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Introduction

Chiral effective field theory I

Given by an infinite series of terms with increasing number of derivatives and/or nucleon fields

®provides a powerful approach to three-nucleon (3N) interactions NN SN AN

®enables controlled calculations Lo O(%) | >< ‘ — —
This is especially important for exotic nuclei and neutron-rich matter NI
under extreme conditions in astrophysics VLo 0 (%) N } . .
Neutron matter _____ H H
U only long-range parts of 3N force contributes E H‘

U a simpler system to test the chiral EFT power counting

and the size of many-body forces for finite density "f‘““’“ i“é@d"jf
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In general, nuclear force depend on a resolution scale A %)
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Phenomenological hierarchy

. . Van (A) > Van(A) > Vi (A
The renormalization group is a powerful tool n(4) an(4) an(4)

to systematically change the resolution scale A, while preserving low-energy observables



Neutron matter based on chiral EFT interactions

Entem Machleidt A=500MeV N°LO NN potential I

The energy is calculated in a perturbative expansion around the Hartree-Fock energy.
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nuclear matter saturation is predicted with the same hamiltonians.
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The width of blue band is dominated
by the uncertainties of 3N forces.

At these scale, different NN potentials lead the similar result.
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RG-evolution to a low-momentum scale A =2.0fm™

The width of the energy bands based on 3N forces
at N°LO and N°LO are comparable at higher densities

EFT convergence of 3N forces from N°LO to N°LO
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Neutron matter based on chiral EFT interactions

The first complete N°LO calculation of neutron matter energy.

‘ All NN, 3N and 4N interactions to N°LO are included I

20~ EM 500 MeV
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Origins of energy range
Dominant!
0 Different NN potentials /

» Variation of the couplings ¢ and ¢ in 3NF
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N’LO range is in very good agreement
9 NLO lattice results at very low densities where the properties are determined
» QMC simulations by the large scattering length and effective range.

D Ab-initio calculation :

(Argonne NN and Urbana 3N)



From the neutron matter equation of state
to the symmetry energy and neutron skin

Calculations are extended from neutron matter to matter with a finite proton fraction.

‘ The Empirical parametrization I

(x°72 + (1 — x)1020)*° — [Qa — 4ay)

T : Fermi energy of symmetric matter

e(n,x)Ty = n : baryon density

X : proton fraction

n| '

y+ap|n+[(2n —4np)x(l — x) + npn?,

=

X x(1 —.
This interpolates between the properties of neutron matter and symmetric nuclear matter.

Parameters can be determined from the empirical saturation properties

and from the microscopic calculation of neutron matter. | I
neutron matter
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- «; = 1.18-1.59 and n;, = 0.64-1.11

This parametrization provides excellent global fit for the energy up to a density n=1.1n_



From the neutron matter equation of state
to the symmetry energy and neutron skin

The parametrization allows to predict the symmetry energy and its density derivative
3 9%e(n, x)
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Constraints on neutron star radii

Further application of the parametrization to extend the neutron matter to neutron star matter.
Proton fraction in beta equilibrium
de(n, x)

- )
+ pe(n, x)— (m, —mp)c- =0

0X
To describe the EoS of neutron star matter, we use the BPS outer crust EoS for densities below n0/2.

Without 3N forces, the calculated EoSs would not match on to a standard crust EoS.

For n > 1.1n , general piecewise polytropic extensions are used.
0

P(p) =« ;‘Jr

This strategy generates
a very large number of EoSs

After solving TOV equation,
1) remain causal for all relevant densities
2) able to support a neutron star mass M
(the mass of the heaviest neutron star

observed or potential heavier candidates)
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Constraints on neutron star radii
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9 - This demonstrates that chiral EFT interactions provide
e strong constraints ruling out many model EoSs at low densities.
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Summary and outlook

® The properties of neutron-rich matter at nuclear densities are well constrained
by chiral EFT interactions

® This results in tight constraints for the symmetry energy, the neutron skin of
*%Pp, and the radius of neutron stars.

® The theoretical uncertainties are dominated by the uncertainties in 3N forces.

Therefore developments 1n 3N forces will be important next steps

Representative EoSs : soft (green), intermediate (orange), stiff (red)  4swrophys. J. 733 (2013) 11
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