from Taku Izubuchi @ Lat15, plenary

SM Theory �
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muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.
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Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!
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Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅
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�
⇤

quark

⌅
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quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.
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aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ ! �µ(q) =

✓

�µ
F1(q

2) +
i �µ⌫

q⌫

2m
F2(q

2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e

2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵
2⇡ = 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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Muon g − 2 比較
Slide from Taku Izubuchi @ Lat15, plenary PDG2014

SM Theory prediction�

!  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!  Discrepancy between EXP and SM is larger than EW! 
!  Currently the dominant uncertainty comes from HVP, followed by HLbL 

!  Goal :  sub 1% accuracy for HVP, and  
           10% accuracy for HLbL 

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K.%Hagiwara%et%al.%,%J.%Phys.%G:%Nucl.%Part.%Phys.%38%(2011)%085003�

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

F1(q
2) = 1, F2(q

2) = 0(5)

F1(0) = 1, F2(0) = al(6)

al = F2(0)(7)

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(8)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](9)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(10)

(11)

Date: July 4, 2012.
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Figure 2: Compilation of recent published re-
sults for aµ (in units of 10−11), subtracted
by the central value of the experimental av-
erage (3). The shaded band indicates the size
of the experimental uncertainty. The SM pre-
dictions are taken from: JN [4], DHMZ [17],
HMNT [21]. Note that the quoted errors in
the figure do not include the uncertainty on the
subtracted experimental value. To obtain for
each theory calculation a result equivalent to
Eq. (15), the errors from theory and experiment
must be added in quadrature.

(with all errors combined in quadrature) represents an inter-

esting but not yet conclusive discrepancy of 3.6 times the

estimated 1σ error. All the recent estimates for the hadronic

contribution compiled in Fig. 2 exhibit similar discrepancies.

Switching to τ data reduces the discrepancy to 2.4σ, assuming

the isospin-violating corrections are under control within the

estimated uncertainties (see Ref. 32 for an analysis leading to a

different conclusion).

An alternate interpretation is that ∆aµ may be a new

physics signal with supersymmetric particle loops as the leading

candidate explanation. Such a scenario is quite natural, since

August 21, 2014 13:17

e+e− 3.6σ, τ+τ− 2.4σの違い

標準模型を超える物理の効果?

2番目に大きな寄与をする

a
had,LOVP
µ は実験値R(e+e− → hadrons)かR(τ+τ− → hadrons)で計算

a
had,LO
µ を純粋な理論計算から見積もりたい
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a
had,LOVP
µ Lattice計算

Leading order of hadronic 
contribution (HVP)�

!  Hadronic vacuum polarization (HVP) �

×�

Hagiwara,%et%al.%
J.Phys.%G38,085003%
(2011)�

ρ� ω�

��

connected terms. Here we will find that this need not be the
case. There exist theoretical expectations regarding the
size of flavor singlet contributions: exploiting the fact that
mω; mϕ > mρ, it was demonstrated [16] that the ratio of
the disconnected contribution over the total momentum-
projected current-current two-point function GðtÞ, defined
in Eq. (9), approaches the value −1=9, in the limit of large
Euclidean times for Nf ¼ 2þ 1 quark flavors. This ratio
will, however, not automatically propagate into ΠRðp2Þ
that depends on GðtÞ at all times t. Next-to-leading order
chiral perturbation theory arguments show the discon-
nected contribution to also account for −1=9 of the total
ΠRðp2Þ [45]. However, this observation builds on the fact
that the correlator of the isosinglet vector current ūγμuþ
d̄γμd is momentum independent to this order of chiral
perturbation theory—which we found is not at all satisfied
by the lattice data. Thus, direct computation of the
disconnected terms cannot be avoided in a systematic
study. Our numerical results will shed light onto the size
of the disconnected contribution at low p2.

III. VACUUM POLARIZATION FROM
SUSCEPTIBILITIES

A. The method

The photon vacuum polarization tensor (1) can also be
interpreted as a momentum space current-current correla-
tion function

ΠμνðpÞ ¼
1

V4

h ~jμðpÞ ~jνð−pÞi; ð11Þ

where V4 denotes the four-dimensional volume of the
system and ~jμ is the Fourier transform of the electromag-
netic current defined in Eq. (2):

~jμðpÞ ¼
Z

d4xeipxjμðxÞ: ð12Þ

Depending on the lattice definition of jμ, the polarization
tensor (11) may or may not renormalize multiplicatively
with Z2

V . Here, we work with a conserved current,
i.e. ZV ¼ 1.
In the following we relate the vacuum polarization to the

leading response of the free energy density f of the system
to background electromagnetic fields. To illustrate the
relation between the two objects on a qualitative level, it
is instructive to represent the vacuum polarization tensor by
the diagram

νµ

where a momentum p flows in and out of the photon legs.
Here, the gray blob indicates all possible closed loops
formed by quark and gluon propagators—i.e. the pertur-
bative expression for the free energy density f. The
legs may be thought of as photons corresponding to a
background electromagnetic field Aμ with momentum

p. Pulling out these legs is achieved by taking appropriate
derivatives of f with respect to the background field. While
background electric fields turn the Euclidean QCD action
complex and are thus problematic in lattice simulations,
background magnetic fields can be realized without com-
plications. Employing the latter gives access to the spatial
components Πij and hence to all components Πμν since in
Euclidean spacetime at zero temperature the indices can be
relabeled at will.
To find the background field corresponding to ΠμνðpÞ,

we define the magnetic fields

BpðxÞ ¼ B sinðpxÞe3; B0 ¼ Be3; ð13Þ
pointing in the third spatial direction. While Bp is an
oscillatory magnetic field with oscillation frequency p, B0

is a homogeneous background. The corresponding suscep-
tibilities are obtained as the second derivatives of the
free energy density with respect to the amplitude of the
magnetic field:

χp ¼ −∂
2f½Bp&
∂ðeBÞ2

!!!!
B¼0

: ð14Þ

These susceptibilities are normalized by the square of the
elementary charge e > 0 to ensure that only the renorm-
alization group-invariant combination eB appears in the
definitions. Note that χp can be evaluated on gauge
ensembles generated at B ¼ 0.
The explicit calculation in Appendix A shows that

2χp ¼ Πðp2Þ; χ0 ¼ Πð0Þ: ð15Þ

These relations form a new representation of the vacuum
polarization function in terms of susceptibilities with
respect to the magnetic fields defined in Eq. (13) and
are the main result of this article.
Unlike the conventional method, where the polarization

function is extracted from the same set of position space
current-current correlators for all momenta, Eq. (15) gives
access to Πðp2Þ at one single lattice momentum p. While
this certainly increases the costs of calculating Π over a
large range of momenta, it also allows for a better signal-to-
noise ratio within momentum regions of particular interest.
As argued above, for the determination of the hadronic
contribution to the muon anomalous magnetic moment
ahad;LOμ , low momenta p2 ∼ 0.03 GeV2 are much more
important than the high-p region. While hjμðxÞjνð0Þimixes
information about all allowed values of p, here such a
mixing is avoided.
Just like the vacuum polarization tensor, χp and χ0 can

also be separated into connected and disconnected con-
tributions. We demonstrate in Sec. IV below that, using this
new approach, an unprecedented accuracy can be achieved
for both the connected and the disconnected contributions
to the vacuum polarization function, already at moderate
computational costs. An additional advantage of the
method is that it gives direct access to Πð0Þ.

GUNNAR S. BALI AND GERGELY ENDRŐDI PHYSICAL REVIEW D 92, 054506 (2015)

054506-4

ahad,LOVP
µ =

(
α

π

)2 ∫ ∞
0
dp2f(p2)Π̂(p2) (既知の関数 f(p2) ∼ 1/p2)∫

d4xeipx⟨Jµ(x)Jν(0)⟩ = (pµpν − δµνp2)Π(p2), Π̂(p2) = Π(p2)−Π(0)

EM current Jµ(x) =
u,d,s∑
f

qfψf(x)γµψf(x), qu = 2/3, qd = qs = −1/3

いろいろなpでvector current correlatorのフーリエ変換を計算

!  The subtractions reduces noise significantly 

!    

 

!  aµ Integrand  peaks around K2 ~  (mµ/2)2�
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Taku Izubuchi @ Lat15, plenary

Π̂(p2) f(p2)Π̂(p2) ピーク∼ (mµ/2)2 = 0.028 GeV2

p2∼<0.03 GeV2のΠ̂(p2)
(
Π(p2)

)
の計算が重要 → 新しい計算方法を提案する
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これまでのLattice計算∫
d4xeipx⟨Jµ(x)Jν(0)⟩ = (pµpν − δµνp2)Π(p2), Π̂(p2) = Π(p2)−Π(0)

特に最小のp(= 2π/T )の計算が重要
四次元体積V4 = L3 · T (多くの計算でT > L)

V. CONCLUSION

In this article, we presented a new, model-independent
method for fitting the hadronic vacuum polarization!ðQ2Þ
as a function of euclidean momentum Q2 to data obtained
from a lattice QCD computation. The method is based on
the theory of PAs to a Stieltjes function, and yields, in
principle, a converging sequence of PAs to the vacuum
polarization.

These PAs can be used to obtain lattice estimates for the
leading hadronic contribution to the anomalous magnetic
moment of the muon from Eq. (1.1a). By comparing
successive PAs in the sequence, one should be able to

check the convergence in practice. This would allow for
a fully model-independent determination of the leading
hadronic contribution aHLO! , and thus help eliminate an

unknown systematic error present in all lattice computa-
tions of aHLO! to date.
In comparison with the VMD fits which have been em-

ployed in the literature, these PAs contain more parameters
(the [0, 1] PA already contains three parameters, whereas the
simplest VMD ansatz contains only two). One thus typically
expects larger statistical errors given certain lattice data.
However, the PA approach avoids model-dependent as-
sumptions, and hence removes the unknown systematic
error associated with the VMD approach.
We have explored this new framework on two state-of-

the-art ensembles of gauge configurations, at different
lattice spacings and pion masses. From these explorations,
we conclude that this newmethod looks promising, but that
better data at very low values ofQ2 will be needed in order
to control the extrapolation necessary for a reliable com-
putation of aHLO! from the integral in Eq. (1.1a).
Our explorations show that given current lattice data for

!ðQ2Þ, there is a significant difference between our best
PA fits (which are four-parameter [1, 1] PAs), and VMD
fits.17 For instance, the difference between the values of

aHLO;Q
2#1

! obtained from the correlated [1, 1] PA fit of
Table I and the uncorrelated VMD fit of Table II and
Ref. [3] is about 15–20%, much larger than the statistical
fit error on each of these values. While it is tempting to
view the value from the correlated [1, 1] PA fit as the more
reliable one, it is clear from Fig. 5 that more data points
with higher precision at low Q2 are needed in order to
reduce this uncertainty.
There are of course other systematic errors as well,

including finite volume effects. In order to study those,
simulations at larger volumes will be needed; at present it
is not possible to assess what role they play in the results
we obtained.
Our explorations also showed that with these data it is

very difficult to fit the parameters characterizing the sec-
ond and higher poles of the PAs. In order to test the
convergence of the sequence of PAs fitted to !ðQ2Þ, it
would be desirable to investigate this issue, which is pos-
sibly related to breaking of rotational invariance at nonzero
lattice spacing, in more detail in the future. This issue
appears to have no direct effect on the value of

aHLO;Q
2#1

! , which we found to be very insensitive to the
location and residues of the second and higher poles.
In conclusion, the new method presented here

looks promising, but data for !ðQ2Þ with more values at

FIG. 5 (color online). [1, 1] fit of Table I (correlated, solid
curve) and VMD fit of Table II (uncorrelated, dashed curve)
compared with data. Solid points have been included in the
correlated fit while both solid and open points have been
included in the uncorrelated fit.

FIG. 4 (color online). Comparison of correlated [1, 2] PA (solid
curve) and 4th-order polynomial (dashed curve) fits, both fitted on
the interval 0<Q2 # 0:53 GeV2. Solid points have been in-
cluded in the fits, open points have not been included.

17We recall that VMD fits cannot be viewed as low-order PA
fits, because there is no a priori relation between PA poles and
QCD resonance parameters; consequently, the first pole should
not be chosen equal to the square of the " mass, as is done in
most VMD fits.

MODEL-INDEPENDENT PARAMETRIZATION OF THE . . . PHYSICAL REVIEW D 86, 054509 (2012)

054509-9

Aubin et al., PRD86:054509

これまでの計算方法
1. Π(p2)を⟨Jµ(x)Jν(0)⟩から計算する
2. Π(p2)を適当な関数でフィットする
3. Π̂(p2)を見積もる

問題点1. 最小のpでの誤差が大きいため、p ∼ 0でのΠ̂(p2)の不定性が大きい
問題点2. 周期的境界条件では最小のpが2π/T (p2 ∼ 0.31GeV2@T ∼ 7fm)

p ∼ 0で誤差を抑えられる計算方法が必要

問題点3. disconnected ダイアグラムの計算が難しいので無視している
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磁化率を用いたΠ(p2)∫
d4xeipx⟨Jµ(x)Jν(0)⟩ = (pµpν − δµνp2)Π(p2), Π̂(p2) = Π(p2)−Π(0)

p = (p1,0,0,0), p1 ̸= 0で 四次元体積V4 = L3 · T

−
1

V4p
2
1
⟨J̃2(p)J̃2(−p)⟩ = Π(p2)計算を考える (J̃µ(p) =

∫
d4xeipxJµ(x))

連続理論 Background EM (BEM) interaction LQCD + ieJµ(x)A
p,cos
µ (x)

A
p,cos
2 (x) = B sin(p1x1)/p1, A

p,cos
1 (x) = A

p,cos
2 (x) = A

p,cos
3 (x) = 0

B⃗ = ∇× A⃗p,cos = B cos(p1x1)e⃗3

作用 S = SQCD+SBEM(Ap,cos), SBEM(Ap,cos) = eB
(
J̃2(p)− J̃2(−p)

)
/(2p1)

χp,cos =
1

V4

∂2 logZ(Ap,cos)
∂(eB)∂(eB)

∣∣∣∣∣
B=0

=
1

4V4p
2
1

⟨(
J̃2(p)− J̃2(−p)

)2⟩

一方、χp,sin =
1

V4

∂2 logZ(Ap,sin)
∂(eB)∂(eB)

∣∣∣∣∣
B=0

= −
1

4V4p
2
1

⟨(
J̃2(p) + J̃2(−p)

)2⟩
χp,cos + χp,sin = Π(p2)で計算できる

χp,cosとχp,sinは定位相π/2違うだけなのでχp,cos = χp,sin = χp
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磁化率を用いたΠ(p2)(続)

2χp = Π(p2), p = (p1,0,0,0)

格子理論 BEM U2(x1)→ U2(x1) exp(ieqfB sin(p1x1)/p1)

ψfMfψf → ψfM
p,cos
f ψf

χp =
1

V4

∂2 logZ(Ap,cos)
∂(eB)∂(eB)

∣∣∣∣∣
B=0

=
1

V4

⟨
C2p +

∂Cp
∂(eB)

⟩
B=0

Cp =
1

4

∑
f

qfTr

[(
Mp,cos

f

)−1
Ṁp,cos

f

]
, Ṁp,cos

f =
∂Mp,cos

f

∂(eB)
, 1/4: starggered quark

χp =
1

4V4

⟨
5

9
Tr(M−1l M̈l −M−1l ṀlM

−1
l Ṁl) +

1

9
Tr(M−1s M̈s −M−1s ṀsM

−1
s Ṁs)

⟩
+

1

16V4

⟨
1

9
Tr(M−1l Ṁl)Tr(M−1l Ṁl) +

1

9
Tr(M−1s Ṁs)Tr(M−1s Ṁs)−

2

9
Tr(M−1l Ṁl)Tr(M−1s Ṁs)

⟩
Ml =Mu =Md(mu = md)

第1項 connected ダイアグラム、第2項 disconnected ダイアグラムに対応

結局B = 0のゲージ場でχpを計算する(?) (p依存性はṀl, M̈l)
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s Ṁs)

⟩
+

1

16V4

⟨
1

9
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8-a



磁化率を用いたΠ(p2)(続)

2χp = Π(p2), p = (p1,0,0,0)

格子理論 BEM U2(x1)→ U2(x1) exp(ieqfB sin(p1x1)/p1)

ψfMfψf → ψfM
p,cos
f ψf

χp =
1

V4

∂2 logZ(Ap,cos)
∂(eB)∂(eB)

∣∣∣∣∣
B=0

=
1

V4

⟨
C2p +

∂Cp
∂(eB)

⟩
B=0

Cp =
1

4

∑
f

qfTr

[(
Mp,cos

f

)−1
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磁化率を用いたΠ(p2)(続)

2χp = Π(p2), p = (p1,0,0,0)

χp =
1

4V4

⟨
5

9
Tr(M−1l M̈l −M−1l ṀlM

−1
l Ṁl) +

1

9
Tr(M−1s M̈s −M−1s ṀsM

−1
s Ṁs)

⟩
+

1

16V4

⟨
1

9
Tr(M−1l Ṁl)Tr(M−1l Ṁl) +

1

9
Tr(M−1s Ṁs)Tr(M−1s Ṁs)−

2

9
Tr(M−1l Ṁl)Tr(M−1s Ṁs)

⟩
Ml =Mu =Md(mu = md)

第1項 connected ダイアグラム、第2項 disconnected ダイアグラムに対応

利点 1. 運動量に制限がない(ツイスト境界条件に対応?) → p ∼ 0の計算が可能

利点 2. 精度の良い disconnected ダイアグラムの計算が可能 →後のページ
これまでの多くの計算では無視(計算が難しい: 寄与が小さく、誤差が大きい)

inversion の回数 Ninv = 2Nξ(1 +Np) (2: l, s, Nξ: 乱数, Np: 運動量)

l, sでそれぞれNξ個の乱数を使うと、各ゲージ配位で
connected はNξ個で乱数平均
disconnected の第1,2項はNξ(Nξ − 1)/2個, 第3項はN2

ξ 個で乱数平均
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計算結果

シミュレーションパラメータ

stout improved staggered quark action

tree-level improved Symanzik gauge action Π̂(p2)

physical pion and kaon masses

To summarize, to arrive at a prediction for ahad;LOμ it is
desirable to improve the accuracy in the low-p region and
to calculate Πð0Þ independently. The method we propose
accomplishes both of these requirements.

B. Renormalization

Before presenting the details of the implementation
and our numerical results, it is instructive to discuss
the renormalization properties of χ0 in more detail.
Equation (15) reveals that the homogeneous susceptibility
is additively divergent, just as Πð0Þ. To see where this
divergence comes from, let us consider the multiplicative
renormalization of the background magnetic field (and the
corresponding renormalization of the electric charge),

e2 ¼ Z−1
e e2r ; B2 ¼ ZeB2

r ; eB ¼ erBr; ð16Þ

with the renormalization factor

Ze ¼ 1þ 2b1e2r logðμaÞ; ð17Þ

where a is the lattice spacing (inverse of the regulator) and
μ the renormalization scale. Notice that since the magnetic
field is external and has no dynamics, only the lowest-order
QED β-function coefficient—denoted as b1—appears
in Ze [46–48].
The total free energy density ftot of the system is the sum

of f and the energy B2=2 of the magnetic field. Since
varying the background field should not change the ultra-
violet properties of the system, ftot must be free of B-
dependent divergences. This implies that the divergence of
the pure magnetic energy

B2

2
¼ B2

r

2
þ b1ðeBÞ2 logðμaÞ ð18Þ

is exactly canceled by an analogous divergence of f.
Plugging this divergence into the definition (14), we obtain

χ0 ¼ 2b1ðaÞ logðμaÞ: ð19Þ

The renormalization scale μ is fixed by the requirement that
there should be no finite quadratic terms in ftot other than
B2
r=2 [46]. Let us emphasize that b1 is the lowest-order

coefficient of the QED β function, however, with all QCD
corrections taken into account. To highlight this, we
explicitly indicate the dependence of b1 on the lattice
spacing. Perturbatively, this reads [49]

b1ðaÞ ¼
X

f¼u;d;s

ðqf=eÞ2
1

4π2

!
1þ g2ðaÞ

4π2
þ % % %

"
; ð20Þ

where g2ðaÞ is the QCD coupling. Equation (19) allows us
to connect lattice results for χ0 to perturbation theory, once
the lattice spacing is small enough, cf. Ref. [48].

C. Implication for hot or dense QCD

As a side remark, we mention that the correspondence
(15) can be generalized to high temperatures. In this case it
results in a relation between the entropy density and the
perturbative Adler function [48]. The latter is defined as the
logarithmic derivative of the polarization function with
respect to the squared momentum [26]:

Dðp2Þ ¼ 12π2
∂Πðp2Þ
∂ logðp2Þ

: ð21Þ

Let us consider QCD at a high temperature T, which
exceeds all other dimensionful scales in the system. In this
limit, the argument ofΠ is set by a thermal scale μth ¼ 2πT,
leading to the correspondence Πðμ2thÞ↔χ0ðT2Þ. (The sus-
ceptibility at high temperatures indeed only depends on T2

[48].) For the Adler function, this implies the relation

Dðμ2thÞ⟷12π2
∂χ0

∂ logT2
¼ 6π2T

∂2s
∂ðeBÞ2

####
B¼0

; ð22Þ

where in the second step we used the definition of the
entropy density s≡−∂f=∂T. Equation (22) reveals that
the leading dependence of the entropy density on the
magnetic field at high temperatures is fixed by the Adler
function, i.e. by perturbative QED physics. Repeating the
above argument with T replaced by a chemical potential μ
(or by an isospin chemical potential μI) gives an analogous
relation for the quark number density n ¼ −∂f=∂μ at high
μ (or for the isospin density nI ¼ −∂f=∂μI at high μI). We
believe these are highly nontrivial findings.

IV. SIMULATION DETAILS AND
NUMERICAL RESULTS

We employ the Nf ¼ 2þ 1 staggered lattice ensembles
[50,51] generated at physical pion and kaon masses. Each
ensemble—summarized in Table I—consists of a hundred
to a few hundred effectively statistically decorrelated
configurations. Details of the simulation algorithm and
of the lattice setup can be found in Refs. [50,52,53].

A. Oscillatory susceptibilities

First we discuss results on the susceptibilities χp ¼
Πðp2Þ=2 with respect to the oscillatory backgrounds.

TABLE I. Lattice ensembles investigated; the largest lattice
spacing reads a0 ¼ 0.29 fm.

Ns Nt β a [fm] logða=a0Þ
24 32 3.45 0.290 0
24 32 3.55 0.216 −0.295
32 48 3.67 0.153 −0.636
40 48 3.75 0.125 −0.843
40 48 3.85 0.099 −1.078
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curve by a rational function that approaches unity as a → 0
(solid yellow error band). This band defines the homo-
geneous magnetic susceptibility χ0ðaÞ, as shown for one
lattice spacing in the very left of Fig. 2. The resulting
renormalization scale reads μ ¼ 0.123ð8Þ GeV, consistent
with our determination in Ref. [48].
The Πðp2Þ results are shown for all five ensembles of

Table I in Fig. 4, whereΠð0Þ ¼ χ0 with the susceptibility χ0
determined as detailed above. Notice that the statistical
uncertainties (again, both connected and disconnected
terms are taken into account) within our window of lattice
spacings remain at the subpercent level for p2 > 0 and are
about one percent for p ¼ 0. Taking into account the
statistical errors of Πðp2Þ and of the independently

determined Πð0Þ, the renormalized vacuum polarization
(3) is plotted in Fig. 5 for the whole momentum region
under consideration. For orientation we also show the
three-flavor perturbation theory result for p2 > 2 GeV2,
where we truncate the formulas of Refs. [20–21] at Oðα2sÞ.
The perturbative curve is only defined up to an overall
constant shift, which we adjust by matching to a continuum
extrapolation around p2 ¼ 2 GeV2. It is clear from the
figure that—as one would expect—lattice spacing effects
become more prominent towards high momenta. In addi-
tion, the vacuum polarization obtained from the experi-
mental R ratio (cf. the blue points in Fig. 1) is included
in Fig. 5.
Having obtained the renormalized hadronic vacuum

polarization, we can use Eqs. (4)–(6) [13,22] to predict
its contribution to the muon anomalous magnetic moment.
Choosing a third-order spline interpolation, we obtain
values in the range ahad;LOμ ¼ ð4…5Þ × 10−8 and an upward
trend towards the continuum limit. This is encouraging
as the R-ratio predictions of Refs. [5] and [4] for the Nf ¼
2þ 1þ 1 flavor theory read ahad;LOμ ¼ 6.923ð42Þ × 10−8

and ahad;LOμ ¼ 6.949ð43Þ × 10−8, respectively. However,
given that the present lattices are rather coarse
(0.1 fm ≲ a < 0.3 fm), we do not yet attempt a full-
fledged continuum limit extrapolation. (Note that at these
lattice spacings, the taste splitting of the staggered pion
multiplet is still sizeable [53]. Thus, large lattice artefacts
originating from the heavier pion states are not unexpected,
since ahad;LOμ is highly sensitive to the pseudoscalar
masses.)

C. Statistical accuracy and disconnected contributions

Next, we perform a quantitative comparison between
the oscillatory susceptibility method, the conventional

FIG. 4 (color online). Vacuum polarization via magnetic
susceptibilities in the low-momentum region. The data include
both connected and disconnected contributions.

FIG. 3 (color online). Magnetic susceptibility with respect to a
homogeneous background as a function of the logarithm of the
lattice spacing (a0 ¼ 0.29 fm), using three different approaches
(the generalized integral method [48], the finite difference
method [58,59] and data generated in this study using the
half-half method [56]). Also included are a comparison to
Oðg2Þ perturbation theory and a parametrization via a rational
Ansatz.

FIG. 5 (color online). Subtracted vacuum polarization with
independent determinations of Πðp2Þ and Πð0Þ. The data include
both connected and disconnected contributions. The solid red line
indicates the experimental result (cf. Fig. 1) and the dotted line
the three-loop perturbative prediction (see the text).

HADRONIC VACUUM POLARIZATION AND MUON g − 2 … PHYSICAL REVIEW D 92, 054506 (2015)

054506-7

格子間隔依存性が見える

aを小さくするとΠ̂(p2)は実験値に近づく
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計算結果(続) β = 3.45

These are determined via the noisy estimator technique
described in Appendix B. A typical set of low-momentum
results is shown in Fig. 2. The data include both the
connected and the disconnected contributions to Πðp2Þ.
The figure also includes results obtained via the conven-
tional method, however, employing stochastic wall sources
(for our numerical implementation, see Appendix C).
The comparison reveals full agreement between the two
approaches. The statistical error of the random wall data
increases towards small momenta, whereas it remains tiny
even for the lowest nonvanishing p2-value shown for
the oscillatory susceptibilities. Note that the number of
inversions employed to obtain the data point at the lowest
momentum was the same, Ninv ¼ 3000, for both
approaches.
In most previous lattice studies, Πð0Þ was obtained by

extrapolating Πðp2Þ to zero. Some possible extrapolations,
employing polynomials or Padé approximants, fitted over
various ranges in p2, are included in the figure. These fits
are also compared to the direct determinations via the
homogeneous susceptibility χ0 (see Sec. IV B below) and
via the zero-momentum projected current-current correla-
tion function GðtÞ according to Eq. (8), again obtained
using random wall sources. Within their scatter, at p2 ¼ 0
the extrapolations agree with the direct determinations. We
remark that increasing the precision for the lowest few
momenta stabilizes such extrapolations tremendously.

B. Homogeneous susceptibility and renormalized
vacuum polarization

The susceptibility χ0 with respect to a homogeneous
background is of interest for QCD thermodynamics in
magnetic fields and has been the subject of detailed studies

in the past few years. The determination of χ0 is consid-
erably more complicated than that of χp due to the
quantization of the magnetic flux Φ. On the one hand,
oscillatory magnetic fields have zero flux and can be varied
continuously, allowing for a direct differentiation with
respect to B. On the other hand, homogeneous fields have
nonzero flux. Therefore, such a differentiation cannot be
carried out to determine χ0; see Appendix B. Several
approaches, summarized in Refs. [48,54], have been
developed recently to overcome this problem. Here we
compare results obtained using the finite difference method
[55], the generalized integral method [48] and the half-half
method [56]. The former two approaches are based on
simulations at nonzero magnetic flux values, numerically
differentiating the results with respect to Φ. The half-half
method involves calculating expectation values directly at
B ¼ 0, employing a setup where the magnetic field is
positive in one half and negative in the other half of the
lattice. In this case, since the total flux is zero, a direct
differentiation with respect to the amplitude is possible.
However, the discontinuity of the magnetic field turns out
to dramatically enhance finite-volume effects in χ0; see
below.1

In Fig. 3, we compare all three approaches. The results
from the generalized integral method and from the finite
difference approach are taken from Refs. [58,59] while the
half-half results are new. Not all lattice spacings are covered
by all the methods. While the results of the generalized
integral method2 and of the finite difference approach are
consistent with each other, the half-half approach consis-
tently underestimates the magnitude of the susceptibility.
The difference between that approach on the one hand and
the other two methods on the other hand is found to be as
large as 10% and reduces only very slowly with increasing
lattice volumes.3 Altogether, we conclude that the half-half
method is insufficient for our purposes and discard it in the
following.
Perturbation theory predicts the dependence of χ0 on the

lattice spacing; see Eqs. (19)–(20). In Fig. 3 the data are
plotted against logða=a0Þ to verify the expected logarithmic
divergence. We include the leading Oðg2Þ QCD correction
to the lowest-order QED β-function coefficient b1. The
renormalization scale μ is fitted to match the lattice results
(dashed green line). In addition, we multiply the resulting

FIG. 2 (color online). The low-momentum region of the
oscillatory susceptibilities as measured on the 243 × 32 configu-
rations at β ¼ 3.45. The curves correspond to polynomial- and
Padé-type extrapolations of 2χp to p ¼ 0. The direct determi-
nation χ0 is shifted horizontally to the left for better visibility.
Also included are results obtained using random wall sources,
displaced horizontally to the right.

1These finite-volume effects cancel to a large extent in the
difference χ0ðTÞ − χ0ðT ¼ 0Þ [57], which is relevant for QCD
thermodynamics in background magnetic fields.

2Here we compare data obtained on Nt > Ns zero-temperature
lattices. On the configurations of Fef. [48] at finite (but low)
temperatures, χ0 was found to have slightly smaller absolute
values for fine lattices of Table I (β ≥ 3.67Þ.

3The comparison between the half-half method and the
generalized integral method on our coarsest lattice, already
presented in Ref. [48], has been updated by increasing the
statistics and the number of noisy estimators to reveal the
significant difference visible in Fig. 3.
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approach with random wall sources and that with point
sources. We demonstrate that the statistical error of Πðp2Þ
can be pushed well below that of existing studies in the
literature—even with the disconnected terms taken into
account.
We calculated Πðp2Þ using all three methods on 120

configurations from the β ¼ 3.45 ensemble for a single
momentum p2 ¼ 0.03 GeV2 using an increased number of
sources. Figure 6 shows the statistical error as a function of
the number of inversions Ninv. The details of our imple-
mentation can be found in Appendixes B–C. As visible in
the figure, the oscillatory susceptibility method allows us to
save 50–60% of the computational effort with respect to the
random wall approach. This difference mainly comes from
the disconnected contributions, which can be calculated
very accurately via susceptibilities. In fact, the statistical
error in this approach is dominated by the connected
contribution,4 as is also visible in the figure. As expected,
the conventional method with point sources is not appli-
cable for the determination of the disconnected terms.
Obviously, it is favorable in terms of the total computer
time spent to increase the number of configurations instead
of the number of inversions per configuration. We remark
that the total number of exact inversions necessary to
achieve a given error can be considerably reduced by
methods like the hopping parameter expansion [60,61],
truncated eigenmode substitution [62–64], the truncated

solver method [65–67] and, in the case of Wilson-like
fermions, employing spin-explicit stochastic sources
[68–70].
Finally, we discuss the disconnected contribution Πdis in

more detail. A particular feature of Πdis is that it requires no
additive renormalization. To see this, note that Πdisð0Þ
vanishes in the perturbative continuum limit, since it is of
order g6ðaÞ in the strong coupling [21], which dampens the
logarithmic divergence and results in Πdisð0Þ to fall off as
1= log2ðaÞ for a → 0. In our three-flavor case the discon-
nected term even vanishes identically in perturbation theory
due to

P
f¼u;d;sqf ¼ 0, once quark masses can be

neglected, i.e. a−1 ≫ ms. Based on this observation, in
Fig. 7 we plot the unsubtracted disconnected vacuum
polarization for all our lattice spacings. (The number of
inversions was Ninv ¼ 800 for each momentum, with the
exception of the leftmost point.) Overall, Πdis is consistent
with zero, where the two points that deviate by more
than two standard deviations from this assumption are
statistically expected and no systematic dependence on the
lattice spacing or on the volume is apparent. With the
exception of three outliers with large error bars, all central
values are below 2 × 10−4 in magnitude.
Using all available estimators (Ninv ¼ 20000) for the

β ¼ 3.45 ensemble at p2 ¼ 0.03 GeV2, our most accurate
determinations for the unsubtracted and the subtracted
vacuum polarizations read

p2 ¼ 0.03 GeV2∶ Π ¼ −0.058362ð117Þ;
Πdis ¼ þ0.000021ð026Þ;
ΠR ¼ þ0.002355ð198Þ: ð23Þ

Here, Πðp2Þ and Πdisðp2Þ were measured using the
oscillatory susceptibility method. (We highlight again that
the error of Πdis is much smaller than that of the total Π.)
The vacuum polarization at zero momentum was obtained
via random wall sources. Based on the discussion above

R

FIG. 6 (color online). Statistical error of the total (connected
plus disconnected) Πðp2 ¼ 0.03 GeV2Þ as a function of the
number of inversions. Compared are the results obtained from
oscillatory susceptibilities, using point sources and random wall
sources. In addition, the error of the connected oscillatory
susceptibility alone is shown. Note the logarithmic scale.

FIG. 7 (color online). Disconnected contribution to Πðp2Þ as a
function of p2 for our five lattice spacings.

4To see why this is the case, note that the number of estimates
increases quadratically with Ninv for the disconnected terms but
only linearly for the connected ones; see the discussion in
Appendix B. Therefore, the error on the latter eventually over-
takes that of the former, before both show the expected asymp-
totic σ2 ≃ c1ð1þ c2=NinvÞ falloff. The inherent gauge noise c1
can only be reduced by increasing the number of configurations.
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• これまでの方法を改良した相関関数(Random wall)を使った結果と一致
• 最小のp ̸= 0ではRandom wallと同じ計算量で誤差が小さい
• p→ 0外挿値が直接計算(説明省略)した結果と一致

• disconnected を入れた point sourceと比べて誤差はかなり小さい
• disconnectedを入れても誤差が悪化しない
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計算結果(続)

approach with random wall sources and that with point
sources. We demonstrate that the statistical error of Πðp2Þ
can be pushed well below that of existing studies in the
literature—even with the disconnected terms taken into
account.
We calculated Πðp2Þ using all three methods on 120

configurations from the β ¼ 3.45 ensemble for a single
momentum p2 ¼ 0.03 GeV2 using an increased number of
sources. Figure 6 shows the statistical error as a function of
the number of inversions Ninv. The details of our imple-
mentation can be found in Appendixes B–C. As visible in
the figure, the oscillatory susceptibility method allows us to
save 50–60% of the computational effort with respect to the
random wall approach. This difference mainly comes from
the disconnected contributions, which can be calculated
very accurately via susceptibilities. In fact, the statistical
error in this approach is dominated by the connected
contribution,4 as is also visible in the figure. As expected,
the conventional method with point sources is not appli-
cable for the determination of the disconnected terms.
Obviously, it is favorable in terms of the total computer
time spent to increase the number of configurations instead
of the number of inversions per configuration. We remark
that the total number of exact inversions necessary to
achieve a given error can be considerably reduced by
methods like the hopping parameter expansion [60,61],
truncated eigenmode substitution [62–64], the truncated

solver method [65–67] and, in the case of Wilson-like
fermions, employing spin-explicit stochastic sources
[68–70].
Finally, we discuss the disconnected contribution Πdis in

more detail. A particular feature of Πdis is that it requires no
additive renormalization. To see this, note that Πdisð0Þ
vanishes in the perturbative continuum limit, since it is of
order g6ðaÞ in the strong coupling [21], which dampens the
logarithmic divergence and results in Πdisð0Þ to fall off as
1= log2ðaÞ for a → 0. In our three-flavor case the discon-
nected term even vanishes identically in perturbation theory
due to

P
f¼u;d;sqf ¼ 0, once quark masses can be

neglected, i.e. a−1 ≫ ms. Based on this observation, in
Fig. 7 we plot the unsubtracted disconnected vacuum
polarization for all our lattice spacings. (The number of
inversions was Ninv ¼ 800 for each momentum, with the
exception of the leftmost point.) Overall, Πdis is consistent
with zero, where the two points that deviate by more
than two standard deviations from this assumption are
statistically expected and no systematic dependence on the
lattice spacing or on the volume is apparent. With the
exception of three outliers with large error bars, all central
values are below 2 × 10−4 in magnitude.
Using all available estimators (Ninv ¼ 20000) for the

β ¼ 3.45 ensemble at p2 ¼ 0.03 GeV2, our most accurate
determinations for the unsubtracted and the subtracted
vacuum polarizations read

p2 ¼ 0.03 GeV2∶ Π ¼ −0.058362ð117Þ;
Πdis ¼ þ0.000021ð026Þ;
ΠR ¼ þ0.002355ð198Þ: ð23Þ

Here, Πðp2Þ and Πdisðp2Þ were measured using the
oscillatory susceptibility method. (We highlight again that
the error of Πdis is much smaller than that of the total Π.)
The vacuum polarization at zero momentum was obtained
via random wall sources. Based on the discussion above

R

FIG. 6 (color online). Statistical error of the total (connected
plus disconnected) Πðp2 ¼ 0.03 GeV2Þ as a function of the
number of inversions. Compared are the results obtained from
oscillatory susceptibilities, using point sources and random wall
sources. In addition, the error of the connected oscillatory
susceptibility alone is shown. Note the logarithmic scale.

FIG. 7 (color online). Disconnected contribution to Πðp2Þ as a
function of p2 for our five lattice spacings.

4To see why this is the case, note that the number of estimates
increases quadratically with Ninv for the disconnected terms but
only linearly for the connected ones; see the discussion in
Appendix B. Therefore, the error on the latter eventually over-
takes that of the former, before both show the expected asymp-
totic σ2 ≃ c1ð1þ c2=NinvÞ falloff. The inherent gauge noise c1
can only be reduced by increasing the number of configurations.
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Most accurate determination

in this paper

p2 = 0.03 GeV2 at a = 0.29 fm
Ninv = 20000

Π(p2) = −0.058362(117)
Πdis(p2) = 0.0000021(026)

Π̂(p2) = 0.002355(198)

Π(0) from random wall

最小のp以外はNinv = 800

• disconnected は統計的にゼロと無矛盾、誤差が小さい(大きい)のもある
p ∼ 0では格子間隔が小さくなる(格子サイズが大きくなる)と誤差が大きくなる(?)

一番良い計算結果では
• disconnectedの誤差はconnectedよりも小さい
• Π̂(p2)の誤差は8%←主にΠ(0)の誤差

12



計算結果(続)
p2 ∼ 0.03 GeV2での誤差比較(異なるmπ, a, 相対誤差ではない)

about the vanishing of Πdisð0Þ in the continuum limit, only
the connected part of Πð0Þ is necessary for the subtraction.
The relative error of the so-obtained ΠR at this momentum
is 8%, and is dominated by the error of Πð0Þ. Clearly,
towards higher p2, where the magnitude of Πðp2Þ
increases, the relative error on ΠR rapidly decreases.

V. SUMMARY

We developed a new approach to determine the hadronic
vacuum polarization Πðp2Þ on the lattice. It is based on
calculating magnetic susceptibilities χp with respect to
oscillatory background fields for p2 > 0 and a homo-
geneous background for p2 ¼ 0. The proof of the equiv-
alence between χp and Πðp2Þ is given in Appendix A. The
oscillatory susceptibilities are obtained by evaluating the
appropriate expectation values using noisy estimators, as
described in Appendix B. Unlike the conventionally used
approach, based on position space current-current correla-
tors, which mix information about all possible lattice
momenta, the present method enables us to determine
the vacuum polarization with increased precision for indi-
vidual low momenta. The low-momentum region is of rele-
vance for an accurate determination of the leading hadronic
contribution to the muon anomalous magnetic moment. In
principle, the lattice determination of Πðp2Þ − Πð0Þ at a
selected set of low momenta can also be combined with
experimental results for the R ratio to increase the accuracy
of ahad;LOμ .
The proposed method not only reduces statistical errors

at low momenta but also allows for an independent
measurement of Πð0Þ, instead of having to rely on
extrapolations of Πðp2Þ from p2 > 0. We discussed three
different methods to determine the homogeneous suscep-
tibility χ0 ¼ Πð0Þ. The most straightforward method,
which relies only on simulations at zero magnetic field
(the so-called half-half method), was found to suffer from
large finite-volume effects of up to 10% of the full value.
Instead, we combined existing results on χ0 from
Refs. [48,58] that are based on simulations at nonzero
background fields. We also tested stochastic wall sources
to obtain Πð0Þ as the second moment of a momentum
projected current-current correlation function and found
that it can compete with the accuracy of the homogeneous
susceptibility for a sufficiently large number of random
sources. It is interesting to note that χ0 can also be obtained
via stochastic wall sources at finite temperatures, giving
direct access to the renormalized magnetic susceptibility
χ0ðTÞ − χ0ðT ¼ 0Þ that enters the QCD equation of state at
finite magnetic fields [48,55,56,58,71,72].
The method was tested on staggered Nf ¼ 2þ 1 flavor

ensembles with various lattice spacings. Already on a few
hundred configurations, a statistical accuracy below one
percent is achieved for Πðp2Þ. The disconnected contri-
butions have been included in all cases. Figure 8 shows an

order-of-magnitude comparison of our statistical accuracy
to that of existing calculations in the literature, wherever
data or figures with error bars are available for Π at
p2 ≈ 0.03 GeV2 [17,24,27,30–35,41]. [Note that the
approach followed in Ref. [36] involves parametrizing
the lattice data for the zero-momentum projected two-
point function GðtÞ of Eq. (9), making a comparison for Π
difficult.] We remark that this incomplete comparison
does not distinguish between different lattice volumes,
spacings or pion masses but just serves as a qualitative
indicator of the accuracy. It reveals that our statistical
errors, obtained on a comparably small number of gauge
configurations, are by far the smallest within the lattice
studies shown in Fig. 8. However, the approach of
employing the experimental R ratio is still by about an
order of magnitude more accurate. Nevertheless, by
applying the methods used in this paper to ensembles
with substantially higher statistics, the desired accuracy
may be reached in the near future.
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FIG. 8 (color online). The statistical error of the vacuum
polarization at low momenta around p2 ¼ 0.03 GeV2 for several
lattice studies in the literature and for the present work (shaded
area). Open points denote the error of the unsubtracted Πðp2Þ,
while full symbols indicate that of the renormalized ΠRðp2Þ.
Studies involving only the connected contribution are indicated
in yellow, while those also taking into account the discon-
nected terms are indicated in blue. The determination using
the experimental R ratio is also included for comparison (solid
green point).
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Π(p2): 白抜き
Π̂(p2): 塗りつぶし
connected のみ: 黄色
connected + disconnected: 青

結論
これまでよりもp2 ∼ 0.03 GeV2で

誤差を抑えられた
a
had,LOVP
µ に使われている実験値より
はまだ誤差が大きい

Izubuchiさん談 @ Lat15

最近の結果と比べれば同程度の誤差
Π̂(p2 ∼ 0.044GeV2) ∼ 0.0035(4),BMW@Lat15

多分 mπ = 130 MeV, connectedのみ

でもdisconnectedが入ればこの方法の
方が誤差は小さいかも
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