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a1(1260) and b1(1235)
Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

a1(1260)a1(1260)a1(1260)a1(1260) [k] IG (JPC ) = 1−(1 + +)

Mass m = 1230 ± 40 MeV [l]

Full width Γ = 250 to 600 MeV

a1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODESa1(1260) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

(ρπ)S−wave seen 353

(ρπ)D−wave seen 353

(ρ(1450)π )S−wave seen †

(ρ(1450)π )D−wave seen †

σπ seen –
f0(980)π not seen 179

f0(1370)π seen †

f2(1270)π seen †

K K∗(892)+ c.c. seen †

πγ seen 608

f2(1270)f2(1270)f2(1270)f2(1270) IG (JPC ) = 0+(2 + +)

Mass m = 1275.1 ± 1.2 MeV (S = 1.1)
Full width Γ = 185.1+2.9

−2.4 MeV (S = 1.5)

Scale factor/ p

f2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODESf2(1270) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ππ (84.8 +2.4
−1.2 ) % S=1.2 623

π+π−2π0 ( 7.1 +1.4
−2.7 ) % S=1.3 562

K K ( 4.6 ±0.4 ) % S=2.8 403

2π+2π− ( 2.8 ±0.4 ) % S=1.2 559

ηη ( 4.0 ±0.8 ) × 10−3 S=2.1 326

4π0 ( 3.0 ±1.0 ) × 10−3 564

γγ ( 1.64±0.19) × 10−5 S=1.9 638

ηππ < 8 × 10−3 CL=95% 477

K0K−π++ c.c. < 3.4 × 10−3 CL=95% 293

e+ e− < 6 × 10−10 CL=90% 638
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f0(980)γ ( 3.22 ±0.19 ) × 10−4 S=1.1 29

π0π0γ ( 1.13 ±0.06 ) × 10−4 492

π+π−π+π− ( 4.0 +2.8
−2.2 ) × 10−6 410

π+π+π−π−π0 < 4.6 × 10−6 CL=90% 342

π0 e+ e− ( 1.12 ±0.28 ) × 10−5 501

π0ηγ ( 7.27 ±0.30 ) × 10−5 S=1.5 346

a0(980)γ ( 7.6 ±0.6 ) × 10−5 39

K0K 0γ < 1.9 × 10−8 CL=90% 110

η′(958)γ ( 6.25 ±0.21 ) × 10−5 60

ηπ0π0γ < 2 × 10−5 CL=90% 293

µ+µ−γ ( 1.4 ±0.5 ) × 10−5 499

ργγ < 1.2 × 10−4 CL=90% 215

ηπ+π− < 1.8 × 10−5 CL=90% 288

ηµ+µ− < 9.4 × 10−6 CL=90% 321

Lepton Faminly number (LF) violating modesLepton Faminly number (LF) violating modesLepton Faminly number (LF) violating modesLepton Faminly number (LF) violating modes

e±µ∓ LF < 2 × 10−6 CL=90% 504

h1(1170)h1(1170)h1(1170)h1(1170) IG (JPC ) = 0−(1 + −)

Mass m = 1170 ± 20 MeV
Full width Γ = 360 ± 40 MeV

h1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODESh1(1170) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ρπ seen 308

b1(1235)b1(1235)b1(1235)b1(1235) IG (JPC ) = 1+(1 + −)

Mass m = 1229.5 ± 3.2 MeV (S = 1.6)
Full width Γ = 142 ± 9 MeV (S = 1.2)

p

b1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODESb1(1235) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ωπ dominant 348
[D/S amplitude ratio = 0.277 ± 0.027]

π±γ ( 1.6±0.4) × 10−3 607

ηρ seen †

π+π+π−π0 < 50 % 84% 535

K∗(892)±K∓ seen †

(KK )±π0 < 8 % 90% 248

K0
S K0

Lπ± < 6 % 90% 235

K0
S K0

S π± < 2 % 90% 235

φπ < 1.5 % 84% 147
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Calculation of masses and decay widths from S-wave scattering phase

Previous work: Γb1 from 3-pt function by UKQCD PRD65:094605(2006)

No previous calculation of Γa1
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Calculation of mass and decay width

a1 → πρ in S-wave (l = 0)

Scattering phase shift δ(p) of π(p)ρ(−p)
δ(p) = π/2 @

√
s = ma1 = mres

maximum of scattering cross section ∝ sin2 δ(p)
s = (Eπ(p) + Eρ(p))2, EH(p) =

√
m2

H + p2

J
H
E
P
0
4
(
2
0
1
4
)
1
6
2

near the mV + mπ threshold, as expected, and its dominant component is the V (0)π(0)

two-particle interpolator. The second level (squares) arises due to the presence of a1(1260)

or b1(1235) resonances in these channels. The next level would be expected close to

V (1)π(−1), but we do not expect to see it since the corresponding interpolator is not

implemented in eqs. (5.1) and (5.2).

The third levels in figure 1 in both channels are noisy and unreliable, so we refrain

from presenting quantitative results. Both levels correspond to masses close to 2GeV or

above, so we see no indication for the possible existence of a1(1420), which was introduced

to explain recent preliminary data by COMPASS in a1 → f0π channel [41]. The third level

in b1 channel might be related to the observed b1(1960).

6 Resonance parameters for a1(1260)

The position of the 1++ ground state below mρ +mπ threshold indicates that the energy

of ρ and π is smaller if they are in the box together than if they are in the box alone. The

negative energy shift is consistent with an attractive interaction in the resonant a1 channel.

We proceed to extract the ρπ phase shifts and the resonance parameters of a1(1260).

Outside the interaction region the mesons are considered as free particles and the energy

levels E are related to the momenta p of the two-particle state ρ(p)π(−p) through

E =
√

m2
π + p2 +

√

m2
ρ + p2 , (6.1)

where we employ the continuum dispersion relation which applies well for the small

momenta p < 2π/L of interest [3]. The s-wave phase shifts δ for ρπ scattering at these

values of p are given by the well known Lüscher relation [15]

tan δ(p) =

√
π p L

2 Z00

(

1;
(

pL
2π

)2
) , (6.2)

which applies above and below threshold for elastic scattering. The d-wave to s-wave

amplitude ratio for a1 → ρπ is −0.062±0.02 experimentally [8], therefore we safely neglect

the d-wave in eq. (6.2). The relation (6.2) also neglects the contribution of the f0π channel,

which is known to be subdominant experimentally; this simplifies one equation with

several unknowns to the equation (6.2) with one unknown δ for ρπ scattering. The KK̄∗

intermediate state can not appear in our Nf = 2 simulation with chosen interpolators,

therefore the corresponding scattering parameters do not feature in the Lüscher’s relation.

The ground state below the mρ + mπ threshold renders imaginary p and real p cot δ

in table 3. The first excited level gives δ ≈ 90◦, thus it is located close to the a1(1260)

resonance mass and ma1 ≈ E2 holds.

The Breit-Wigner parametrization

−
√
sΓ(s)

s− (mres)2 + i
√
sΓ(s)

=
1

cot δ − i
, Γa1(s) ≡ g2a1ρπ

p

s
, (6.3)
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Analyze

p
√
s
cot δ =

m2
a1 − s

g2a1ρπ
in function of s

1) lhs = 0 → ma1, 2) slope of s → ga1ρπ, 3) a0 @
√
s = mπ +mρ

1/a0 ≡ p cot δ|p→0
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Calculation of scattering phase shift

Lüscher’s finite volume formula
J
H
E
P
0
4
(
2
0
1
4
)
1
6
2

near the mV + mπ threshold, as expected, and its dominant component is the V (0)π(0)

two-particle interpolator. The second level (squares) arises due to the presence of a1(1260)

or b1(1235) resonances in these channels. The next level would be expected close to

V (1)π(−1), but we do not expect to see it since the corresponding interpolator is not

implemented in eqs. (5.1) and (5.2).

The third levels in figure 1 in both channels are noisy and unreliable, so we refrain

from presenting quantitative results. Both levels correspond to masses close to 2GeV or

above, so we see no indication for the possible existence of a1(1420), which was introduced

to explain recent preliminary data by COMPASS in a1 → f0π channel [41]. The third level

in b1 channel might be related to the observed b1(1960).

6 Resonance parameters for a1(1260)

The position of the 1++ ground state below mρ +mπ threshold indicates that the energy

of ρ and π is smaller if they are in the box together than if they are in the box alone. The

negative energy shift is consistent with an attractive interaction in the resonant a1 channel.

We proceed to extract the ρπ phase shifts and the resonance parameters of a1(1260).

Outside the interaction region the mesons are considered as free particles and the energy

levels E are related to the momenta p of the two-particle state ρ(p)π(−p) through

E =
√

m2
π + p2 +

√

m2
ρ + p2 , (6.1)

where we employ the continuum dispersion relation which applies well for the small

momenta p < 2π/L of interest [3]. The s-wave phase shifts δ for ρπ scattering at these

values of p are given by the well known Lüscher relation [15]

tan δ(p) =

√
π p L

2 Z00

(

1;
(

pL
2π

)2
) , (6.2)

which applies above and below threshold for elastic scattering. The d-wave to s-wave

amplitude ratio for a1 → ρπ is −0.062±0.02 experimentally [8], therefore we safely neglect

the d-wave in eq. (6.2). The relation (6.2) also neglects the contribution of the f0π channel,

which is known to be subdominant experimentally; this simplifies one equation with

several unknowns to the equation (6.2) with one unknown δ for ρπ scattering. The KK̄∗

intermediate state can not appear in our Nf = 2 simulation with chosen interpolators,

therefore the corresponding scattering parameters do not feature in the Lüscher’s relation.

The ground state below the mρ + mπ threshold renders imaginary p and real p cot δ

in table 3. The first excited level gives δ ≈ 90◦, thus it is located close to the a1(1260)

resonance mass and ma1 ≈ E2 holds.

The Breit-Wigner parametrization

−
√
sΓ(s)

s− (mres)2 + i
√
sΓ(s)

=
1

cot δ − i
, Γa1(s) ≡ g2a1ρπ

p

s
, (6.3)
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with Z00(k; q
2) =

∑

n⃗

1√
4π

1
(
n⃗2 − q2

)k

p from two-particle energy, e.g.) Eπρ =
√
m2

π + p2 +
√
m2

ρ + p2

Evaluation of two-particle energy
Correlation function matrix with several operators

J
H
E
P
0
4
(
2
0
1
4
)
1
6
2

n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 5 Oqq
1,2,Oρπ 7-10 1.1 0.6468(73) 1.030(12) i 0.0861(95) i 23(14) 0.34(14)

2 5 Oqq
1,2,Oρπ 6-9 0.015 0.8977(133) 1.430(21) 0.272(10) 88.9(5.9) 0.005(31)

Table 3. Energies and phases in the a1 channel with IG(JPC) = 1−(1++) and P = 0, where
a−1 ≃ 1.59GeV. Both levels were obtained using a 1 exponential fit. The p give the eigen-momenta
of the interacting system determined from the energy levels according to eq. (6.1). The ground
state is below ρπ threshold, so p and δ are imaginary, while p cot δ is real.

n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 3 Oqq
1,2,4,Oωπ 4-11 0.12 0.694(19) 1.105(31) 0.057(45) −3.0(6.3) −1.6(2.2)

2 2 Oqq
1,3,Oωπ 3-10 0.049 0.890(17) 1.418(27) 0.264(13) 93.5(7.5) −0.018(38)

Table 4. Similar as table 3 but for b1 channel with IG(JPC) = 1+(1+−). Both levels were obtained
using a 2 exponential fit. The second level is consistent with threshold energy mπ + mω due to
relatively large uncertainties of E2 and mω, and the corresponding phase is consistent with δ ≃ 0.
The uncertainty in mω has negligible effect on δ for the second level.

All quark fields q in eqs. (5.1), (5.2) are smeared according to the distillation

method [29], thus effectively replaced by
∑Nv

k=1 v
(k)v(k)†q with Nv = 96, where the v(k)

denote the Laplacian eigenvectors of the time slice.

The energy spectrum En is extracted from the correlation matrix

Cjl(t) =
1

NT

∑

ti

⟨O†
j(ti + t)|Ol(ti)⟩ =

∑

n

ZjnZ
∗
lne

−Ent (5.3)

averaged over all initial times ti. The Wick contractions for both channels are presented

in figures 3 and 4 of the appendix. In particular in the b1 channel a rather large number

of diagrams appears. Expressions for various elements of the correlation matrix in terms

of those Wick contractions are also provided in the appendix. We evaluate all the Wick

contractions using the distillation method, which handles efficiently also those with

back-tracking quark lines.

The variational method with the generalized eigenvalue equation

C(t) vn(t) = λn(t) C(t0) vn(t) (5.4)

is applied to extract the discrete spectrum En [12, 38–40]. The resulting eigenvalues λn(t) ∼
e−En(t−t0) give the effective energies Eeff

n (t) ≡ log[λn(t)/λn(t + 1)] → En. The spectrum

En is extracted using correlated fits to λn(t).

The resulting spectrum En is shown in figure 1, where effective energies are plotted for

the cases when OV π is included or excluded from the correlation matrix. The horizontal

lines indicate the position of the threshold mV +mπ (which has sizable uncertainty in the

b1 channel), and the energy of the non-interacting V (1)π(−1) system.

We concentrate on the spectrum obtained including OV π, which is shown in the first

and third pane of figure 1 and listed in tables 3 and 4. The lowest levels (circles) are
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Generalized eigenvalue problem

J
H
E
P
0
4
(
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4
)
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6
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n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 5 Oqq
1,2,Oρπ 7-10 1.1 0.6468(73) 1.030(12) i 0.0861(95) i 23(14) 0.34(14)

2 5 Oqq
1,2,Oρπ 6-9 0.015 0.8977(133) 1.430(21) 0.272(10) 88.9(5.9) 0.005(31)

Table 3. Energies and phases in the a1 channel with IG(JPC) = 1−(1++) and P = 0, where
a−1 ≃ 1.59GeV. Both levels were obtained using a 1 exponential fit. The p give the eigen-momenta
of the interacting system determined from the energy levels according to eq. (6.1). The ground
state is below ρπ threshold, so p and δ are imaginary, while p cot δ is real.

n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 3 Oqq
1,2,4,Oωπ 4-11 0.12 0.694(19) 1.105(31) 0.057(45) −3.0(6.3) −1.6(2.2)

2 2 Oqq
1,3,Oωπ 3-10 0.049 0.890(17) 1.418(27) 0.264(13) 93.5(7.5) −0.018(38)

Table 4. Similar as table 3 but for b1 channel with IG(JPC) = 1+(1+−). Both levels were obtained
using a 2 exponential fit. The second level is consistent with threshold energy mπ + mω due to
relatively large uncertainties of E2 and mω, and the corresponding phase is consistent with δ ≃ 0.
The uncertainty in mω has negligible effect on δ for the second level.

All quark fields q in eqs. (5.1), (5.2) are smeared according to the distillation

method [29], thus effectively replaced by
∑Nv

k=1 v
(k)v(k)†q with Nv = 96, where the v(k)

denote the Laplacian eigenvectors of the time slice.

The energy spectrum En is extracted from the correlation matrix

Cjl(t) =
1

NT

∑

ti

⟨O†
j(ti + t)|Ol(ti)⟩ =

∑

n

ZjnZ
∗
lne

−Ent (5.3)

averaged over all initial times ti. The Wick contractions for both channels are presented

in figures 3 and 4 of the appendix. In particular in the b1 channel a rather large number

of diagrams appears. Expressions for various elements of the correlation matrix in terms

of those Wick contractions are also provided in the appendix. We evaluate all the Wick

contractions using the distillation method, which handles efficiently also those with

back-tracking quark lines.

The variational method with the generalized eigenvalue equation

C(t) vn(t) = λn(t) C(t0) vn(t) (5.4)

is applied to extract the discrete spectrum En [12, 38–40]. The resulting eigenvalues λn(t) ∼
e−En(t−t0) give the effective energies Eeff

n (t) ≡ log[λn(t)/λn(t + 1)] → En. The spectrum

En is extracted using correlated fits to λn(t).

The resulting spectrum En is shown in figure 1, where effective energies are plotted for

the cases when OV π is included or excluded from the correlation matrix. The horizontal

lines indicate the position of the threshold mV +mπ (which has sizable uncertainty in the

b1 channel), and the energy of the non-interacting V (1)π(−1) system.

We concentrate on the spectrum obtained including OV π, which is shown in the first

and third pane of figure 1 and listed in tables 3 and 4. The lowest levels (circles) are
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, λn(t) = e−En(t−t0)
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Operators for correlation function matrix

a1 I(JPC) = 1(1++) b1 I(JPC) = 1(1+−)

J
H
E
P
0
4
(
2
0
1
4
)
1
6
2

mπa mρa mωa

0.1673(16) 0.5107(40) 0.514(15)

Table 2. The masses of scattering particles in lattice units with a−1≃1.59GeV.

incorporating the corresponding interpolator with s quarks as valence quarks, but KK̄∗ →
ūd transition would be Zweig suppressed and we omit such interpolators.

The b1 channel also couples to η2ρ, its contribution might be relevant only above

threshold for energies above O(1.5)GeV and we omit this interpolator.2 To summarize,

we assume that the elastic scattering ρπ and ωπ dominates both channels in the energy

region of interest and rely on the same assumption when extracting Γa1→ρπ and Γb1→ωπ

from the experimental data. We note that the inelastic scattering with coupled channels

has not been treated in lattice simulations yet, while the analytic frameworks for this

challenging problem were developed, for example, in [34–37].

4 Masses of π, ρ, ω

The masses of the scattering particles π, ρ, ω are needed for the position of the thresholds

and we collect them in table 2. We use mπ as determined in [3].

The ρ mass in table 2 was extracted as mρ = Eρ(p = 0) in [3] and is indeed found

close to mres
ρ in all simulations [1–6]. The ω energy is calculated using quark-antiquark

interpolators Os=n
1−5 given by eq. (21) of [3] with five different Dirac/space structures, while

flavor is replaced with ūu + d̄d. This approach is consistent with our approximation of

treating ρ(p) and ω(p) with p ≪ 2π/L as stable; this holds well for the narrow ω and is

commonly applied also for the broader ρ. The distillation method enables straightforward

calculation of the disconnected contributions to ω and the final correlators are averaged over

all initial time-slices and three polarizations. The disconnected contribution is small and we

findmω ≃ mρ as expected. The value ofmω follows from a 2-exponent fit in range t = 3−12
using interpolators On

1,2,3,5 and t0 = 2. This is a conservative choice with a comparatively

large uncertainty and is fully consistent with the result of other possible choices.

5 Energies in a1 and b1 channels

The interpolators for the a1 channel with JPC = 1++, |a−1 ⟩ = −|I = 1, I3 = −1⟩, P = 0

and polarization i are

Oqq
1 =

∑

x

ū(x) γi γ5 d(x) , (5.1)

Oqq
2 =

∑

x,j

ū(x)
←−
∇j γi γ5

−→
∇j d(x) ,

Oqq
3 =

∑

x,j,l

ϵijl ū(x) γj
1

2
[
−→
∇ l −

←−
∇ l] d(x) ,

2The η2 corresponds to η for Nf =2 dynamical quarks and has a mass between the η and the η′.
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4 6 8 10
t

0.4

0.6

0.8

1

1.2

1.4

1.6
Eef

f (t)
 a

a1: Oqq, Oρπ

6 8 10
t

a1: Oqq

4 6 8 10
t

b1: Oqq,Oωπ

4 6 8 10
t

b1: Oqq

V(0)π(0)

V(1)π(-1)

Figure 1. Effective energies Eeff
n a in the a1 and b1 channels, that correspond to the energy levels

Ena in the plateau region. The horizontal lines indicate the mV +mπ threshold and the energy of
a non-interacting V (1)π(−1) state, where V = ρ for a1 and V =ω for b1. We compare the results
when OV π is included in or excluded from the interpolator basis.

Oρπ =
1√
2
[π0(0)ρ−(0)− ρ0(0)π−(0)]

=
1

2

(

∑

x1

[ū(x1)γ5u(x1)− d̄(x1)γ5d(x1)]
∑

x2

ū(x2)γid(x2)

−
∑

x1

[ū(x1)γiu(x1)− d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2)

)

,

where xi = (xi, t) and ∇ denotes the covariant derivative. The ρ and π mesons are

separately projected to zero momentum in Oρπ. We do not implement the interpolator

ρ(1)π(−1) (the argument ±1 indicates momenta ±2π/L) since we concentrate on the

lower energy region E < Eρ(1)π(−1) ≃ 1.7GeV.

Similarly, for the b1 channel with JPC = 1+− and |b−1 ⟩ = −|I = 1, I3 = −1⟩ we use

Oqq
1 =

∑

x

ū(x) γi γt γ5 d(x) , (5.2)

Oqq
2 =

∑

x,j

ū(x)
←−
∇j γi γt γ5

−→
∇j d(x) ,

Oqq
3 =

∑

x

ū(x) γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oqq
4 =

∑

x

ū(x) γt γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oωπ = ω(0)π−(0) =
1√
2

∑

x1

[ū(x1)γiu(x1) + d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2) ,

where, again, ω and π are separately projected to zero momentum.
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t
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Figure 1. Effective energies Eeff
n a in the a1 and b1 channels, that correspond to the energy levels

Ena in the plateau region. The horizontal lines indicate the mV +mπ threshold and the energy of
a non-interacting V (1)π(−1) state, where V = ρ for a1 and V =ω for b1. We compare the results
when OV π is included in or excluded from the interpolator basis.

Oρπ =
1√
2
[π0(0)ρ−(0)− ρ0(0)π−(0)]

=
1

2

(

∑

x1

[ū(x1)γ5u(x1)− d̄(x1)γ5d(x1)]
∑

x2

ū(x2)γid(x2)

−
∑

x1

[ū(x1)γiu(x1)− d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2)

)

,

where xi = (xi, t) and ∇ denotes the covariant derivative. The ρ and π mesons are

separately projected to zero momentum in Oρπ. We do not implement the interpolator

ρ(1)π(−1) (the argument ±1 indicates momenta ±2π/L) since we concentrate on the

lower energy region E < Eρ(1)π(−1) ≃ 1.7GeV.

Similarly, for the b1 channel with JPC = 1+− and |b−1 ⟩ = −|I = 1, I3 = −1⟩ we use

Oqq
1 =

∑

x

ū(x) γi γt γ5 d(x) , (5.2)

Oqq
2 =

∑

x,j

ū(x)
←−
∇j γi γt γ5
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∇j d(x) ,

Oqq
3 =

∑
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ū(x) γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,
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4 =

∑
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ū(x) γt γ5
1

2
[
−→
∇ i −
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∇ i] d(x) ,

Oωπ = ω(0)π−(0) =
1√
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[ū(x1)γiu(x1) + d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2) ,

where, again, ω and π are separately projected to zero momentum.
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ρ and ω are stable? in a1 → ρπ and b1 → ωπ
Consider only center-of-mass frame c.f.) a1 → ρ(p)π(−p)
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H
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2
0
1
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1
6
2

mπa mρa mωa

0.1673(16) 0.5107(40) 0.514(15)

Table 2. The masses of scattering particles in lattice units with a−1≃1.59GeV.
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∇j d(x) ,

Oqq
3 =

∑

x,j,l

ϵijl ū(x) γj
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2The η2 corresponds to η for Nf =2 dynamical quarks and has a mass between the η and the η′.
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mρ > 2mπ and mω ∼ 3mπ

mπ = 266MeV

ρ → ππ in P-wave (l = 1) → prohibited π(0)π(0) decay
La = 16 (L ∼ 2fm) → lowest plow = 2π/La = 0.3927
mρ < 2Eπ(plow) → ρ(p = 0) is stable
However, Eρ(plow) ∼ mπ + Eπ(plow) → ρ(plow) might decay

PRD:84:054503(2011)

Higher states than ρ(plow)π(−plow) are not considered

ω → πππ in P-wave (l = 1) → prohibited π(0)π(0)π(0) decay
mω < 2Eπ(plow) +mπ → ω(p = 0) is stable

Higher states than ω(plow)π(−plow) are not considered
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[ū(x1)γiu(x1) + d̄(x1)γid(x1)]
∑

x2
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Figure 2. We show p
√
s
cot δ(s) with linear interpolation according to eq. (6.4). At threshold the

value is [(mρ +mπ)a
ρπ
l=0]

−1, while the position of the zero gives the resonance mass.

resonance a1(1260) b1(1235)

quantity mres
a1 ga1ρπ aρπl=0 mres

b1
gb1ωπ

[GeV] [GeV] [fm] [GeV] [GeV]

lat 1.435(53)(+0
−109) 1.71(39) 0.62(28) 1.414(36)(+0

−83) input

exp 1.230(40) 1.35(30) - 1.2295(32) 0.787(25)

Table 5. The resulting Breit-Wigner masses mres together with the couplings g for a1 → ρπ and
b1 → ωπ, which are related to the Breit-Wigner width Γ ≡ g2p/s. For the resonance masses the
second uncertainty given stems from the systematic uncertainty in extracting the first excited state
reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values
for the couplings g are derived from the measured total widths [8] since the branching ratios to
V π have not been measured, but are expected to be largely dominant. The lattice value for the
resonance mass of b1(1235) is obtained assuming experimental gexpb1ωπ. All results are for our value
of mπ≃266GeV.

gives Γa1(s) in terms of the phase space and the coupling ga1ρπ. We obtain

p√
s
cot δ(s) =

1

g2a1ρπ
[(mres

a1 )
2 − s] , (6.4)

which applies in the vicinity of the resonance. Assuming that (like it is the case for the

ρ) linearity (6.4) is a good approximation down to the threshold and slightly below it,

we interpolate linearly in s between the two values of p cot δ/
√
s of table 3, as shown in

figure 2. From the zero and the slope we obtain mres
a1 and ga1ρπ.

The resulting parameters of the a1(1260) resonance are compared to experiment in

table 5. The value of mres
a1 at mπ = 266MeV is slightly higher than that of the experi-

mental resonance a1(1260). This first lattice result for ga1ρπ is valuable since there is still

considerable uncertainty on the total width Γa1 and on the a1 → ρπ branching ratio. We

provide the upper limit for gexpa1ρπ resulting from the total width Γexp
a1 = 250− 600MeV [8],3

which agrees with our ga1ρπ within the large experimental and theoretical uncertainties.

3More precisely we assume Γa1
= 425(175) MeV.
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Table 5. The resulting Breit-Wigner masses mres together with the couplings g for a1 → ρπ and
b1 → ωπ, which are related to the Breit-Wigner width Γ ≡ g2p/s. For the resonance masses the
second uncertainty given stems from the systematic uncertainty in extracting the first excited state
reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values
for the couplings g are derived from the measured total widths [8] since the branching ratios to
V π have not been measured, but are expected to be largely dominant. The lattice value for the
resonance mass of b1(1235) is obtained assuming experimental gexpb1ωπ. All results are for our value
of mπ≃266GeV.
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which applies in the vicinity of the resonance. Assuming that (like it is the case for the

ρ) linearity (6.4) is a good approximation down to the threshold and slightly below it,

we interpolate linearly in s between the two values of p cot δ/
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s of table 3, as shown in

figure 2. From the zero and the slope we obtain mres
a1 and ga1ρπ.

The resulting parameters of the a1(1260) resonance are compared to experiment in

table 5. The value of mres
a1 at mπ = 266MeV is slightly higher than that of the experi-

mental resonance a1(1260). This first lattice result for ga1ρπ is valuable since there is still

considerable uncertainty on the total width Γa1 and on the a1 → ρπ branching ratio. We

provide the upper limit for gexpa1ρπ resulting from the total width Γexp
a1 = 250− 600MeV [8],3

which agrees with our ga1ρπ within the large experimental and theoretical uncertainties.

3More precisely we assume Γa1
= 425(175) MeV.
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where xi = (xi, t) and ∇ denotes the covariant derivative. The ρ and π mesons are

separately projected to zero momentum in Oρπ. We do not implement the interpolator

ρ(1)π(−1) (the argument ±1 indicates momenta ±2π/L) since we concentrate on the
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Oqq
1 =

∑

x
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for the couplings g are derived from the measured total widths [8] since the branching ratios to
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a non-interacting V (1)π(−1) state, where V = ρ for a1 and V =ω for b1. We compare the results
when OV π is included in or excluded from the interpolator basis.

Oρπ =
1√
2
[π0(0)ρ−(0)− ρ0(0)π−(0)]

=
1

2

(

∑

x1

[ū(x1)γ5u(x1)− d̄(x1)γ5d(x1)]
∑

x2

ū(x2)γid(x2)

−
∑

x1

[ū(x1)γiu(x1)− d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2)

)

,

where xi = (xi, t) and ∇ denotes the covariant derivative. The ρ and π mesons are

separately projected to zero momentum in Oρπ. We do not implement the interpolator

ρ(1)π(−1) (the argument ±1 indicates momenta ±2π/L) since we concentrate on the

lower energy region E < Eρ(1)π(−1) ≃ 1.7GeV.

Similarly, for the b1 channel with JPC = 1+− and |b−1 ⟩ = −|I = 1, I3 = −1⟩ we use

Oqq
1 =

∑

x

ū(x) γi γt γ5 d(x) , (5.2)

Oqq
2 =

∑

x,j

ū(x)
←−
∇j γi γt γ5

−→
∇j d(x) ,

Oqq
3 =

∑

x

ū(x) γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oqq
4 =

∑

x

ū(x) γt γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oωπ = ω(0)π−(0) =
1√
2

∑

x1

[ū(x1)γiu(x1) + d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2) ,

where, again, ω and π are separately projected to zero momentum.
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Figure 2. We show p
√
s
cot δ(s) with linear interpolation according to eq. (6.4). At threshold the

value is [(mρ +mπ)a
ρπ
l=0]

−1, while the position of the zero gives the resonance mass.

resonance a1(1260) b1(1235)

quantity mres
a1 ga1ρπ aρπl=0 mres

b1
gb1ωπ

[GeV] [GeV] [fm] [GeV] [GeV]

lat 1.435(53)(+0
−109) 1.71(39) 0.62(28) 1.414(36)(+0

−83) input

exp 1.230(40) 1.35(30) - 1.2295(32) 0.787(25)

Table 5. The resulting Breit-Wigner masses mres together with the couplings g for a1 → ρπ and
b1 → ωπ, which are related to the Breit-Wigner width Γ ≡ g2p/s. For the resonance masses the
second uncertainty given stems from the systematic uncertainty in extracting the first excited state
reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values
for the couplings g are derived from the measured total widths [8] since the branching ratios to
V π have not been measured, but are expected to be largely dominant. The lattice value for the
resonance mass of b1(1235) is obtained assuming experimental gexpb1ωπ. All results are for our value
of mπ≃266GeV.

gives Γa1(s) in terms of the phase space and the coupling ga1ρπ. We obtain

p√
s
cot δ(s) =

1

g2a1ρπ
[(mres

a1 )
2 − s] , (6.4)

which applies in the vicinity of the resonance. Assuming that (like it is the case for the

ρ) linearity (6.4) is a good approximation down to the threshold and slightly below it,

we interpolate linearly in s between the two values of p cot δ/
√
s of table 3, as shown in

figure 2. From the zero and the slope we obtain mres
a1 and ga1ρπ.

The resulting parameters of the a1(1260) resonance are compared to experiment in

table 5. The value of mres
a1 at mπ = 266MeV is slightly higher than that of the experi-

mental resonance a1(1260). This first lattice result for ga1ρπ is valuable since there is still

considerable uncertainty on the total width Γa1 and on the a1 → ρπ branching ratio. We

provide the upper limit for gexpa1ρπ resulting from the total width Γexp
a1 = 250− 600MeV [8],3

which agrees with our ga1ρπ within the large experimental and theoretical uncertainties.

3More precisely we assume Γa1
= 425(175) MeV.
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Figure 2. We show p
√
s
cot δ(s) with linear interpolation according to eq. (6.4). At threshold the

value is [(mρ +mπ)a
ρπ
l=0]

−1, while the position of the zero gives the resonance mass.

resonance a1(1260) b1(1235)

quantity mres
a1 ga1ρπ aρπl=0 mres

b1
gb1ωπ

[GeV] [GeV] [fm] [GeV] [GeV]

lat 1.435(53)(+0
−109) 1.71(39) 0.62(28) 1.414(36)(+0

−83) input

exp 1.230(40) 1.35(30) - 1.2295(32) 0.787(25)

Table 5. The resulting Breit-Wigner masses mres together with the couplings g for a1 → ρπ and
b1 → ωπ, which are related to the Breit-Wigner width Γ ≡ g2p/s. For the resonance masses the
second uncertainty given stems from the systematic uncertainty in extracting the first excited state
reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values
for the couplings g are derived from the measured total widths [8] since the branching ratios to
V π have not been measured, but are expected to be largely dominant. The lattice value for the
resonance mass of b1(1235) is obtained assuming experimental gexpb1ωπ. All results are for our value
of mπ≃266GeV.

gives Γa1(s) in terms of the phase space and the coupling ga1ρπ. We obtain

p√
s
cot δ(s) =

1

g2a1ρπ
[(mres

a1 )
2 − s] , (6.4)

which applies in the vicinity of the resonance. Assuming that (like it is the case for the

ρ) linearity (6.4) is a good approximation down to the threshold and slightly below it,

we interpolate linearly in s between the two values of p cot δ/
√
s of table 3, as shown in

figure 2. From the zero and the slope we obtain mres
a1 and ga1ρπ.

The resulting parameters of the a1(1260) resonance are compared to experiment in

table 5. The value of mres
a1 at mπ = 266MeV is slightly higher than that of the experi-

mental resonance a1(1260). This first lattice result for ga1ρπ is valuable since there is still

considerable uncertainty on the total width Γa1 and on the a1 → ρπ branching ratio. We

provide the upper limit for gexpa1ρπ resulting from the total width Γexp
a1 = 250− 600MeV [8],3

which agrees with our ga1ρπ within the large experimental and theoretical uncertainties.

3More precisely we assume Γa1
= 425(175) MeV.
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Result of b1
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Figure 1. Effective energies Eeff
n a in the a1 and b1 channels, that correspond to the energy levels

Ena in the plateau region. The horizontal lines indicate the mV +mπ threshold and the energy of
a non-interacting V (1)π(−1) state, where V = ρ for a1 and V =ω for b1. We compare the results
when OV π is included in or excluded from the interpolator basis.

Oρπ =
1√
2
[π0(0)ρ−(0)− ρ0(0)π−(0)]

=
1

2

(

∑

x1

[ū(x1)γ5u(x1)− d̄(x1)γ5d(x1)]
∑

x2

ū(x2)γid(x2)

−
∑

x1

[ū(x1)γiu(x1)− d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2)

)

,

where xi = (xi, t) and ∇ denotes the covariant derivative. The ρ and π mesons are

separately projected to zero momentum in Oρπ. We do not implement the interpolator

ρ(1)π(−1) (the argument ±1 indicates momenta ±2π/L) since we concentrate on the

lower energy region E < Eρ(1)π(−1) ≃ 1.7GeV.

Similarly, for the b1 channel with JPC = 1+− and |b−1 ⟩ = −|I = 1, I3 = −1⟩ we use

Oqq
1 =

∑

x

ū(x) γi γt γ5 d(x) , (5.2)

Oqq
2 =

∑

x,j

ū(x)
←−
∇j γi γt γ5

−→
∇j d(x) ,

Oqq
3 =

∑

x

ū(x) γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oqq
4 =

∑

x

ū(x) γt γ5
1

2
[
−→
∇ i −

←−
∇ i] d(x) ,

Oωπ = ω(0)π−(0) =
1√
2

∑

x1

[ū(x1)γiu(x1) + d̄(x1)γid(x1)]
∑

x2

ū(x2)γ5d(x2) ,

where, again, ω and π are separately projected to zero momentum.
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n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 5 Oqq
1,2,Oρπ 7-10 1.1 0.6468(73) 1.030(12) i 0.0861(95) i 23(14) 0.34(14)

2 5 Oqq
1,2,Oρπ 6-9 0.015 0.8977(133) 1.430(21) 0.272(10) 88.9(5.9) 0.005(31)

Table 3. Energies and phases in the a1 channel with IG(JPC) = 1−(1++) and P = 0, where
a−1 ≃ 1.59GeV. Both levels were obtained using a 1 exponential fit. The p give the eigen-momenta
of the interacting system determined from the energy levels according to eq. (6.1). The ground
state is below ρπ threshold, so p and δ are imaginary, while p cot δ is real.

n t0 interp. fit
range

χ2

d.o.f Ea E=
√
s

[GeV] pa δ [◦] p cot(δ)√
s

1 3 Oqq
1,2,4,Oωπ 4-11 0.12 0.694(19) 1.105(31) 0.057(45) −3.0(6.3) −1.6(2.2)

2 2 Oqq
1,3,Oωπ 3-10 0.049 0.890(17) 1.418(27) 0.264(13) 93.5(7.5) −0.018(38)

Table 4. Similar as table 3 but for b1 channel with IG(JPC) = 1+(1+−). Both levels were obtained
using a 2 exponential fit. The second level is consistent with threshold energy mπ + mω due to
relatively large uncertainties of E2 and mω, and the corresponding phase is consistent with δ ≃ 0.
The uncertainty in mω has negligible effect on δ for the second level.

All quark fields q in eqs. (5.1), (5.2) are smeared according to the distillation

method [29], thus effectively replaced by
∑Nv

k=1 v
(k)v(k)†q with Nv = 96, where the v(k)

denote the Laplacian eigenvectors of the time slice.

The energy spectrum En is extracted from the correlation matrix

Cjl(t) =
1

NT

∑

ti

⟨O†
j(ti + t)|Ol(ti)⟩ =

∑

n

ZjnZ
∗
lne

−Ent (5.3)

averaged over all initial times ti. The Wick contractions for both channels are presented

in figures 3 and 4 of the appendix. In particular in the b1 channel a rather large number

of diagrams appears. Expressions for various elements of the correlation matrix in terms

of those Wick contractions are also provided in the appendix. We evaluate all the Wick

contractions using the distillation method, which handles efficiently also those with

back-tracking quark lines.

The variational method with the generalized eigenvalue equation

C(t) vn(t) = λn(t) C(t0) vn(t) (5.4)

is applied to extract the discrete spectrum En [12, 38–40]. The resulting eigenvalues λn(t) ∼
e−En(t−t0) give the effective energies Eeff

n (t) ≡ log[λn(t)/λn(t + 1)] → En. The spectrum

En is extracted using correlated fits to λn(t).

The resulting spectrum En is shown in figure 1, where effective energies are plotted for

the cases when OV π is included or excluded from the correlation matrix. The horizontal

lines indicate the position of the threshold mV +mπ (which has sizable uncertainty in the

b1 channel), and the energy of the non-interacting V (1)π(−1) system.

We concentrate on the spectrum obtained including OV π, which is shown in the first

and third pane of figure 1 and listed in tables 3 and 4. The lowest levels (circles) are
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E1 ∼ mω +mπ not good result
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Our lattice result for ga1ρπ is also close to the value gphena1ρπ ≈ 0.9GeV obtained using an

Unitarized Effective Field Theory approach [23] (converted to our convention).

The scattering length aρπl=0 in table 5 is obtained using the effective range fit

p cot(δ) = 1
a0

+ 1
2r0p

2 through two energy levels. Our result at mπ = 266MeV is close

to aρπl=0(m
phys
π ) ≈ 0.37 fm obtained from Unitarized Effective Field Theory [42], while the

corresponding experimental value is not known.

7 Analysis of the b1 channel

The robust features of the b1 spectrum in figure 1 and in table 4 go along with the expec-

tations: the level ω(0)π(0) near the mω + mπ threshold, the next level close to b1(1235)

with δ ≃ 90◦ and the third level in vicinity of b1(1960).

However the exact position of the central value for the ground state E1 in figure 1

with respect to the threshold mω + mπ shows a slight disagreement with the expecta-

tion. It is expected to be slightly below threshold due to an attractive interaction in

the resonant channel. Since Γb1 < Γa1 one expects a smaller size of the energy shift

∆E1 = E1 − mV − mπ in the b1 channel than in the a1 channel, rendering a lattice

extraction challenging. We estimate the expected energy shift a∆E1 ≃ −0.01 based

on gexpb1ωπ
, Breit-Wigner dependence (6.4), the Lüscher relation (6.2) and the value of

mres
b1

(7.1) determined below; note that this shift is smaller than the uncertainty of the

ground state energy level in the b1 channel and comparable to the uncertainty in amω. A

correlated analysis reveals that our ground state E1 is compatible with mω + mπ within

the large uncertainties, although the central value leads to E1 ! mω +mπ. We stress that

this discrepancy with expectations is not statistically significant.

If upon improving the statistics the ground state level still stays above threshold, this

would be hard to understand. The three-pion state, for example, could hardly explain such

behavior since the lowest state π(0)π(1)π(−1) with J =1 has energy ≃ 1.6GeV, which is

significantly above the threshold on our lattice.

In the b1(1235) → ωπ channel the d-wave to s-wave amplitude ratio observed in ex-

periment is 0.277 ± 0.027 [8], and the d-wave contribution, which we neglect in eq. (6.2),

might play an important role as it for example does in the deuteron.

Due to the discussed uncertainty of the ground state energy level we determine the

resonance b1(1235) mass using the Breit-Wigner relation (6.4),

mres
b1 =

[

E2
2 + (gexpb1ωπ

)2
(

p cot δ√
s

)2]1/2

= 1.414(36)(+0
−83) GeV , (7.1)

based on E2 and (p cot δ/
√
s)2 for the second level in table 4, while we assume the

experimental value of the coupling gexpb1ωπ
= 0.787(25)GeV. It is derived from Γexp

b1
assuming Br[b1 → ωπ] ≃ 1, which has not been measured but is expected to be valid to

a good approximation. The resulting resonance mass at our mπ is somewhat higher than

the experimental one.
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≈ E2 = 1.418(27)GeV due to δ ∼ π/2
gexpb1ωπ

= 0.787(25)GeV
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Summary

Calculation at mπ = 266MeV on L ∼ 2fm
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Figure 2. We show p
√
s
cot δ(s) with linear interpolation according to eq. (6.4). At threshold the

value is [(mρ +mπ)a
ρπ
l=0]

−1, while the position of the zero gives the resonance mass.

resonance a1(1260) b1(1235)

quantity mres
a1 ga1ρπ aρπl=0 mres

b1
gb1ωπ

[GeV] [GeV] [fm] [GeV] [GeV]

lat 1.435(53)(+0
−109) 1.71(39) 0.62(28) 1.414(36)(+0

−83) input

exp 1.230(40) 1.35(30) - 1.2295(32) 0.787(25)

Table 5. The resulting Breit-Wigner masses mres together with the couplings g for a1 → ρπ and
b1 → ωπ, which are related to the Breit-Wigner width Γ ≡ g2p/s. For the resonance masses the
second uncertainty given stems from the systematic uncertainty in extracting the first excited state
reliably. This uncertainty has negligible effect on the extracted coupling. The experimental values
for the couplings g are derived from the measured total widths [8] since the branching ratios to
V π have not been measured, but are expected to be largely dominant. The lattice value for the
resonance mass of b1(1235) is obtained assuming experimental gexpb1ωπ. All results are for our value
of mπ≃266GeV.

gives Γa1(s) in terms of the phase space and the coupling ga1ρπ. We obtain

p√
s
cot δ(s) =

1

g2a1ρπ
[(mres

a1 )
2 − s] , (6.4)

which applies in the vicinity of the resonance. Assuming that (like it is the case for the

ρ) linearity (6.4) is a good approximation down to the threshold and slightly below it,

we interpolate linearly in s between the two values of p cot δ/
√
s of table 3, as shown in

figure 2. From the zero and the slope we obtain mres
a1 and ga1ρπ.

The resulting parameters of the a1(1260) resonance are compared to experiment in

table 5. The value of mres
a1 at mπ = 266MeV is slightly higher than that of the experi-

mental resonance a1(1260). This first lattice result for ga1ρπ is valuable since there is still

considerable uncertainty on the total width Γa1 and on the a1 → ρπ branching ratio. We

provide the upper limit for gexpa1ρπ resulting from the total width Γexp
a1 = 250− 600MeV [8],3

which agrees with our ga1ρπ within the large experimental and theoretical uncertainties.

3More precisely we assume Γa1
= 425(175) MeV.
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First calculations for ma1 and mb1 with two-particle states

Possible systematic errors
1. Small volume
2. Effects of ρ and ω decays
3. Chiral extrapolation to physical mπ
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