Axial resonances $a_1(1260)$, $b_1(1235)$ and their decay from the lattice

C. B. Lang, Luka Leskovec, Daniel Mohler, and Sasa Prelovsek

JHEP 04 (2014) 162; arXiv:1401.2088 [hep-lat]

$a_1(1260)$ and $b_1(1235)$

 $a_1(1260)^{[k]}$

 $I^{G}(J^{PC}) = 1^{-}(1^{+})$

Mass $m = 1230 \pm 40 \text{ MeV}$ [/] Full width $\Gamma = 250 \text{ to } 600 \text{ MeV}$

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$(\rho\pi)_{S-wave}$	seen	353
$(ho\pi)_{D-wave}$	seen	353
$(ho(1450)\pi)_{S-wave}$	seen	†
$(ho(1450)\pi)_{D-wave}$	seen	†
$\sigma\pi$	seen	_
$f_0(980)\pi$	not seen	179
$f_0(1370)\pi$	seen	†
$f_2(1270)\pi$	seen	†
$K\overline{K}^*(892)+$ c.c.	seen	†
$\pi\gamma$	seen	608

Full wid

 $b_1(1235)$

 $I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

<i>b</i> ₁ (1235) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$\omega \pi$ [D/S amplitude ratio = 0.2]	dominant 77 + 0.0271		348

axial vector meson $\gamma_i \gamma_5$

axial vector(?) meson $\gamma_i \gamma_4 \gamma_5$

Calculation of masses and decay widths from S-wave scattering phase

Previous work: Γ_{b_1} from 3-pt function by UKQCD PRD65:094605(2006) No previous calculation of Γ_{a_1}

Calculation of mass and decay width

$$a_1 \to \pi \rho$$
 in S-wave $(l=0)$

Scattering phase shift $\delta(p)$ of $\pi(p)\rho(-p)$

$$\delta(p) = \pi/2$$
 @ $\sqrt{s} = m_{a_1} = m^{\text{res}}$

maximum of scattering cross section $\propto \sin^2 \delta(p)$

$$s = (E_{\pi}(p) + E_{\rho}(p))^2, E_H(p) = \sqrt{m_H^2 + p^2}$$

The Breit-Wigner parametrization

$$\frac{-\sqrt{s}\,\Gamma(s)}{s - (m^{\text{res}})^2 + i\sqrt{s}\,\Gamma(s)} = \frac{1}{\cot\delta - i} \;, \; \Gamma_{a_1}(s) \equiv g_{a_1\rho\pi}^2 \; \frac{p}{s}$$

Analyze
$$\frac{p}{\sqrt{s}}\cot\delta = \frac{m_{a_1}^2 - s}{g_{a_1\rho\pi}^2}$$
 in function of s

1) Ihs = 0
$$\rightarrow$$
 m_{a_1} , 2) slope of $s \rightarrow g_{a_1\rho\pi}$, 3) $a_0 \otimes \sqrt{s} = m_\pi + m_\rho$
$$1/a_0 \equiv p \cot \delta|_{p \rightarrow 0}$$

Calculation of scattering phase shift

Lüscher's finite volume formula

$$\tan \delta(p) = \frac{\sqrt{\pi} \ p \ L}{2 \ \mathcal{Z}_{00} \left(1; \left(\frac{pL}{2\pi}\right)^2\right)} \quad \text{with } \mathcal{Z}_{00}(k; q^2) = \sum_{\vec{n}} \frac{1}{\sqrt{4\pi}} \frac{1}{\left(\vec{n}^2 - q^2\right)^k}$$

p from two-particle energy, e.g.) $E_{\pi\rho} = \sqrt{m_{\pi}^2 + p^2} + \sqrt{m_{\rho}^2 + p^2}$

Evaluation of two-particle energy

Correlation function matrix with several operators

$$C_{jl}(t) = \frac{1}{N_T} \sum_{t_i} \langle \mathcal{O}_j^{\dagger}(t_i + t) | \mathcal{O}_l(t_i) \rangle = \sum_n Z_{jn} Z_{ln}^* e^{-E_n t}$$

Generalized eigenvalue problem

$$C(t) v_n(t) = \lambda_n(t) C(t_0) v_n(t)$$
 , $\lambda_n(t) = e^{-E_n(t-t_0)}$

Operators for correlation function matrix

$$a_1 I(J^{PC}) = 1(1^{++})$$

$$\mathcal{O}_{1}^{\overline{q}q} = \sum_{\mathbf{x}} \overline{u}(x) \, \gamma_{i} \, \gamma_{5} \, d(x) ,
\mathcal{O}_{2}^{\overline{q}q} = \sum_{\mathbf{x},j} \overline{u}(x) \overleftarrow{\nabla}_{j} \, \gamma_{i} \, \gamma_{5} \, \overrightarrow{\nabla}_{j} \, d(x) ,
\mathcal{O}_{3}^{\overline{q}q} = \sum_{\mathbf{x},j,l} \epsilon_{ijl} \, \overline{u}(x) \, \gamma_{j} \, \frac{1}{2} [\overrightarrow{\nabla}_{l} - \overleftarrow{\nabla}_{l}] \, d(x) ,
\mathcal{O}^{\rho\pi} = \frac{1}{\sqrt{2}} [\pi^{0}(\mathbf{0})\rho^{-}(\mathbf{0}) - \rho^{0}(\mathbf{0})\pi^{-}(\mathbf{0})]
= \frac{1}{2} \left(\sum_{\mathbf{x}_{1}} [\overline{u}(x_{1})\gamma_{5}u(x_{1}) - \overline{d}(x_{1})\gamma_{5}d(x_{1})] \sum_{\mathbf{x}_{2}} \overline{u}(x_{2})\gamma_{i}d(x_{2}) \right) ,
- \sum_{\mathbf{x}_{1}} [\overline{u}(x_{1})\gamma_{i}u(x_{1}) - \overline{d}(x_{1})\gamma_{i}d(x_{1})] \sum_{\mathbf{x}_{2}} \overline{u}(x_{2})\gamma_{5}d(x_{2}) \right) ,$$

$$b_1 I(J^{PC}) = 1(1^{+-})$$

$$\mathcal{O}_{1}^{\overline{q}q} = \sum_{\mathbf{x}} \overline{u}(x) \, \gamma_{i} \, \gamma_{t} \, \gamma_{5} \, d(x) ,
\mathcal{O}_{2}^{\overline{q}q} = \sum_{\mathbf{x},j} \overline{u}(x) \overleftarrow{\nabla}_{j} \, \gamma_{i} \, \gamma_{t} \, \gamma_{5} \, \overrightarrow{\nabla}_{j} \, d(x) ,
\mathcal{O}_{3}^{\overline{q}q} = \sum_{\mathbf{x}} \overline{u}(x) \, \gamma_{5} \, \frac{1}{2} [\overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i}] \, d(x) ,
\mathcal{O}_{4}^{\overline{q}q} = \sum_{\mathbf{x}} \overline{u}(x) \, \gamma_{t} \, \gamma_{5} \, \frac{1}{2} [\overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i}] \, d(x) ,
\mathcal{O}_{4}^{\overline{q}q} = \sum_{\mathbf{x}} \overline{u}(x) \, \gamma_{t} \, \gamma_{5} \, \frac{1}{2} [\overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i}] \, d(x) ,
\mathcal{O}^{\omega\pi} = \omega(\mathbf{0})\pi^{-}(\mathbf{0}) = \frac{1}{\sqrt{2}} \sum_{\mathbf{x}_{1}} [\overline{u}(x_{1})\gamma_{i}u(x_{1}) + \overline{d}(x_{1})\gamma_{i}d(x_{1})] \sum_{\mathbf{x}_{2}} \overline{u}(x_{2})\gamma_{5}d(x_{2}) ,$$

ho and ω are stable? in $a_1 o ho \pi$ and $b_1 o \omega \pi$

Consider only center-of-mass frame c.f.) $a_1 \rightarrow \rho(p)\pi(-p)$

$m_{\pi}a$	$m_{ ho}a$	$m_{\omega}a$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0.1673(16)	0.5107(40)	0.514(15)	$m_ ho > 2m_\pi$ and $m_\omega \sim 3m_\pi$

$$ho o \pi\pi$$
 in P-wave $(l=1) o$ prohibited $\pi(0)\pi(0)$ decay $La=16$ $(L\sim 2{\rm fm}) o$ lowest $p_{\rm low}=2\pi/La=0.3927$ $m_{
ho} < 2E_{\pi}(p_{\rm low}) o \rho(p=0)$ is stable However, $E_{
ho}(p_{\rm low}) \sim m_{\pi} + E_{\pi}(p_{\rm low}) o \rho(p_{\rm low})$ might decay PRD:84:054503(2011)

Higher states than $\rho(p_{low})\pi(-p_{low})$ are not considered

$$\omega \to \pi\pi\pi$$
 in P-wave $(l=1) \to \text{prohibited } \pi(0)\pi(0)\pi(0)$ decay $m_\omega < 2E_\pi(p_{\text{low}}) + m_\pi \to \omega(p=0)$ is stable Higher states than $\omega(p_{\text{low}})\pi(-p_{\text{low}})$ are not considered

 $m_{\pi} = 266 {\rm MeV}$

Result of effective energy

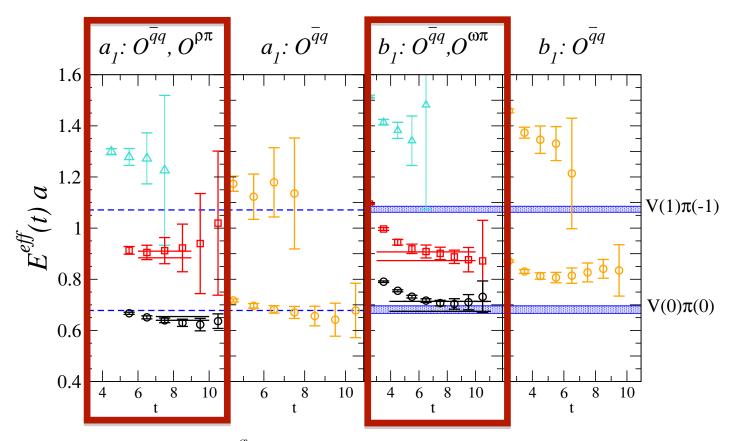
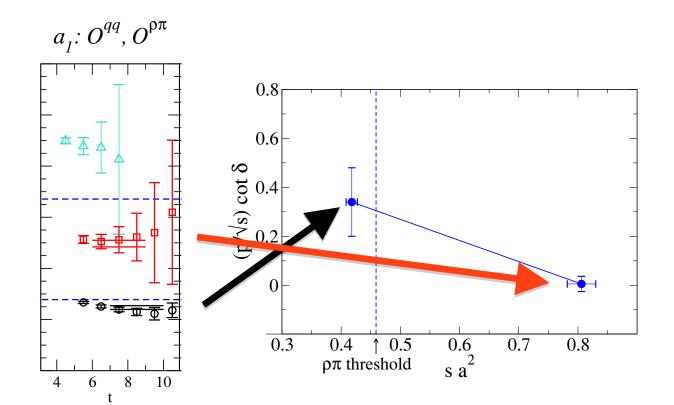


Figure 1. Effective energies $E_n^{\text{eff}}a$ in the a_1 and b_1 channels, that correspond to the energy levels E_na in the plateau region. The horizontal lines indicate the $m_V + m_\pi$ threshold and the energy of a non-interacting $V(1)\pi(-1)$ state, where $V = \rho$ for a_1 and $V = \omega$ for b_1 . We compare the results when $\mathcal{O}^{V\pi}$ is included in or excluded from the interpolator basis.

Result of a_1

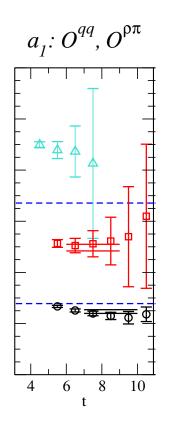


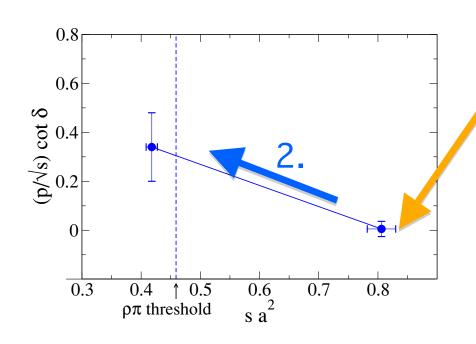
- 1. $m_{a_1} \otimes y = 0$
- 2. $g_{a_1\rho\pi}$ from slope
- 3. $a_0 \otimes \rho \pi$ thershold $(\sqrt{s} = m_\rho + m_\pi)$

resonance	$a_1(1260)$		
quantity	$m_{a_1}^{ m res}$	$g_{a_1\rho\pi}$	$a_{l=0}^{ ho\pi}$
	[GeV]	[GeV]	[fm]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)
exp	1.230(40)	1.35(30)	-

PDG: $\Gamma_{a_1} = 250$ to $600 \text{MeV} \rightarrow 425(175) \text{MeV}$

Result of a_1



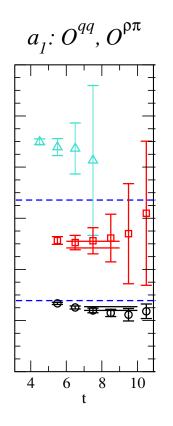


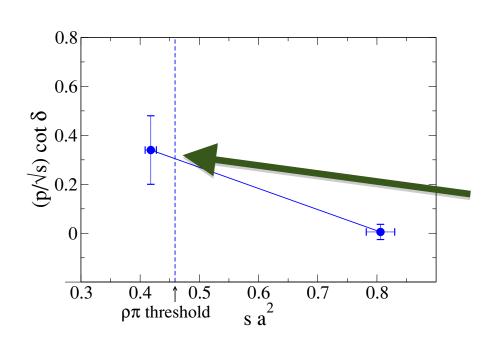
- 1. $m_{a_1} \otimes y = 0$
- 2. $g_{a_1\rho\pi}$ from slope
- 3. $a_0 \otimes \rho \pi$ thershold $(\sqrt{s} = m_\rho + m_\pi)$

resonance	$a_1(1260)$		
quantity	$m_{a_1}^{ m res}$	$g_{a_1 ho\pi}$	$a_{l=0}^{\rho\pi}$
	[GeV]	[GeV]	[fm]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)
exp	1.230(40)	1.35(30)	-

PDG: $\Gamma_{a_1} = 250$ to $600 \text{MeV} \rightarrow 425(175) \text{MeV}$

Result of a_1



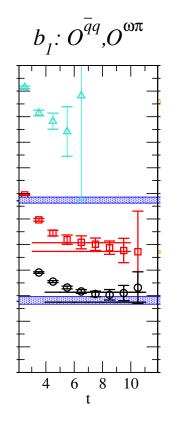


- 1. $m_{a_1} \otimes y = 0$
- 2. $g_{a_1\rho\pi}$ from slope
- 3. $a_0 \otimes \rho \pi$ thershold $(\sqrt{s} = m_\rho + m_\pi)$

resonance	$a_1(1260)$		
quantity	$m_{a_1}^{ m res}$	$g_{a_1\rho\pi}$	$a_{l=0}^{\rho\pi}$
	[GeV]	[GeV]	[fm]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)
exp	1.230(40)	1.35(30)	-

PDG: $\Gamma_{a_1} = 250$ to $600 \text{MeV} \rightarrow 425(175) \text{MeV}$

Result of b_1



n	t_0	interp.	fit range	$\frac{\chi^2}{\text{d.o.f}}$	Ea	$E = \sqrt{s}$ [GeV]	pa	δ [°]	$\frac{p\cot(\delta)}{\sqrt{s}}$
1	3	$\mathcal{O}_{1,2,4}^{\overline{q}q},\mathcal{O}^{\omega\pi}$	4-11	0.12	0.694(19)	1.105(31)	0.057(45)	-3.0(6.3)	-1.6(2.2)
2	2	$\mathcal{O}_{1,3}^{\overline{q}q},\mathcal{O}^{\omega\pi}$	3-10	0.049	0.890(17)	1.418(27)	0.264(13)	93.5(7.5)	-0.018(38)

 $E_1 \sim m_\omega + m_\pi$ not good result

$$m_{b_1}^{\mathrm{res}} = \left[E_2^2 + (g_{b_1\omega\pi}^{\mathrm{exp}})^2 \left(\frac{p\cot\delta}{\sqrt{s}} \right)^2 \right]^{1/2} = 1.414(36)(^{+0}_{-83}) \; \mathrm{GeV} \; ,$$
 $pprox E_2 = 1.418(27) \; \mathrm{GeV} \; \mathrm{due} \; \mathrm{to} \; \delta \sim \pi/2$

$$g_{b_1\omega\pi}^{\text{exp}} = 0.787(25) \text{GeV}$$

Summary

Calculation at $m_\pi = 266 \text{MeV}$ on $L \sim 2 \text{fm}$

resonance	$a_1(1260)$			$b_1(1235)$	
quantity	$m_{a_1}^{ m res}$	$g_{a_1\rho\pi}$	$a_{l=0}^{ ho\pi}$	$m_{b_1}^{ m res}$	$g_{b_1\omega\pi}$
	[GeV]	[GeV]	[fm]	[GeV]	[GeV]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)	$1.414(36)(^{+0}_{-83})$	input
exp	1.230(40)	1.35(30)	-	1.2295(32)	0.787(25)

First calculations for m_{a_1} and m_{b_1} with two-particle states

Possible systematic errors

- 1. Small volume
- 2. Effects of ρ and ω decays
- 3. Chiral extrapolation to physical m_π