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論文の動機・主張	

２核子系の束縛状態	  
	  
（例）　重陽子　（ 陽子 ＋ 中性子 ）	

n	

p	

結合エネルギー 	  
E	  =	  2.2	  MeV	

核半径	  
r	  =	  1.95	  fm	

→　π	  中間子の交換による引力	  
　（	  One	  Pion	  Exchange	  PotenSal	  ）	



論文の動機・主張	

ΛcN	  の（ゆるい）束縛状態はあるか？	  

N	  :	  陽子	  or	  中性子	  
Λc	  :	  u,	  d,	  c	  のバリオン	

　軽いメソン（π	  中間子）の交換	  
によるポテンシャルを考える。	  

Λc N

N

π

Λc(	  I	  =	  0	  )	

(	  I	  =	  0	  )	

(	  I	  =	  1/2	  )	

(	  I	  =	  1/2	  )	

(	  I	  =	  1	  )	

<	  ΛcN	  の single	  channel	  >	  

OPEP	  は作れない	



論文の動機・主張	

チャームクオーク（c）を１つ含むバリオン	  
　　　　　　→　  qq	  c　　　（ q	  :	  u	  or	  d	  or	  s	  ）	  
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論文の動機・主張	

ΛcN	  の（ゆるい）束縛状態はあるか？	  

Λc N

N

π

Σc(	  I	  =	  1	  )	

(	  I	  =	  0	  )	

(	  I	  =	  1/2	  )	

(	  I	  =	  1/2	  )	

(	  I	  =	  1	  )	

<	  ΛcN	  の coupled	  channel	  >	  

OPEP	  が作れる！	  

Λc	  の励起状態である Σc	  との	  coupling	  を	  
考えると、OPEP	  で ΛcN	  の束縛状態が得られる。	  
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EffecSve	  Lagrangian	

(1)  	  chiral	  symmetry	  
(2)  	  heavy	  quark	  symmetry	  
(3)  	  hidden	  local	  symmetry	  

€ 

LB = LB3 
+ LS + Lint

€ 

LB3 
=

1
2

tr B 3 iv⋅ D( )B3 [ ] + iβB tr B 3 v
µ Γµ −Vµ( )B3 [ ] + lB tr B 3 σB3 [ ]

€ 

LS = −tr S α iv⋅ D − ΔB( )Sα[ ] +
3
2

g1 ivκ( )ε µνλκ tr S µ Aν Sλ[ ] + iβStr S µvα Γ
α −Vα( )S µ[ ] + λStr S µF µν Sν[ ] + lStr S µσS µ[ ]
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Lint = g4tr S µ AµB3 [ ] + iλIε
µνλκvµtr S ν FλκB3 [ ] + H.c.
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* +δ
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3
γ µ + vµ( )γ 5B6
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2
ξ+ ∂µξ( ) + ∂µξ( )ξ+[ ]
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Fµν = ∂µVν −∂νVµ + Vµ ,Vν[ ]
€ 

DµB3 = ∂µB3 +ΓµB3 + B3 Γµ
T

€ 

DµSν = ∂µSν +ΓµSν + SνΓµ
T

therefore the !c ! !"
c splitting is properly included. The

coupling constants g1 and g4 are the same as those in
Ref. [43]. Other definitions are given below.
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A# ¼ i
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'# ¼ 1
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;

F#' ¼ @#V' ! @'V# þ ½V#; V'(;

(9)

D#B"3 ¼ @#B"3 þ '#B"3 þ B"3'
T
#;

D#S' ¼ @#S' þ '#S' þ S''
T
#:

(10)

We use f ¼ 92:3 MeV for the pion decay constant. The
constant gV ¼ m$=ð

ffiffiffi
2

p
f!Þ ¼ 5:8 is derived with the vec-

tor meson dominance (VMD) [41,42,44]. For the nucleon-
nucleon interaction part, we use the following SU(2)
Lagrangian:

LN ¼!gA
2f

"N(#(5@#ð!i)iÞN!h* "N*N

!hV "N(#ð)i$i
#þ!#ÞN!hT "N*#'@#ð)i$i

'þ!'ÞN;

(11)

where )i is the Pauli matrix, representing the isospin.

III. THE POTENTIALS

The one-boson-exchange diagram in Fig. 1 is consid-
ered, where we use B1 and B2 to denote the charmed
baryons. When deriving the potentials, we use the heavy
quark limit for the charmed baryons, i.e. ignoring the
1=M"3;6 corrections but keeping up to 1=M2

N corrections
for the nucleon. At each interacting vertex, we introduce a
cutoff # through the monopole type form factor

FðqÞ ¼ #2 !m2

#2 ! q2
; (12)

where m is the mass of the exchanged meson and q is its
4-momentum. Because the meson exchange occurs be-
tween light quarks, we use the same cutoff for B1B2! and
NN! vertices. The cutoffs are taken to be around 1 GeV,
while they may be different for the scalar and the vector
meson exchanges.
For convenience, we define some functions for the final

potentials after the Fourier transformation:
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12!
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þOten

12!
m3H3ðm;#; rÞ; (13)

where ~k ¼ ~pþ ~p0 with the notation in Fig. 1, ~O1 is the

(transition) spin operator of the charmed baryon, ~O2 is the
spin operator of the nucleon, andOten is the tensor operator

defined by Oten ¼ 3ð ~O1)~rÞð ~O2)~rÞ
r2

! ð ~O1 ) ~O2Þ. The other defi-
nitions are
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FIG. 1. The considered interaction in deriving the potentials.
B1 (B2) may be #c, !c, or !"

c. The dashed line denotes the
exchanged meson !, *, $, or !.
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We use f ¼ 92:3 MeV for the pion decay constant. The
constant gV ¼ m$=ð
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tor meson dominance (VMD) [41,42,44]. For the nucleon-
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where )i is the Pauli matrix, representing the isospin.
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ered, where we use B1 and B2 to denote the charmed
baryons. When deriving the potentials, we use the heavy
quark limit for the charmed baryons, i.e. ignoring the
1=M"3;6 corrections but keeping up to 1=M2

N corrections
for the nucleon. At each interacting vertex, we introduce a
cutoff # through the monopole type form factor
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4-momentum. Because the meson exchange occurs be-
tween light quarks, we use the same cutoff for B1B2! and
NN! vertices. The cutoffs are taken to be around 1 GeV,
while they may be different for the scalar and the vector
meson exchanges.
For convenience, we define some functions for the final
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PotenSal	

B1
!p( ) N −

!p( )

N −
!
"p( )B2

!
!p( )

!q

B	
N	

点粒子	

B	

N	

実際は大きさを持った粒子	



PotenSal	
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F q( ) = Λ
2 −m2

Λ2 − q2

不変振幅の非相対論的近似により	  
ポテンシャルを導く	 !p→ 0

monopole	  型の	  
form	  factor	  を導入	  

（ Λ	  :	  cutoff	  ）	  

iM ~V (!q)



PotenSal	

Lagrangians satisfying the heavy quark symmetry for
heavy baryons, chiral symmetry for pions, and hidden local
symmetry for vector mesons. The Lagrangian is analogous
to the heavy meson version presented in Ref. [42]. As for
the unknown coupling constants, we turn to the quark
model, chiral multiplets, vector meson dominance, and
QCD sum rule.

Extension of the study to the bottom case is also inter-
esting, but we would not explore it here. Our paper is
organized as follows. After the introduction, we present
the effective Lagrangians in Sec. II. Then we determine the
coupling constants with various methods in Sec. III. In
Sec. IV, we present the derived potentials. The numerical
results for the S-wave spin-singlet and triplet !cN are
given in Secs. V and VI, respectively. Finally, we present
our discussions and conclusions in Sec. VII.

II. THE LAGRANGIAN

Here, we consider the S-wave !cN states and the chan-
nels which couple to them, i.e., the I ¼ 1

2 and JP ¼ 0þ or
1þ two-baryon states. We consider the contributions from

the "cN and "#
cN channels. It is a 3-channel problem for

JP ¼ 0þ and 7-channel problem for JP ¼ 1þ. The labels
are listed in Table I. Because of the higher mass, we
assume that the #ð1232Þ contributions are negligible.
In the heavy quark limit, the ground state heavy baryons

Qqq form SUð3Þ antitriplet with JP ¼ 1
2
þ and two degen-

erate sextets with JP ¼ ð12 ; 32Þþ. As in Ref. [43], we use B$3,
B6, and B#

6 to denote these multiplets. To write down the
compact form of the Lagrangians, we use the notation of
the superfield S!, which is defined by

S! ¼ B#
6! þ "

1ffiffiffi
3

p ð#! þ v!Þ#5B6; (1)

where v! is the 4-velocity of the heavy baryon and " is an
arbitrary phase factor. One finds that an appropriate choice
of " is &1 (see the Appendix), which is different from the
one often used in the literature. Actually, this phase does
not affect the final results because it appears only in the
transition potentials. In the multichannel case, it is easy to
prove that the binding energy does not change with the
following replacement for the Hermitian Hamiltonian:

H11 H12 H13 H14 H15 ' ' '
H22 H23 H24 H25 ' ' '

H33 H34 H35 ' ' '
H44 H45 ' ' '
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; (2)

where the subscripts of H denote the channels and "i (i ¼
2; 3; . . . ) are arbitrary phases. Because of the same reason,
the convention of the relative phase between the sextet and
the antitriplet will also not matter.

One constructs the effective Lagrangian according to the
chiral symmetry, heavy quark symmetry, and hidden local
symmetry [41,42,44,45]. The coupling terms are con-
strained by the couplings at the quark level: 0þ & 0þ &
M, 1þ & 1þ &M, and 1þ & 0þ &M. Here, 0þ and 1þ

are the spin-parity quantum numbers of the light diquark
inside the baryons and M represents the pseudoscalar,
scalar, or vector meson. The constructed heavy quark
baryon Lagrangian is

LB ¼ LB$3
þLS þLint; (3)

LB$3
¼ 1

2
tr½ $B$3ðiv 'DÞB$3) þ i$Btr½ $B$3v

!ð%! & V!ÞB$3)

þ ‘Btr½ $B$3%B$3) (4)

LS ¼ &tr½ $S&ðiv 'D&#BÞS&)

þ 3

2
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þ i$Str½ $S!v&ð%& & V&ÞS!)
þ *Str½ $S!F!)S)) þ ‘Str½ $S!%S!) (5)

L int ¼ g4tr½ $S!A!B$3) þ i*I(
!)*'v!tr½ $S)F*'B$3) þ H:c:;

(6)

where we use the notations, Eqs. (7)–(10),#B ¼ M6 &M$3
is the mass difference between the sextet and the antitrip-
let, and % is the scalar singlet meson. Note that B6 ð12þÞ and
B#
6 ð32þÞ are degenerate because of the heavy quark spin

symmetry in this effective theory. In the coupled channel
calculation of the !cN & "cN & "#

cN system, we will use
the empirical values of the masses of !c, "c and "#

c and

TABLE I. The S-wave !cN states and the channels which couple to them.

Channels 1 2 3 4 5 6 7

JP ¼ 0þ !cNð1S0Þ "cNð1S0Þ "#
cNð5D0Þ

JP ¼ 1þ !cNð3S1Þ "cNð3S1Þ "#
cNð3S1Þ !cNð3D1Þ "cNð3D1Þ "#

cNð3D1Þ "#
cNð5D1Þ
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Λc N

Nc	Λc

V11	  	

Channel	  :	  1	  

Channel	  :	  1	  

ΛcN	  の励起状態（ΣcN、Σ*cN）も含めて考える	

<	  single	  channel	  >	  



PotenSal	

Lagrangians satisfying the heavy quark symmetry for
heavy baryons, chiral symmetry for pions, and hidden local
symmetry for vector mesons. The Lagrangian is analogous
to the heavy meson version presented in Ref. [42]. As for
the unknown coupling constants, we turn to the quark
model, chiral multiplets, vector meson dominance, and
QCD sum rule.

Extension of the study to the bottom case is also inter-
esting, but we would not explore it here. Our paper is
organized as follows. After the introduction, we present
the effective Lagrangians in Sec. II. Then we determine the
coupling constants with various methods in Sec. III. In
Sec. IV, we present the derived potentials. The numerical
results for the S-wave spin-singlet and triplet !cN are
given in Secs. V and VI, respectively. Finally, we present
our discussions and conclusions in Sec. VII.
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inside the baryons and M represents the pseudoscalar,
scalar, or vector meson. The constructed heavy quark
baryon Lagrangian is

LB ¼ LB$3
þLS þLint; (3)

LB$3
¼ 1

2
tr½ $B$3ðiv 'DÞB$3) þ i$Btr½ $B$3v

!ð%! & V!ÞB$3)

þ ‘Btr½ $B$3%B$3) (4)

LS ¼ &tr½ $S&ðiv 'D&#BÞS&)

þ 3

2
g1ðiv'Þ(!)*'tr½ $S!A)S*)

þ i$Str½ $S!v&ð%& & V&ÞS!)
þ *Str½ $S!F!)S)) þ ‘Str½ $S!%S!) (5)

L int ¼ g4tr½ $S!A!B$3) þ i*I(
!)*'v!tr½ $S)F*'B$3) þ H:c:;

(6)

where we use the notations, Eqs. (7)–(10),#B ¼ M6 &M$3
is the mass difference between the sextet and the antitrip-
let, and % is the scalar singlet meson. Note that B6 ð12þÞ and
B#
6 ð32þÞ are degenerate because of the heavy quark spin

symmetry in this effective theory. In the coupled channel
calculation of the !cN & "cN & "#

cN system, we will use
the empirical values of the masses of !c, "c and "#

c and

TABLE I. The S-wave !cN states and the channels which couple to them.

Channels 1 2 3 4 5 6 7

JP ¼ 0þ !cNð1S0Þ "cNð1S0Þ "#
cNð5D0Þ

JP ¼ 1þ !cNð3S1Þ "cNð3S1Þ "#
cNð3S1Þ !cNð3D1Þ "cNð3D1Þ "#

cNð3D1Þ "#
cNð5D1Þ
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V13	  	

Channel	  :	  3	  

Channel	  :	  1	  

ΛcN	  の励起状態（ΣcN、Σ*cN）も含めて考える	

<	  coupled	  channel	  >	  



PotenSal	

i,	  j	  :	  チャネルの番号	

YðxÞ ¼ e$x

x
; ZðxÞ ¼

!
1

x
þ 1

x2

"
YðxÞ; HðxÞ ¼

!
1þ 3

x
þ 3

x2

"
YðxÞ;

Y1ðm;!; rÞ ¼ YðmrÞ $
!
!

m

"
Yð!rÞ $!2 $m2

2m!
e$!r; Y3ðm;!; rÞ ¼ YðmrÞ $

!
!

m

"
Yð!rÞ $ ð!2 $m2Þ!

2m3 e$!r;

Z3ðm;!; rÞ ¼ ZðmrÞ $
!
!

m

"
3
Zð!rÞ $ ð!2 $m2Þ!

2m3 Yð!rÞ;

H3ðm;!; rÞ ¼ HðmrÞ $
!
!

m

"
3
Hð!rÞ $ ð!2 $m2Þ!

2m3 Yð!rÞ $ ð!2 $m2Þ!
2m3 e$!r: (14)

When getting these formulas, we have adopted the ap-
proximation q0 ¼ 0. The lowest excited state of !cN is
the three-body !cN! state. But in this study we do not
consider the coupling of this channel because we need to
excite the system to L ¼ 1 in order to get the correct parity.
Such excitation will hinder the channel coupling.

In the multichannel case, we have transition potentials,
e.g. Vð!cN ! "&

cNÞ, and we need to define the transition
spin. Here, we define u" ¼ S"t #, where u" is the Rarita-
Schwinger field, S"t is the transition spin matrix (2' 4),
and the spin wave functions of "&

c are

#ð3=2Þ ¼ ð1; 0; 0; 0ÞT; #ð1=2Þ ¼ ð0; 1; 0; 0ÞT;
#ð$1=2Þ ¼ ð0; 0; 1; 0ÞT; #ð$3=2Þ ¼ ð0; 0; 0; 1ÞT:

(15)

We also need the spin operator for "&
c, which is defined

through ~#rs ( $Syt" ~#S"t , ~Srs ( 3
2 ~#rs. One may check

~S2rs ¼ 3
2 ð32 þ 1Þ ¼ 15

4 .
Now we may write down the general form of the

potentials,

V!ði; jÞ ¼ C!ði; jÞ
m3

!

24!f2!
f ~O1 ) ~O2Y1ðm!;!; rÞ þOtenH3ðm!;!; rÞg;

V#ðiÞ ¼ C#ðiÞ
m#

16!

#
4Y1ðm#;!; rÞ þ ~L ) ~#2

!
m#

MN

"
2
Z3ðm#;!; rÞ

$
;

V$ði; jÞ ¼ C$1ði; jÞ
m$hV
32!

#
8Y1ðm$;!; rÞ þ

!
1þ 4MNhT

hV

"
m2

$

M2
N

½Y1ðm$;!; rÞ $ 2 ~L ) ~#2Z3ðm$;!; rÞ+
$

þ C$2ði; jÞ
m3

$hV
36!MN

#!
1þ 2MNhT

hV

"
½2 ~O1 ) ~O2Y1ðm$;!; rÞ $OtenH3ðm$;!; rÞ+ $ 6 ~L ) ~O1Z3ðm$;!; rÞ

$
; (16)

where i and j are labels of the channels, Cði; jÞ and CðiÞ are
channel-dependent coefficients, the operator #2 or O2 is
the Pauli matrix of the nucleon spin, and O1 is the corre-
sponding spin matrix for the charmed baryon ~#1 ( ~#rs) or
the transition spin ~St or ~Syt . The ! exchange potential is
similarly defined as the $ potential.

It should be noted that we omit the contact
(%-functional) part of the potential, which appears in
Y3 in our model. The main reason is that the interact-
ing two baryons should get small contributions from
such terms when they form a molecule-type bound
state, in which two baryons are well separated. The
difference between the defined functions Y3 and Y1 is
the contact part. So, the Y3 does not appear in our
model potentials.

For the calculation with the potentials, one may use any
consistent phase convention of the coefficients Cði; jÞ. The
correct result is ensured by Eq. (2). One should also note
the possible convention problem when calculating the

matrix elements h ~O1 ) ~O2i, hOteni, and h ~L ) ~Oi with the
Wigner-Eckart theorem. The conventions must also be
consistent.

IV. THE COUPLING CONSTANTS

The next task is to determine the coupling constants
in the Lagrangians. We use several methods to con-
strain the values: (1) the strong decay of the baryons,
(2) quark model estimation, (3) vector meson domi-
nance assumption, (4) chiral multiplet assumption, and
(5) QCD sum rule calculations. In Ref. [43], the co-
efficients of B6B6!, B6B$3!, B&

6B6!, B&
6B$3!, and

B&
6B

&
6! coupling terms are called g1, g2, g3, g4, and

g5, respectively. In the following parts, we also use
these notations.
The available strong decays are only "c ! !c! and

"&
c ! !c! [46]. The coupling constants g2 and g4 may be

derived from the decay widths
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When getting these formulas, we have adopted the ap-
proximation q0 ¼ 0. The lowest excited state of !cN is
the three-body !cN! state. But in this study we do not
consider the coupling of this channel because we need to
excite the system to L ¼ 1 in order to get the correct parity.
Such excitation will hinder the channel coupling.

In the multichannel case, we have transition potentials,
e.g. Vð!cN ! "&

cNÞ, and we need to define the transition
spin. Here, we define u" ¼ S"t #, where u" is the Rarita-
Schwinger field, S"t is the transition spin matrix (2' 4),
and the spin wave functions of "&

c are

#ð3=2Þ ¼ ð1; 0; 0; 0ÞT; #ð1=2Þ ¼ ð0; 1; 0; 0ÞT;
#ð$1=2Þ ¼ ð0; 0; 1; 0ÞT; #ð$3=2Þ ¼ ð0; 0; 0; 1ÞT:

(15)

We also need the spin operator for "&
c, which is defined

through ~#rs ( $Syt" ~#S"t , ~Srs ( 3
2 ~#rs. One may check

~S2rs ¼ 3
2 ð32 þ 1Þ ¼ 15

4 .
Now we may write down the general form of the

potentials,

V!ði; jÞ ¼ C!ði; jÞ
m3

!

24!f2!
f ~O1 ) ~O2Y1ðm!;!; rÞ þOtenH3ðm!;!; rÞg;

V#ðiÞ ¼ C#ðiÞ
m#

16!

#
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MN
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m$hV
32!
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!
1þ 4MNhT

hV
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$

M2
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½Y1ðm$;!; rÞ $ 2 ~L ) ~#2Z3ðm$;!; rÞ+
$
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m3

$hV
36!MN
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1þ 2MNhT

hV

"
½2 ~O1 ) ~O2Y1ðm$;!; rÞ $OtenH3ðm$;!; rÞ+ $ 6 ~L ) ~O1Z3ðm$;!; rÞ

$
; (16)

where i and j are labels of the channels, Cði; jÞ and CðiÞ are
channel-dependent coefficients, the operator #2 or O2 is
the Pauli matrix of the nucleon spin, and O1 is the corre-
sponding spin matrix for the charmed baryon ~#1 ( ~#rs) or
the transition spin ~St or ~Syt . The ! exchange potential is
similarly defined as the $ potential.

It should be noted that we omit the contact
(%-functional) part of the potential, which appears in
Y3 in our model. The main reason is that the interact-
ing two baryons should get small contributions from
such terms when they form a molecule-type bound
state, in which two baryons are well separated. The
difference between the defined functions Y3 and Y1 is
the contact part. So, the Y3 does not appear in our
model potentials.

For the calculation with the potentials, one may use any
consistent phase convention of the coefficients Cði; jÞ. The
correct result is ensured by Eq. (2). One should also note
the possible convention problem when calculating the

matrix elements h ~O1 ) ~O2i, hOteni, and h ~L ) ~Oi with the
Wigner-Eckart theorem. The conventions must also be
consistent.

IV. THE COUPLING CONSTANTS

The next task is to determine the coupling constants
in the Lagrangians. We use several methods to con-
strain the values: (1) the strong decay of the baryons,
(2) quark model estimation, (3) vector meson domi-
nance assumption, (4) chiral multiplet assumption, and
(5) QCD sum rule calculations. In Ref. [43], the co-
efficients of B6B6!, B6B$3!, B&

6B6!, B&
6B$3!, and

B&
6B

&
6! coupling terms are called g1, g2, g3, g4, and

g5, respectively. In the following parts, we also use
these notations.
The available strong decays are only "c ! !c! and

"&
c ! !c! [46]. The coupling constants g2 and g4 may be

derived from the decay widths
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When getting these formulas, we have adopted the ap-
proximation q0 ¼ 0. The lowest excited state of !cN is
the three-body !cN! state. But in this study we do not
consider the coupling of this channel because we need to
excite the system to L ¼ 1 in order to get the correct parity.
Such excitation will hinder the channel coupling.

In the multichannel case, we have transition potentials,
e.g. Vð!cN ! "&

cNÞ, and we need to define the transition
spin. Here, we define u" ¼ S"t #, where u" is the Rarita-
Schwinger field, S"t is the transition spin matrix (2' 4),
and the spin wave functions of "&

c are

#ð3=2Þ ¼ ð1; 0; 0; 0ÞT; #ð1=2Þ ¼ ð0; 1; 0; 0ÞT;
#ð$1=2Þ ¼ ð0; 0; 1; 0ÞT; #ð$3=2Þ ¼ ð0; 0; 0; 1ÞT:

(15)

We also need the spin operator for "&
c, which is defined

through ~#rs ( $Syt" ~#S"t , ~Srs ( 3
2 ~#rs. One may check

~S2rs ¼ 3
2 ð32 þ 1Þ ¼ 15

4 .
Now we may write down the general form of the

potentials,
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where i and j are labels of the channels, Cði; jÞ and CðiÞ are
channel-dependent coefficients, the operator #2 or O2 is
the Pauli matrix of the nucleon spin, and O1 is the corre-
sponding spin matrix for the charmed baryon ~#1 ( ~#rs) or
the transition spin ~St or ~Syt . The ! exchange potential is
similarly defined as the $ potential.

It should be noted that we omit the contact
(%-functional) part of the potential, which appears in
Y3 in our model. The main reason is that the interact-
ing two baryons should get small contributions from
such terms when they form a molecule-type bound
state, in which two baryons are well separated. The
difference between the defined functions Y3 and Y1 is
the contact part. So, the Y3 does not appear in our
model potentials.

For the calculation with the potentials, one may use any
consistent phase convention of the coefficients Cði; jÞ. The
correct result is ensured by Eq. (2). One should also note
the possible convention problem when calculating the

matrix elements h ~O1 ) ~O2i, hOteni, and h ~L ) ~Oi with the
Wigner-Eckart theorem. The conventions must also be
consistent.

IV. THE COUPLING CONSTANTS

The next task is to determine the coupling constants
in the Lagrangians. We use several methods to con-
strain the values: (1) the strong decay of the baryons,
(2) quark model estimation, (3) vector meson domi-
nance assumption, (4) chiral multiplet assumption, and
(5) QCD sum rule calculations. In Ref. [43], the co-
efficients of B6B6!, B6B$3!, B&

6B6!, B&
6B$3!, and

B&
6B

&
6! coupling terms are called g1, g2, g3, g4, and

g5, respectively. In the following parts, we also use
these notations.
The available strong decays are only "c ! !c! and

"&
c ! !c! [46]. The coupling constants g2 and g4 may be

derived from the decay widths
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σ、ρ、ω	  メソン交換のポテンシャル	  
	  

（One	  Boson	  Exchange	  PotenSal）	



Coupling	  Constants	

Lagrangian	  に含まれる coupling	  constants	  
　　　　→　βB、g1	  など１５個	  
	  
決定法　　(1)　Σc、Σ*c	  の strong	  decay	  より	  
　　　　　 　(2)　QCDのクオーク模型より	  



Coupling	  Constants	

(1) Σc、Σ*c	  の	  strong	  decay	  
	  

　　　　Σc	  →	  Λc	  +	  π	  
　　　　Σ*c	  →	  Λc	  +	  π	  
	  

それぞれの	  decay	  width	  は	  

Γ Σc →Λcπ( ) = g2
2

4π fπ
2

MΛc

MΣc

!pπ
3

Γ Σ*c →Λcπ( ) = g4
2

12π fπ
2

MΛc

M
Σc
*

!pπ
3



Coupling	  Constants	

(2)　QCDのクオーク模型	  

Bc N

NBc

M	

軽いクオークのみ	

N

N

M	

c	

c	

du	

ud	

SU(2)	  クオーク模型と同じ vertex	  と考えて良い	  
　　　　　　＝	  coupling	  constants	  が対応付けられる	  



Results	

	  
　・　coupling	  constants	  →	  クオーク模型より決定	  
　・　meson	  mass	  　　　　→	  physical	  な量を用いる	  
　・　カットオフ Λ	  　　　　	  →	  決められない	  
	  
	  

Λ	  はフリーパラメタとして扱い、	  
Binding	  Energy	  への影響を見る。	  

	  



Results	

J	  =	  0　Case	

Lagrangians satisfying the heavy quark symmetry for
heavy baryons, chiral symmetry for pions, and hidden local
symmetry for vector mesons. The Lagrangian is analogous
to the heavy meson version presented in Ref. [42]. As for
the unknown coupling constants, we turn to the quark
model, chiral multiplets, vector meson dominance, and
QCD sum rule.

Extension of the study to the bottom case is also inter-
esting, but we would not explore it here. Our paper is
organized as follows. After the introduction, we present
the effective Lagrangians in Sec. II. Then we determine the
coupling constants with various methods in Sec. III. In
Sec. IV, we present the derived potentials. The numerical
results for the S-wave spin-singlet and triplet !cN are
given in Secs. V and VI, respectively. Finally, we present
our discussions and conclusions in Sec. VII.

II. THE LAGRANGIAN

Here, we consider the S-wave !cN states and the chan-
nels which couple to them, i.e., the I ¼ 1

2 and JP ¼ 0þ or
1þ two-baryon states. We consider the contributions from

the "cN and "#
cN channels. It is a 3-channel problem for

JP ¼ 0þ and 7-channel problem for JP ¼ 1þ. The labels
are listed in Table I. Because of the higher mass, we
assume that the #ð1232Þ contributions are negligible.
In the heavy quark limit, the ground state heavy baryons

Qqq form SUð3Þ antitriplet with JP ¼ 1
2
þ and two degen-

erate sextets with JP ¼ ð12 ; 32Þþ. As in Ref. [43], we use B$3,
B6, and B#

6 to denote these multiplets. To write down the
compact form of the Lagrangians, we use the notation of
the superfield S!, which is defined by

S! ¼ B#
6! þ "

1ffiffiffi
3

p ð#! þ v!Þ#5B6; (1)

where v! is the 4-velocity of the heavy baryon and " is an
arbitrary phase factor. One finds that an appropriate choice
of " is &1 (see the Appendix), which is different from the
one often used in the literature. Actually, this phase does
not affect the final results because it appears only in the
transition potentials. In the multichannel case, it is easy to
prove that the binding energy does not change with the
following replacement for the Hermitian Hamiltonian:

H11 H12 H13 H14 H15 ' ' '
H22 H23 H24 H25 ' ' '

H33 H34 H35 ' ' '
H44 H45 ' ' '

H55 ' ' '
' ' '

0
BBBBBBBB@

1
CCCCCCCCA
)

H11 "2H12 "3H13 "4H14 "5H15 ' ' '
H22 ð"#

2"3ÞH23 ð"#
2"4ÞH24 ð"#

2"5ÞH25 ' ' '
H33 ð"#

3"4ÞH34 ð"#
3"5ÞH35 ' ' '

H44 ð"#
4"5ÞH45 ' ' '
H55 ' ' '

' ' '

0
BBBBBBBB@

1
CCCCCCCCA
; (2)

where the subscripts of H denote the channels and "i (i ¼
2; 3; . . . ) are arbitrary phases. Because of the same reason,
the convention of the relative phase between the sextet and
the antitriplet will also not matter.

One constructs the effective Lagrangian according to the
chiral symmetry, heavy quark symmetry, and hidden local
symmetry [41,42,44,45]. The coupling terms are con-
strained by the couplings at the quark level: 0þ & 0þ &
M, 1þ & 1þ &M, and 1þ & 0þ &M. Here, 0þ and 1þ

are the spin-parity quantum numbers of the light diquark
inside the baryons and M represents the pseudoscalar,
scalar, or vector meson. The constructed heavy quark
baryon Lagrangian is

LB ¼ LB$3
þLS þLint; (3)

LB$3
¼ 1

2
tr½ $B$3ðiv 'DÞB$3) þ i$Btr½ $B$3v

!ð%! & V!ÞB$3)

þ ‘Btr½ $B$3%B$3) (4)

LS ¼ &tr½ $S&ðiv 'D&#BÞS&)

þ 3

2
g1ðiv'Þ(!)*'tr½ $S!A)S*)

þ i$Str½ $S!v&ð%& & V&ÞS!)
þ *Str½ $S!F!)S)) þ ‘Str½ $S!%S!) (5)

L int ¼ g4tr½ $S!A!B$3) þ i*I(
!)*'v!tr½ $S)F*'B$3) þ H:c:;

(6)

where we use the notations, Eqs. (7)–(10),#B ¼ M6 &M$3
is the mass difference between the sextet and the antitrip-
let, and % is the scalar singlet meson. Note that B6 ð12þÞ and
B#
6 ð32þÞ are degenerate because of the heavy quark spin

symmetry in this effective theory. In the coupled channel
calculation of the !cN & "cN & "#

cN system, we will use
the empirical values of the masses of !c, "c and "#

c and

TABLE I. The S-wave !cN states and the channels which couple to them.

Channels 1 2 3 4 5 6 7

JP ¼ 0þ !cNð1S0Þ "cNð1S0Þ "#
cNð5D0Þ

JP ¼ 1þ !cNð3S1Þ "cNð3S1Þ "#
cNð3S1Þ !cNð3D1Þ "cNð3D1Þ "#

cNð3D1Þ "#
cNð5D1Þ
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Results	  （	  J	  =	  0	  Case	  ）	

A. OPEP model

Let us first consider the case without channel coupling.
For the channel !cN, the direct one-pion-exchange is
forbidden. For the channels "cN and "!

cN, the potentials
are both repulsive, therefore one cannot get a bound state.

For the case with channel coupling, we have one free
parameter !!. It is interesting that a bound state is ob-
tained within the reasonable range of the cutoff. We present
the binding energies, the root-mean-square (RMS) radius,
and the probabilities of each channel in Table III. The
binding energy is given with relative to the !cN threshold.
As a deuteronlike molecule, the two baryons should not be
very close. Thus we only list the results with the RMS
radius larger than 0.7 fm. The values indicate that the
reasonable binding energy should be no more than tens

of MeValthough it depends on the poorly known cutoff. As
an example, we show the wave functions of different
channels for !! ¼ 1:3 GeV in Fig. 3(a). That the proba-
bility of the channel "!

cNð5D0Þ is larger than that of the
channel "cNð1S0Þ indicates the importance of the tensor
force in the model. As a check, we have calculated the two-
channel case, !cNð1S0Þ and "cNð1S0Þ, and we do not find
any binding solutions.
We have omitted the "-functional part in our potentials.

Once that part is included, deeper molecular bound states
are obtained. In that case, the S-wave "cN channel is
dominant over to D-wave "!

cN channel. For example, if
we use !! ¼ 0:8 GeV, a 3-channel calculation gives
the binding energy B:E: ¼ 19:18 MeV and a 2-channel
calculation (without the D-wave channel) gives

FIG. 2 (color online). The potentials of different channels for the JP ¼ 0þ case with !! ¼ !# ¼ !vec ¼ 1 GeV.
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(11)	  →	  Channel	  1	  と	  1	  のポテンシャル	  
	  
	  
	  
	  
	  
	

Channel	  :	  1	  Λc

Λc

N

N
Channel	  :	  1	  

<	  single	  channel	  >	  
	  

OPEP	  :	  全て斥力	  
OBEP	  :	  全て引力	



Results	  （	  J	  =	  0	  Case	  ）	

<	  coupled	  channel	  >	  
	  

OPEP	  :	  (13),	  (23)が強い	  
OBEP	  :	  (12)が強い	
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(12)	  →	  Channel	  1	  と	  2	  のポテンシャル	  
	  
	  
	  
	  
	  
	

Channel	  :	  2	  Σc

Λc

N

N
Channel	  :	  1	  



Results	  （	  J	  =	  0	  Case	  ）	

	  
★　束縛エネルギーの計算	  
	  
　ΛcN、ΣcN、Σ*cN	  混合状態のSchrödinger	  方程式を解く。	  

	   	   	   	   	  (	  H0	  +	  V	  )	  Ψ	  =	  E	  Ψ	  

ΛcN、ΣcN、Σ*cN混合状態のエネルギー	

Λc	  (	  2286	  MeV	  )	  +	  N	  (	  939	  MeV	  )	  =	  3225	  MeV	  よりもエネルギーが	  
	  
　　　　　　　　　　　　　　　　　高い　→　束縛状態を作らない	  
　　　　　　　　　　　　　　　　　低い　→　束縛状態を作る	



Results	  （	  J	  =	  0	  Case	  ）	

B:E: ¼ 17:85 MeV. However, the binding energy is more
sensitive to the cutoff parameter. We get B:E: ¼
111:53 MeV in the 3-channel calculation with a little
larger cutoff !! ¼ 0:9 GeV.

B. OBEP model

After we consider the contributions from the scalar
meson " and the vector mesons # and !, the binding
energies will change accordingly. However, we have

TABLE III. Binding solutions for the JP ¼ 0þ case with channel coupling in the OPEP model. The binding energies (B.E.) are given
relative to the !cN threshold. The probabilities correspond to !cNð1S0Þ, "cNð1S0Þ, and "%

cNð5D0Þ, respectively.

!! (GeV) 1.2 1.3 1.4 1.5 1.6 1.7

B:E:ðJ ¼ 0Þ (MeV) 0.64 6.16 18.51 38.88 68.29 107.64ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 5.2 1.9 1.2 0.9 0.8 0.7

Prob. (%) (98:2=0:6=1:2) (94:0=2:3=3:7) (89:3=4:6=6:1) (84:5=7:2=8:3) (80:1=9:8=10:1) (76:1=12:2=11:7)

FIG. 3 (color online). Thewave functionsui (i ¼ 1; 2; . . . ; 7) of different channels. Thefirst three diagrams correspond to the results for
the spin-singlet state: (a) OPEP case with the cutoff !! ¼ 1:3 GeV; (b) OBEP case with the cutoff !! ¼ !" ¼ !vec ¼ 0:9 GeV;
(c) OBEP casewith the parameter$ ¼ 1:4. The last three diagrams correspond to the results for the spin-triplet state: (d) OPEP casewith
the cutoff !! ¼ 1:3 GeV; (e) OBEP case with the cutoff !! ¼ !" ¼ !vec ¼ 0:9 GeV; (f) OBEP case with the parameter $ ¼ 1:5.
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Prob.	  ： （ΛcN	  /	  ΣcN	  /	  Σ*cN） の存在確率	

symmetry, chiral symmetry, and hidden local symmetry.
Solving the Schrödinger equation for the coupled !cN !
"cN !""

cN systems for J ¼ 0 and J ¼ 1 states, we obtain
molecular bound states in both channels with appropriate
cutoffs. By analyzing all the binding energies and the
corresponding RMS radii, one observes several features:
(1) the spin-singlet state and the spin-triplet state have
slightly different binding energies for a given radius and
the reasonable binding energy is at most tens of MeV;
(2) the OPEP model and the OBEP model are somehow
equivalent in getting the consistent binding energy and the
corresponding RMS radius; (3) the coupled channel effects
are important both in the OPEP model and in the OBEP
model. To see these features, we make a comparison,
which is presented in Table XIV.

The deuteron, the well-known pn bound state with the
binding energy of 2.2 MeV, is also a spin-triplet state. The
D-wave contribution is very important and the correspond-
ing probability of the state at D-wave is around 4$ 6%. If
the D-wave probability of !cN were in this range, the
binding energy would be around l0 MeV in the OPEP
model from Table IX.

For the !cN single channel, only ! and ! exchanges
are allowed. There are no tensor force nor spin-dependent
parts in the potentials. As a result, the coupling between
the 3S1 and 3D1 states vanishes and one has V1S0

¼ V3S1
for the potentials. That is, the possible JP ¼ 0þ and

JP ¼ 1þ molecular states are degenerate in the heavy
quark limit. After considering the contributions from the
channels "cN and ""

cN, the tensor force and the spin-
dependent interactions enter. However, full coupled chan-
nel calculation does not give significantly different results
for the two spin states. That is, the two spin states are still
qualitatively degenerate. Maybe this feature indicates that
the coupled channel effects do not change the degeneracy
in the dominant channel. If this is the case, one expects
that the states with different angular momenta of a two-
body system like !c"c, !c!, !c", or !c# would have
similar binding solutions. They may be tested in the
future investigations of bound state problems and scatter-
ing problems.
The results are sensitive to the phenomenological cutoff

parameter, which is a general feature for the molecule
study in the meson exchange models at the hadron level.
In effect, this parameter encodes the size effects of the
hadrons and the information of the short-range interaction.
This feature indicates that the binding energy is sensitive to
the short-range interaction. At this moment, we cannot
determine the values of the cutoff. So we treat it as a free
parameter and discuss the results for a reasonable range of
the cutoff. If the cutoff parameter around 1:2$ 1:4 GeV in
the OPEP model, 0:8$ 1:0 GeV in the OBEP model
(common cutoff case), or 1:2$ 1:7 in the OBEP model
(scaled cutoff case) is reasonable, then one obtains

JP= 0+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.2 1.3 1.4 1.5 1.6 1.7

Λπ (GeV)

ΛcN
1S0

ΣcN
1S0

Σc*N
5D0

 0.64  6.16
18.51

38.88

68.29

107.64
(w/)

JP= 1+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.0 1.2 1.4 1.6 1.8 2.0

Λπ (GeV)

ΛcN
3S1, (3D1)

ΣcN
3S1, 3D1  0.08  4.09

17.34

44.69

91.52 (w/o)

Σc*N
3S1,3D1,5D1  0.47

10.27

33.66
(w/o)

 1.17
20.64

72.39 (w/)

FIG. 9 (color online). The sensitivity of the binding energy (B.E.) to the cutoff !" in the OPEP model for the JP ¼ 0þ and JP ¼ 1þ

cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no S!D mixing when one
considers only the !cN channel.
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　Λc	  +	  N	  の静止エネルギーより	  
低いエネルギー状態（束縛状態）	  
が得られた！	  
	  
　Λ	  ~	  1	  GeV	  は核物理で良く用いる	  
reasonable	  な値	  

<	  OPEP	  の場合	  >	  



Results	  （	  J	  =	  0	  Case	  ）	

A. OPEP model

Let us first consider the case without channel coupling.
For the channel !cN, the direct one-pion-exchange is
forbidden. For the channels "cN and "!

cN, the potentials
are both repulsive, therefore one cannot get a bound state.

For the case with channel coupling, we have one free
parameter !!. It is interesting that a bound state is ob-
tained within the reasonable range of the cutoff. We present
the binding energies, the root-mean-square (RMS) radius,
and the probabilities of each channel in Table III. The
binding energy is given with relative to the !cN threshold.
As a deuteronlike molecule, the two baryons should not be
very close. Thus we only list the results with the RMS
radius larger than 0.7 fm. The values indicate that the
reasonable binding energy should be no more than tens

of MeValthough it depends on the poorly known cutoff. As
an example, we show the wave functions of different
channels for !! ¼ 1:3 GeV in Fig. 3(a). That the proba-
bility of the channel "!

cNð5D0Þ is larger than that of the
channel "cNð1S0Þ indicates the importance of the tensor
force in the model. As a check, we have calculated the two-
channel case, !cNð1S0Þ and "cNð1S0Þ, and we do not find
any binding solutions.
We have omitted the "-functional part in our potentials.

Once that part is included, deeper molecular bound states
are obtained. In that case, the S-wave "cN channel is
dominant over to D-wave "!

cN channel. For example, if
we use !! ¼ 0:8 GeV, a 3-channel calculation gives
the binding energy B:E: ¼ 19:18 MeV and a 2-channel
calculation (without the D-wave channel) gives

FIG. 2 (color online). The potentials of different channels for the JP ¼ 0þ case with !! ¼ !# ¼ !vec ¼ 1 GeV.
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　Σ*c	  （D	  wave）の存在による	  
テンソルポテンシャルの効果が大きい。	  

　Σ*c	  を除いた（Channel	  1	  と	  2	  だけの）計算では、	  
束縛解は得られなかった。	  



Results	  （	  J	  =	  0	  Case	  ）	

<	  OBEP	  の場合	  >	  

各メソンの	  vertex	  の	  cutoff	  は異なる。	  
	  
●　common	  cutoff	  （Λπ	  =	  Λσ	  =	  Λvec	  =	  Λcom）	  
●　scaled	  cutoff	  （Λex	  =	  mex	  +	  α	  ΛQCD）	  
	  
　　　　　　　　　　　　　　ΛQCD	  =	  220	  MeV	  



Results	  （	  J	  =	  0	  Case	  ）	
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cN, the potentials
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and the probabilities of each channel in Table III. The
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cN channel. For example, if
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forbidden. For the channels "cN and "!

cN, the potentials
are both repulsive, therefore one cannot get a bound state.

For the case with channel coupling, we have one free
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(11)	  →	  Channel	  1	  と	  1	  のポテンシャル	  
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FIG. 10 (color online). The sensitivity of the binding energy (B.E.) to the cutoff !! ¼ !" ¼ !vec ¼ !com in the OBEP model for
the JP ¼ 0þ and JP ¼ 1þ cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no
S#D mixing when one considers only the !cN channel.
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J	  =	  1　Case	

Lagrangians satisfying the heavy quark symmetry for
heavy baryons, chiral symmetry for pions, and hidden local
symmetry for vector mesons. The Lagrangian is analogous
to the heavy meson version presented in Ref. [42]. As for
the unknown coupling constants, we turn to the quark
model, chiral multiplets, vector meson dominance, and
QCD sum rule.

Extension of the study to the bottom case is also inter-
esting, but we would not explore it here. Our paper is
organized as follows. After the introduction, we present
the effective Lagrangians in Sec. II. Then we determine the
coupling constants with various methods in Sec. III. In
Sec. IV, we present the derived potentials. The numerical
results for the S-wave spin-singlet and triplet !cN are
given in Secs. V and VI, respectively. Finally, we present
our discussions and conclusions in Sec. VII.

II. THE LAGRANGIAN

Here, we consider the S-wave !cN states and the chan-
nels which couple to them, i.e., the I ¼ 1

2 and JP ¼ 0þ or
1þ two-baryon states. We consider the contributions from

the "cN and "#
cN channels. It is a 3-channel problem for

JP ¼ 0þ and 7-channel problem for JP ¼ 1þ. The labels
are listed in Table I. Because of the higher mass, we
assume that the #ð1232Þ contributions are negligible.
In the heavy quark limit, the ground state heavy baryons

Qqq form SUð3Þ antitriplet with JP ¼ 1
2
þ and two degen-

erate sextets with JP ¼ ð12 ; 32Þþ. As in Ref. [43], we use B$3,
B6, and B#

6 to denote these multiplets. To write down the
compact form of the Lagrangians, we use the notation of
the superfield S!, which is defined by

S! ¼ B#
6! þ "

1ffiffiffi
3

p ð#! þ v!Þ#5B6; (1)

where v! is the 4-velocity of the heavy baryon and " is an
arbitrary phase factor. One finds that an appropriate choice
of " is &1 (see the Appendix), which is different from the
one often used in the literature. Actually, this phase does
not affect the final results because it appears only in the
transition potentials. In the multichannel case, it is easy to
prove that the binding energy does not change with the
following replacement for the Hermitian Hamiltonian:

H11 H12 H13 H14 H15 ' ' '
H22 H23 H24 H25 ' ' '

H33 H34 H35 ' ' '
H44 H45 ' ' '

H55 ' ' '
' ' '

0
BBBBBBBB@

1
CCCCCCCCA
)

H11 "2H12 "3H13 "4H14 "5H15 ' ' '
H22 ð"#

2"3ÞH23 ð"#
2"4ÞH24 ð"#

2"5ÞH25 ' ' '
H33 ð"#

3"4ÞH34 ð"#
3"5ÞH35 ' ' '

H44 ð"#
4"5ÞH45 ' ' '
H55 ' ' '

' ' '

0
BBBBBBBB@

1
CCCCCCCCA
; (2)

where the subscripts of H denote the channels and "i (i ¼
2; 3; . . . ) are arbitrary phases. Because of the same reason,
the convention of the relative phase between the sextet and
the antitriplet will also not matter.

One constructs the effective Lagrangian according to the
chiral symmetry, heavy quark symmetry, and hidden local
symmetry [41,42,44,45]. The coupling terms are con-
strained by the couplings at the quark level: 0þ & 0þ &
M, 1þ & 1þ &M, and 1þ & 0þ &M. Here, 0þ and 1þ

are the spin-parity quantum numbers of the light diquark
inside the baryons and M represents the pseudoscalar,
scalar, or vector meson. The constructed heavy quark
baryon Lagrangian is

LB ¼ LB$3
þLS þLint; (3)

LB$3
¼ 1

2
tr½ $B$3ðiv 'DÞB$3) þ i$Btr½ $B$3v

!ð%! & V!ÞB$3)

þ ‘Btr½ $B$3%B$3) (4)

LS ¼ &tr½ $S&ðiv 'D&#BÞS&)

þ 3

2
g1ðiv'Þ(!)*'tr½ $S!A)S*)

þ i$Str½ $S!v&ð%& & V&ÞS!)
þ *Str½ $S!F!)S)) þ ‘Str½ $S!%S!) (5)

L int ¼ g4tr½ $S!A!B$3) þ i*I(
!)*'v!tr½ $S)F*'B$3) þ H:c:;

(6)

where we use the notations, Eqs. (7)–(10),#B ¼ M6 &M$3
is the mass difference between the sextet and the antitrip-
let, and % is the scalar singlet meson. Note that B6 ð12þÞ and
B#
6 ð32þÞ are degenerate because of the heavy quark spin

symmetry in this effective theory. In the coupled channel
calculation of the !cN & "cN & "#

cN system, we will use
the empirical values of the masses of !c, "c and "#

c and

TABLE I. The S-wave !cN states and the channels which couple to them.

Channels 1 2 3 4 5 6 7

JP ¼ 0þ !cNð1S0Þ "cNð1S0Þ "#
cNð5D0Þ

JP ¼ 1þ !cNð3S1Þ "cNð3S1Þ "#
cNð3S1Þ !cNð3D1Þ "cNð3D1Þ "#

cNð3D1Þ "#
cNð5D1Þ
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Results	  （	  J	  =	  1	  Case	  ）	
OPEP　　　　　　　　　	  	  	  	  	  	  OBEP	  (	  scaled	  cutoff	  )	  

symmetry, chiral symmetry, and hidden local symmetry.
Solving the Schrödinger equation for the coupled !cN !
"cN !""

cN systems for J ¼ 0 and J ¼ 1 states, we obtain
molecular bound states in both channels with appropriate
cutoffs. By analyzing all the binding energies and the
corresponding RMS radii, one observes several features:
(1) the spin-singlet state and the spin-triplet state have
slightly different binding energies for a given radius and
the reasonable binding energy is at most tens of MeV;
(2) the OPEP model and the OBEP model are somehow
equivalent in getting the consistent binding energy and the
corresponding RMS radius; (3) the coupled channel effects
are important both in the OPEP model and in the OBEP
model. To see these features, we make a comparison,
which is presented in Table XIV.

The deuteron, the well-known pn bound state with the
binding energy of 2.2 MeV, is also a spin-triplet state. The
D-wave contribution is very important and the correspond-
ing probability of the state at D-wave is around 4$ 6%. If
the D-wave probability of !cN were in this range, the
binding energy would be around l0 MeV in the OPEP
model from Table IX.

For the !cN single channel, only ! and ! exchanges
are allowed. There are no tensor force nor spin-dependent
parts in the potentials. As a result, the coupling between
the 3S1 and 3D1 states vanishes and one has V1S0

¼ V3S1
for the potentials. That is, the possible JP ¼ 0þ and

JP ¼ 1þ molecular states are degenerate in the heavy
quark limit. After considering the contributions from the
channels "cN and ""

cN, the tensor force and the spin-
dependent interactions enter. However, full coupled chan-
nel calculation does not give significantly different results
for the two spin states. That is, the two spin states are still
qualitatively degenerate. Maybe this feature indicates that
the coupled channel effects do not change the degeneracy
in the dominant channel. If this is the case, one expects
that the states with different angular momenta of a two-
body system like !c"c, !c!, !c", or !c# would have
similar binding solutions. They may be tested in the
future investigations of bound state problems and scatter-
ing problems.
The results are sensitive to the phenomenological cutoff

parameter, which is a general feature for the molecule
study in the meson exchange models at the hadron level.
In effect, this parameter encodes the size effects of the
hadrons and the information of the short-range interaction.
This feature indicates that the binding energy is sensitive to
the short-range interaction. At this moment, we cannot
determine the values of the cutoff. So we treat it as a free
parameter and discuss the results for a reasonable range of
the cutoff. If the cutoff parameter around 1:2$ 1:4 GeV in
the OPEP model, 0:8$ 1:0 GeV in the OBEP model
(common cutoff case), or 1:2$ 1:7 in the OBEP model
(scaled cutoff case) is reasonable, then one obtains
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FIG. 9 (color online). The sensitivity of the binding energy (B.E.) to the cutoff !" in the OPEP model for the JP ¼ 0þ and JP ¼ 1þ

cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no S!D mixing when one
considers only the !cN channel.
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Summery	  &	  Conclusion	

●　J	  =	  0,	  J	  =	  1	  どちらの場合でも、ΛcN	  単独のチャネル	  
　では束縛解が得られなかったがΛcN、ΣcN、Σ*cN	  混合	  
　チャネルの効果を考慮すれば	  reasonable	  な	  cutoff	  	  
　の範囲で束縛解が得られた。	  

and thus one again gets the binding solutions in Table IV,
i.e. the binding solution for the single channel!cN is spin-
independent. For the "cN and "!

cN channels, we present
their results in Table X.

After considering the coupled channel effects, we get the
results in Table XI, which are consistent with the OPEP
model calculation. An example of the resulting wave func-
tions with !com ¼ 0:9 GeV is given in Fig. 3(e).

2. Scaled cutoffs

We present the results without channel coupling in
Table XII and those with channel coupling in Table XIII.
If one compares Table XIII with Table XI, it is easy to see

that the two parameterizations of the cutoffs may give
consistent binding energies and radii. The wave functions
for ! ¼ 1:5 in the coupled channel case are given in
Fig. 3(f). As in the corresponding spin-singlet case, the
wave functions also have nodes, which are due to the
transition potentials. In fact, the nodes have appeared in
the D wave of the "!

cN channel (without the channel
coupling to the !cN and "cN).

VII. SUMMARYAND CONCLUSIONS

In studying the possible molecular bound states contain-
ing !cN, we have constructed a potential model based
on the effective Lagrangian reflecting the heavy quark

TABLE XII. Binding solutions for the individual channels in the JP ¼ 1þ and scaled-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. The probabilities correspond to 3S1 and

3D1 for the "cN system, and 3S1,
3D1, and

5D1 for the "!
cN system, respectively. We also present the total D-wave probability for "!

cN.

! 0.9 1.1 1.3 1.5 1.7 1.9

B:E:ðJ ¼ 1Þ (MeV) 0.39 6.37 19.52 39.26 64.90 95.77
"cN

ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 6.6 2.0 1.3 1.0 0.8 0.7

Prob. (%) (99:8=0:2) (99:7=0:3) (99:8=0:2) (99:8=0:2) (99:9=0:1) (99:9=0:1)

! 3.2 3.3 3.4 3.5 3.6 3.7

B:E:ðJ ¼ 1Þ (MeV) 1.39 3.13 6.39 12.41 22.74 38.38
"!

cN
ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 3.4 2.4 1.7 1.3 0.9 0.7

Prob. (%) (98:0=0:1=1:9) (96:4=0:1=3:5) (92:8=0:2=7:0) (85:3=0:2=14:5) (73:7=0:2=26:1) (61:1=0:3=38:7)
D-wave prob. 2.0% 3.6% 7.2% 14.7% 26.3% 39.0%

TABLE XIII. Binding solutions for the JP ¼ 1þ and scaled-cutoff case with channel coupling in the OBEP model. The binding
energies (B.E.) are given relative to the !cN threshold. The probabilities correspond to !cNð3S1Þ, "cNð3S1Þ, "!

cNð3S1Þ, !cNð3D1Þ,
"cNð3D1Þ, "!

cNð3D1Þ, and "!
cNð5D1Þ, respectively. We also present the total D-wave probability.

! 1.3 1.5 1.7 1.9 2.1

B:E:ðJ ¼ 1Þ (MeV) 0.66 6.63 19.82 40.98 70.27ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 5.1 1.9 1.2 0.9 0.7

Prob. (%) (99:3=0:2=0:5=
0:0=0:0=0:0=0:0)

(96:7=1:0=2:2=
0:0=0:0=0:0=0:1)

(92:5=2:8=4:5=
0:0=0:1=0:0=0:1)

(86:9=5:8=6:8=
0:0=0:2=0:0=0:3)

(80:5=10:2=8:6=
0:0=0:3=0:0=0:4)

D-wave prob. 0.0 0.1% 0.2% 0.5% 0.7%

TABLE XIV. Comparison between different cases. The meaning of the numbers are [cutoff !
in GeV or dimensionless !: binding energy in MeV, RMS radius in fm].

JP !cN (S-wave) !cN &"cN &"!
cN

0þ OPEP (!) ' [1.367: 13.60, 1.38]
OBEP (!) [0.900: 1.24, 3.86] [0.900: 13.60, 1.46]
OBEP (!) [1.533: 0.25, 8.13] [1.533: 13.57, 1.37]

1þ OPEP (!) ' [1.353: 13.54, 1.40]
OBEP (!) [0.900: 1.24, 3.86] [0.900: 13.49, 1.47]
OBEP (!) [1.618: 0.80, 4.72] [1.618: 13.47, 1.39]

!cN BOUND STATES REVISITED PHYSICAL REVIEW D 85, 014015 (2012)

014015-17

[	  Λ	  or	  α:	  束縛エネルギ	  MeV,	  RMS半径 fm	  ]	



修論でやりたいこと	

この論文ではハドロンレベルでの相互作用を考えた	  
　→　カットオフの束縛状態に与える影響が大きい	  

手法	  :	  　　　HAL	  QCD	  Method　　+　　Heavy	  quark	  acSon	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  HAL	  CollaboraSon	  ;	  PTEP	  (2012)	  　　　　　S.Aoki	  ;	  PTP-‐109	  (2003)	

QCDの第一原理から（クオークレベルで）	  
ポテンシャルを作るべき。	  





One	  Boson	  Exchange	  PotenSal	  (OBEP)	

＜common	  cutoff	  の場合＞	  
	  
●　σ	  メソンの交換に依る寄与で、ΛcN、ΣcN	  単独の	  
　チャネルでも	  reasonable	  な束縛解が得られた。	  
	  
●　ΛcN、ΣcN、Σ*cN	  混合系の束縛解としては、	  
　cutoff	  の違いだけで、Binding	  Energy	  や	  RMS半径は	  
　OPEP	  でのものと同じような結果となった。	  



One	  Boson	  Exchange	  PotenSal	  (OBEP)	

＜scaled	  cutoff	  の場合＞	  
	  
●　common	  cutoff	  の場合とほぼ同じような	  
　結果となった。	  
	  
●　Σ*cN	  の存在確率が	  common	  cutoff	  の場合に	  
　比べ低くなったのは、波動関数や遷移ポテンシャル	  
　にノードが生じたため。	  



ポテンシャルの δ	  –	  term	  の議論	

　この論文では、ポテンシャルのδ	  –	  term	  は	  
除いている。	  
　（近距離での	  Bound	  は無視したため）	  
	  
	  →　δ	  –	  term	  を加えると、より強い束縛が	  
	   	   	  得られるが、cutoff	  の依存性もより	  
	   	   	  強くなってしまう。	



One	  Boson	  Exchange	  PotenSal	  (OBEP)	

　Σ*cN	  の存在確率が低くなったのは、波動関数や	  
遷移ポテンシャルにノードが生じたため。	  

B:E: ¼ 17:85 MeV. However, the binding energy is more
sensitive to the cutoff parameter. We get B:E: ¼
111:53 MeV in the 3-channel calculation with a little
larger cutoff !! ¼ 0:9 GeV.

B. OBEP model

After we consider the contributions from the scalar
meson " and the vector mesons # and !, the binding
energies will change accordingly. However, we have

TABLE III. Binding solutions for the JP ¼ 0þ case with channel coupling in the OPEP model. The binding energies (B.E.) are given
relative to the !cN threshold. The probabilities correspond to !cNð1S0Þ, "cNð1S0Þ, and "%

cNð5D0Þ, respectively.

!! (GeV) 1.2 1.3 1.4 1.5 1.6 1.7

B:E:ðJ ¼ 0Þ (MeV) 0.64 6.16 18.51 38.88 68.29 107.64ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 5.2 1.9 1.2 0.9 0.8 0.7

Prob. (%) (98:2=0:6=1:2) (94:0=2:3=3:7) (89:3=4:6=6:1) (84:5=7:2=8:3) (80:1=9:8=10:1) (76:1=12:2=11:7)

FIG. 3 (color online). Thewave functionsui (i ¼ 1; 2; . . . ; 7) of different channels. Thefirst three diagrams correspond to the results for
the spin-singlet state: (a) OPEP case with the cutoff !! ¼ 1:3 GeV; (b) OBEP case with the cutoff !! ¼ !" ¼ !vec ¼ 0:9 GeV;
(c) OBEP casewith the parameter$ ¼ 1:4. The last three diagrams correspond to the results for the spin-triplet state: (d) OPEP casewith
the cutoff !! ¼ 1:3 GeV; (e) OBEP case with the cutoff !! ¼ !" ¼ !vec ¼ 0:9 GeV; (f) OBEP case with the parameter $ ¼ 1:5.
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Now we consider the coupled channel effects. Table V
lists the results. The binding energy and the radius are more
sensitive to the change of the cutoff than the OPEP case.
For the same binding energy as the OPEP case, the
necessary cutoff in OBEP is smaller. These features are
attributed to the more attractive potentials. In order to
have the molecular condition, rRMS > 0:7 fm, satisfied,
the binding energy should be no more than tens of
MeV, as in the OPEP model calculation. As an example,
we plot the wave functions of different channels with
!com ¼ 0:9 GeV in Fig. 3(b).

Let us go back to the single channel !cN and the
potentials. Because of the isospin conservation, direct !
and " exchanges are forbidden. The spin-dependent
! exchange interaction also vanishes. The resulting

spin-independent repulsive potential has been shown in
Fig. 2. If one includes the #-functional terms in the model
potentials, the! exchange interaction is strongly attractive
at short distance, which results in much deeper bound
states and enhances the sensitivity of the results to the
cutoff parameter. In addition, the coupled channel calcu-
lation with the #-functional terms results in unreasonable
molecular bound state solutions. Thus we omit the
#-functional terms in the present model construction.

2. Scaled cutoffs

Another possible choice of the cutoff parameters is to
choose different values for the pseudoscalar, scalar, and
vector mesons. To reduce the number of parameters, we

FIG. 4 (color online). The potentials of different channels for the JP ¼ 0þ case with $ ¼ 1:4.
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some freedoms to choose: the three cutoff parameters !!,
!", and !vec. In the nucleon-nucleon case, one may de-
termine the unknown model parameters by fitting the
abundant experimental data. Since there is no available
data, here we discuss the results with two approaches for
the parametrization of the cutoffs.

1. Common cutoff

The simplest assumption is that we use the same
cutoff for different mesons !! ¼ !" ¼ !vec ¼ !com.
This cutoff should be at least larger than the exchanged
meson masses. As in the former subsection, we first
consider the case without coupled channel effects. In

Table IV, we show the binding energy and the corre-
sponding RMS radius for individual channels relative to
each threshold, where solutions are found only in the
S-wave channels. Numerically, one may obtain binding
solutions for the D-wave channel with a larger cutoff,
but the solutions are not reasonable. For example, we get
B:E: ¼ 1:99 MeV and rRMS ¼ 0:6 fm with !com ¼
1:78 GeV. The radius is so small for a shallow
D-wave bound state. Because of the attractive " meson,
!cN can be bound now. The contribution from the
repulsive ! is not large in this parametrization of cut-
offs. For the "cN, the cancellation between the # and !
contributions is large and the attraction comes mainly
from the scalar potential.

TABLE IV. Binding solutions for the individual channels in the JP ¼ 0þ and common-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. ‘‘#’’ indicates that there is no binding solution. The units for the binding
energy and RMS radius are MeV and fm, respectively.

!com (GeV) 0.9 1.0 1.1 1.2 1.3 1.4

!cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffi
hr2i

p
] [1.24, 3.8] [11.09, 1.5] [27.07, 1.1] [46.66, 0.9] [68.45, 0.8] [91.58, 0.7]

"cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffi
hr2i

p
] # [2.22, 2.8] [14.22, 1.3] [31.56, 1.0] [52.08, 0.8] [74.62, 0.7]

TABLE V. Binding solutions for the JP ¼ 0þ and common-cutoff case with channel coupling
in the OBEP model. The binding energies (B.E.) are given relative to the !cN threshold. The
probabilities correspond to !cNð1S0Þ, "cNð1S0Þ, and "&

cNð5D0Þ, respectively.

!com (GeV) 0.8 0.9 1.0 1.1

B:E:ðJ ¼ 0Þ (MeV) 0.12 13.60 52.50 123.14ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 11.2 1.5 0.9 0.7

Prob. (%) (99:7=0:1=0:2) (96:0=2:0=2:0) (87:3=9:2=3:5) (75:8=19:7=4:5)

TABLE VI. Binding solutions for the individual channels in the JP ¼ 0þ and scaled-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. ‘‘#’’ indicates that there is no binding solution. The units for the binding
energy and RMS radius are MeV and fm, respectively.

$ 1.5 2.0 2.5 3.0 3.5 4.0

!cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffi
hr2i

p
] [0.12, 11.6] [6.54, 1.9] [20.30, 1.2] [38.86, 0.9] [60.56, 0.8] [84.29, 0.7]

"cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffi
hr2i

p
] # [2.33, 2.7] [14.07, 1.3] [31.64, 1.0] [52.96, 0.8] [74.75, 0.7]

TABLE VII. Binding solutions for the JP ¼ 0þ and scaled-cutoff case with channel coupling in the OBEP model. The binding
energies (B.E.) are given relative to the !cN threshold. The probabilities correspond to !cNð1S0Þ, "cNð1S0Þ, and "&

cNð5D0Þ,
respectively.

$ 1.2 1.4 1.6 1.8 2.0

B:E:ðJ ¼ 0Þ (MeV) 0.11 5.26 19.37 43.05 75.65ffiffiffiffiffiffiffiffi
hr2i

p
(fm) 11.7 2.0 1.2 0.9 0.7

Prob. (%) (99:6=0:4=0:0) (95:8=4:1=0:1) (89:7=10:1=0:2) (76:9=22:5=0:6) (77:0=22:5=0:5)
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