The Physics of the B Factories

BaBar and Belle Collab., Eur. Phys. J. C (2014) 74: 3026

published in Nov. 19th, 2014

Yusuke Namekawa for journal club

Contents

1	Introduction	2
2	ϕ_1 from B factories	7
3	$ V_{ub} , V_{cb} $ from B factories	10
4	Exotic charmonium-like states	11
5	Conclusion	14

1 Introduction

A summary review "book" of B factories (BaBar and Belle) is published.

- 928 pages
- 2000 authors from 200 institutes
 - ♦ It has submitted to arXiv, only in PDF (no source is available, probably due to too large size, 32 MByte in PDF).

[Contents of the review book]

- The facilities
- Tools and methods
- The results and their interpretation
 - ♦ The CKM matrix and the Kobayashi-Maskawa mechanism
 - \Diamond B physics
 - ♦ Quarkonium physics
 - ♦ Charm physics
 - ♦ Tau physics
 - ♦ Initial state radiation studies
 - ♦ Two-photon physics
 - \diamondsuit B_s^0 physics at $\Upsilon(5S)$
 - ♦ QCD-related physics
 - ♦ Global interpretation

[Cabbibo-Kobayashi-Maskawa matrix]

The principal target of B factories is to establish CP violation in B meson system, which is characterized by non-trivial phase δ_{KM} in CKM matrix.

"CP Violation in the Renormalizable Theory of Weak Interaction".

M.Kobayashi and T.Maskawa, Prog. Theor. Phys. 49, 652657 (1973)

• #citations = 7923

$$V_{\text{CKM}} := \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{\text{CKM}}^{\text{Original}} := \begin{pmatrix} c_1 & -s_1 c_3 & -s_1 s_3 \\ s_1 c_2 & c_1 c_2 c_3 - s_2 s_3 e^{i\delta_{\text{KM}}} & c_1 c_2 s_3 + s_2 c_3 e^{i\delta_{\text{KM}}} \\ s_1 s_2 & c_1 s_2 c_3 + c_2 s_3 e^{i\delta_{\text{KM}}} & c_1 s_2 s_3 - c_2 c_3 e^{i\delta_{\text{KM}}} \end{pmatrix} \text{ not } s_3$$

where $s_i := \sin \theta_i, c_i := \cos \theta_i$

[CKM matrix(continued)]

- Parameterization of CKM matrix depends on the phase convention.
- PDG standard is chosen so that $s_{ij}, c_{ij} > 0$.

$$V_{\text{CKM}} := \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{\text{CKM}}^{\text{PDG}} := \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

$$V_{\text{CKM}}^{\text{Original}} := \begin{pmatrix} c_{1} & -s_{1}c_{3} & -s_{1}s_{3} \\ s_{1}c_{2} & c_{1}c_{2}c_{3} - s_{2}s_{3}e^{i\delta_{\text{KM}}} & c_{1}c_{2}s_{3} + s_{2}c_{3}e^{i\delta_{\text{KM}}} \\ s_{1}s_{2} & c_{1}s_{2}c_{3} + c_{2}s_{3}e^{i\delta_{\text{KM}}} & c_{1}s_{2}s_{3} - c_{2}c_{3}e^{i\delta_{\text{KM}}} \end{pmatrix} \text{ not } \mathbf{s}_{3}$$

where $s_{ij} := \sin \theta_{ij}, c_{ij} := \cos \theta_{ij}$

[CKM matrix(continued)]

- (Parameterization of CKM matrix depends on the phase convention.)
- Angles of the unitarity triangle are often used, phase convention free.

$$V_{\text{CKM}} := \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\beta = \phi_1 := \arg \left(-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right)$$

$$\alpha = \phi_2 := \arg \left(-\frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*} \right)$$

$$\gamma = \phi_3 := \arg \left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right)$$

- BaBar naming: α , β , γ
- Belle naming: ϕ_2 , ϕ_1 , ϕ_3

2 ϕ_1 from B factories

Non-zero value of $\phi_1 := \arg(-(V_{cd}V_{cb}^*)/(V_{td}V_{tb}^*))$ is obtained by B factories. \rightarrow It leads to Nobel prize of Kobayashi-san and Maskawa-san.

• Asymmetry $A(\Delta t)$ (defined in the next slide) relates to ϕ_1 s.t. $A(\Delta t) = \mp C_{\text{known}}^1 \sin 2\phi_1 \sin(C_{\text{known}}^2 \times \Delta t)$ for CP= \pm Bigi and Sanda,1981

$$CP = -$$

$[\phi_1 \text{ from B factories}(\text{continued})]$

$$A(\Delta t) := \frac{\Gamma_{+}(\Delta t) - \Gamma_{-}(\Delta t)}{\Gamma_{+}(\Delta t) + \Gamma_{-}(\Delta t)}$$

$$\Gamma_{+} := \Gamma(B^{0} \to f_{\mathrm{CP}}) : \text{decay rate to final CP eigenstate } f_{\mathrm{CP}}$$

$$\Gamma_{-} := \Gamma(\bar{B}^{0} \to f_{\mathrm{CP}})$$

$$\Delta t := \text{decay time difference between } B^{0} \text{ and } \bar{B}^{0}$$

$[\phi_1 \text{ from B factories}(\text{continued})]$

- $\sin 2\phi_1$ deviates from 0, confirming CP-violation in CKM matrix.
- Results of BaBar and Belle agree with each other.

	$\sin 2\phi_1 \text{ (final)}$
BaBar	0.687(28)(12)
Belle	0.667(23)(12)

cf.	$\sin 2\phi_1 \text{ (in 2000)}$
BaBar	0.12(37)(9)
Belle	0.45(44)(9)

3 $|V_{ub}|, |V_{cb}|$ from B factories

 $|V_{ub}|, |V_{cb}|$ are determined by semileptonic decay rates from experiments, combined with form factors from lattice QCD.

$$(\text{Decay rate})_{\text{exp}} = \text{const (Form factor})_{\text{LQCD}} |V_{\text{CKM}}|^2$$

- There are deviations of $|V_{CKM}|$ in decay channels
 - $\Diamond |V_{ub}|_{\text{exclusive}}$ differs from $|V_{ub}|_{\text{inclusive}}$ by 3 σ in experimental error, not including lattice QCD error
 - $\Diamond |V_{cb}|_{\text{exclusive}}$ differs from $|V_{cb}|_{\text{inclusive}}$ by 2.5 σ in exp error

$$\frac{|V_{ub}|_{\text{exclusive}}(B \to \pi l \nu_l)}{|V_{ub}|_{\text{inclusive}}(B \to X_u l \nu_l)} \frac{3.23(55)_{\text{exp}}(73)_{\text{LQCD}} \times 10^{-3}}{4.42(20)_{\text{exp}}(15)_{\text{LQCD}} \times 10^{-3}}$$

4 Exotic charmonium-like states

Another important discovery in B factories is exotic states, such as $Z(4430)^+$.

Exotic states := States that are hard to be explained by constituent quarks

- (Constituent quark has been successful in light hadron spectroscopy.)
- New charmed and bottomed hadrons are found in B factories.
 - ← These states are hard to be explained in constituent quark model!

[X(3872)] Fermilab,1994; Belle,2003; CDF,2004; BaBar,2005; LHCb,2012; BES III,2014

- $M_{X(3872)} = 3871.7(2) \text{ MeV (close to } D\bar{D} \text{ threshold } 3871.8(3) \text{ MeV)}$
- $J^{PC} = 1^{++}$, established by LHCb in 2013
- Very narrow width $\Gamma_{X(3872)} < 2.3 \text{ MeV}$
- (Fermilab E705 had discovered X(3872) in 1994, before Belle in 2003.)
 - \Diamond Constituent quark model failed to predict X(3872) \leftarrow This is the reason why it is named as X.
 - \Diamond Lattice QCD provided a signal corresponding to X(3872).

 Prelovsek and Leskovec, 2013

$E_n(J^{PC} = 1^{++})$	Experiment [GeV]	Constituent quark [GeV]
$E_0(\chi_{c1})$	3.51	3.51
$E_1(X(3872))$	3.87	3.95

$$[Z(4430)^{+}]$$
 Belle,2008; LHCb,2014

- $M_{Z(4430)^+} = 4475(7)(25)$ MeV, $J^{PC} = 1^{+-}$, $\Gamma_{Z(4430)^+} = 172(13)(37)$ MeV
- $Z(4430)^+$ is exotic. $Z(4430)^+$ needs four quarks $(c\bar{c}ud)$, instead of $c\bar{c}$.
 - $\Diamond Z(4430)^+$ is discovered by Belle in 2008, but is not confirmed (nor excluded) by BaBar.
 - \leftarrow LHCb found $Z(4430)^+$ with 13.9 σ in 2014.
 - \diamondsuit Lattice QCD found no signal for $Z(4430)^+$

cf. Ishizuka-san's journal club in 2014

5 Conclusion

Main results by B factories are presented.

- BaBar and Belle established CP violation in B meson system, which is originated by CKM matrix.
 - → Nobel prize of Kobayashi-san and Maskawa-san
- $|V_{ub}|$, $|V_{cb}|$ are determined, although $|V_{ub,cb}|_{\text{exclusive}}$ differs from $|V_{ub,cb}|_{\text{inclusive}}$ by $2.5-3\sigma$ in experimental errors.
 - \rightarrow More precise form factor by lattice QCD is required.
- B factories found exotic states, such as $X(3872), Z(4430)^+$.
 - \diamondsuit X(3872) is rediscovered by Belle in 2003.
 - \rightarrow Other experiments as well as lattice QCD support X(3872).
 - \diamondsuit $Z(4430)^+$ is found by Belle in 2008.
 - $\rightarrow Z(4430)^+$ is confirmed by LHCb with 13.9 σ in 2014, but has not been reproduced by lattice QCD.