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1 Introduction

Quarks and gluons are deconfined at high temperature and density to be
quark-gluon plasma.

• Quark-gluon plasma is characterized by thermodynamic quantities,
such as the equation of state(energy density, pressure).
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There are several ways to calculate the equation of state.

• Integral method, p = −(1/V )
∫

dβ∂β logZ

• Operator method

• Energy-momentum tensor Tµν with shifted boundary

• Energy-momentum tensor Tµν with gradient flow ← This paper.

Energy-momentum tensor is related to the equation of state s.t.

energy density : ǫ = −〈T00〉

pressure : p =
1

3

∑

i

〈Tii〉
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2 Formulation

[Gradient flow] cf. Taniguchi-san’s journal clubs (2010;2013)

Gradient flow is defined as a deformation of the gauge field Aµ(x)
along a fictitious time t. Atiyah and Bott (1982)

∂tBµ(t, x) = DνGνµ(t, x), (1)

Bµ(t = 0, x) = Aµ(x) (2)

Bµ(t, x) : flowed gauge field

Gνµ(t, x) : flowed field strength
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[Energy-momentum tensor from the gradient flow]

• Coefficients αU (t), αE(t) are calculated at 1-loop H.Suzuki, 2013.

♦ Small t is needed for perturbations, a≪
√
8t≪ L, 1/T .

♦ a, t→ 0 must be performed satisfying a≪
√
8t.

ex. first a→ 0, then t→ 0.

♦ Non-perturbative determination of αU (t), αE(t) has been pro-
posed M.Lüscher,2013; L.Del Debbio et. al., 2013.

• (It corresponds to a smeared or cooled Tµν .)

Tµν := lim
t→0

(

1

αU (t)
Uµν(t, x) +

δµν
16αE(t)

(G2(t, x)−
〈

G2(t, x)
〉

0
)

)

(3)

Uµν(t, x) := Gµρ(t, x)Gνρ(t, x)−
δµν
4

G2(t, x) (4)

cf. Tµν := Fµρ(x)Fνρ(x)−
δµν
4

F 2(x) : naive definition (5)
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3 Simulation setup

• Nf = 0 (pure SU(3) theory)

• Lattice size : 323 × 6, 8, 10, 32

• plaq action with β = 5.89− 6.56 (a−1 = 1.5− 5.0 [GeV])

♦ T/Tc = 0.99− 1.65

• #conf = 300

[Calculation procedure]

1. Generate gauge config Aµ(x)

2. Evolve Aµ(x) to Bµ(t, x) by the gradient flow

3. Construct Tµν(t) from Bµ(t, x)

4. Perform lim
a,t→0

Tµν(a, t) satisfying a≪
√
8t
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4 Simulation results

[Flow time dependence of observables]
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• Data must be in [tmin, tmax]
satisfying a≪

√
8t≪ L, 1/T .

♦ Set
√
8tmin = 2a

to avoid discretization effects.

♦ Set
√
8tmax = 1/(2T ),

factor 2 is from periodicity.

• Data at
√
8tT = 0.4 is employed.

♦ No t→ 0 limit ???

♦ The choice of
√
8tT = 0.4 seems

too aggressive.
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[Continuum extrapolations with
√
8tT = 0.4 data]
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• The data of (ǫ− 3p)/T 4 is consistent
with the previous result at a finite
lattice spacing.
← No comparison for (ǫ+ p)/T 4 ???

• Finite size effects must be visible
on the finest lattice (1/N2

t
= 0.01),

where Ns/Nt = 3.2.
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[Equation of state]
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• The authors claim ”The results are
qualitatively consistent”.
← i.e. the authors fail to reproduce
the previous results.

• No reason is given. It may be

♦ t→ 0 extrapolation
No t → 0 extrapolation seems
to be performed.

♦ Finite size effects
The smallest aspect ratio is
Ns/Nt = 3.2.
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5 Conclusion

The energy density and pressure of quark-gluon plasma (strictly, those of
SU(3) gauge theory) are calculated by use of the gradient flow.

• The results are ”qualitatively consistent with the previous works”.
← i.e. the authors fail to reproduce the previous results.

• Although the authors do not show the origins of the discrepancies, they
seem to be the followings.

♦ t→ 0 extrapolation

♦ Finite size effects

• The method is interesting. More detailed analysis is needed.
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Appendix
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[Energy-momentum tensor]
The energy-momentum tensor is a Noether current associated with the space-
time translational symmetry.

For x→ x′ = x+ ξ, φ′(x′) = φ(x). (6)

Then, the energy-momentum tensor Tµν is defined as,

Tµν :=
∂L

∂(∂νφ)
∂µφ− δµνL. (7)

[ex. Tµν for electromagnetic field]

LEM =
1

16π
F 2 (8)

Tµν =
1

4π

(

FµρFνρ −
δµν
4

F 2

)

. (9)
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