Derivation of the Intriligator-Leigh-Seiberg linearity principle from Dijkgraaf-Vafa

Yuji Tachikawa (Univ. of Tokyo, Hongo)

December 20, 2002 based on hep-th/0211274

- 1. Introduction
- 2. Brief review of ILS
- 3. Brief review of DGLVZ
- 4. ILS from DV
- 5. Conclusions

1. Introduction to DV

- Gauge Theory : N_c Finite and Fixed Φ : adjoint, $N_c \times N_c$
- Ψ . aujoint, $N_C \times N_C$
- S: gaugino condensate tr $W^{\alpha}W_{\alpha}$ W_{α} : $(\lambda_{\alpha} \text{ (gaugino)}, F_{\mu\nu}^{+} \text{ (field strength)})$
- Matrix Model : Planar Limit
- $\Phi: M \times M$ matrix,
- $S{:}$ 't Hooft coupling $M \to \infty$ with S fixed

	Gauge	Matrix
Bare	superpotential	Action
	$W_{{f tree}}(\Phi) \ onumber \ $	$W_{ extsf{tree}}(\Phi) onumber \ \downarrow$
Eff.	superpotential $W_{ ext{eff}}(S)$	Free energy $\mathcal{F}(S)$

• The Correspondence :

 $W_{\rm eff}(S) = N_c rac{\partial \mathcal{F}}{\partial S}$ conjectured to be EXACT

First Indication — Factorization * Matrix Model Side

Example:

$$\int d\Phi \exp\left[-\frac{M}{S}\left(\frac{1}{2}m\operatorname{tr} \Phi^{2} + \frac{1}{3}g\operatorname{tr} \Phi^{3}\right)\right]$$
• (Propagators)⁻¹ and couplings $\propto M/S$
• $\underbrace{V}_{vertices} - \underbrace{E}_{propagators} + \underbrace{h}_{index} = \underbrace{\chi}_{Euler#}$
 $\stackrel{\Downarrow}{}_{vertices} \operatorname{propagators} \operatorname{index} \operatorname{loops} = \underbrace{M^{\chi}S^{V-E}}_{Euler#}$

 $\langle \\ M \to \infty, \text{ planars dominate,} \\ \text{correlation functions factorize:} \end{cases}$

in $\langle AB
angle$,

$$(E = 5, V = 4)$$

*****Gauge theory side

Chiral VEVs factorize:

$$\langle \Phi_1(x) \Phi_2(y)
angle = \langle \Phi_1(x)
angle \langle \Phi_2(y)
angle$$

Because

- $\partial_\mu \Phi_1(x) = \{ar{D}, [D, \Phi_1(x)]\}$ is $ar{D}$ -exact.
- Hence,

$$egin{aligned} &\partial_{oldsymbol{\mu}}\langle\Phi_1(x)\Phi_2(y)
angle &= \langle\{ar{D},[D,\Phi_1(x)]\}\Phi_2(y)
angle\ &= \langle[D,\Phi_1(x)]\{ar{D},\Phi_2(y)\}
angle\ &= oldsymbol{0} \end{aligned}$$

- ullet Next, Take $|x-y|
 ightarrow\infty$
- Finally use the Cluster Property.

Stringy ideas behind the proposal

DV arrived this proposal by chasing the following dualities:

Checking the proposal

Field-theoretic derivations

There are two:

- Dijkgraaf-Grisaru-Lam-Vafa-Zanon
- Perturbation in an external gaugino (more on this in section 3.)
- Cachazo-Douglas-Seiberg-Witten , Seiberg

Factorization and generalized anomaly

An example:

the ILS linearity principle from DV

2. Brief Review of ILS

From the bare lagrangian

$$\mathcal{L}_{ ext{bare}} = \mathcal{L}_0 + \int d^2 heta W_{ ext{tree}}(\Phi) + c.c.,$$

where $W_{ ext{tree}} = \sum g_i \mathcal{O}_i$
 \Downarrow
To the low energy superpotential
 $\int d^2 heta \ W_{ ext{eff}}(\Phi)$

holomorphy

Coupling constants g_i as the vevs of chiral superfields

 $\bigvee_{igvee} W_{ ext{eff}}(\Phi)$ depends only on g_i , not on $\overline{g_i}$.

symmetry

• Many classical symmetries on chiral superfields and coupling constants.

• Even anomalous symmetries are useful once one assigns charges to the dynamical scale Λ appropriately.

classical and perturbative limit

• In the classical limit $\Lambda \to 0$, $W_{\rm eff}(\Phi)$ must approach $W_{\rm tree}(\Phi)$.

• If one takes some coupling $g_i
ightarrow 0$, $W_{
m eff}$ should smoothly become $W_{
m tree}$.

 \downarrow

 $W_{\rm eff}$ does not contain negative powers of Λ and g_i .

Strong constraint for in $W_{\rm eff}(\Phi)$, fixing completely in some simple cases .

Example.

 $SU(N_c)$ SYM with $N_f < N_c$ pairs of quarks Q_i and $\tilde{Q}_i.$

• Gauge invariants are

$$T_{ij} = Q_i \tilde{Q}_j.$$

• $W_{\text{tree}} = m_{ij}T_{ij}$ as the bare superpotential

• $SU(N_f) \times SU(N_f)$ flavor symmetry on quarks and antiquarks.

• R-charges:

• The anomaly from

$$q o e^{-i\phi} q, \qquad \lambda o e^{+i\phi} \lambda,$$

leads to:

$$\theta \rightarrow \theta + 2(N_c - N_f)\phi.$$

Because

$$\Lambda^{3N_c-N_f} \sim \Lambda_0^{3N_c-N_f} \exp\left(-rac{8\pi^2}{g_0^2}+i heta
ight),$$

the R-charge of $\Lambda^{3N_c-N_f}$ is $2(N_c-N_f)$.

 \downarrow

$$W_{ ext{eff}} = c \left(rac{\Lambda^{3N_c - N_f}}{\det T_{ij}}
ight)^{1/(N_c - N_f)} + \underbrace{m_{ij}T_{ij}}_{\swarrow},$$

the coeff. is fixed by $m \to 0$ limit.

the linearity principle

• The result can be summarized as $W_{eff} = \underbrace{W_{n.p.}}_{non-perturbative,}$ independent of coupling constants

• Various other models have this form. ILS proposed this linearity as an organizing principle.

• However, symmetry arguments are not always strong enough.

Another Example

• Consider $\mathcal{N} = 1 \; SU(N_c)$ SYM with one adjoint Φ .

- \bullet The R-charge of Λ is $\ \, {\rm zero}$.
- Introduce the bare superpotential $m \operatorname{tr} \Phi^2/2.$
- Symmetry alone cannot exclude the corrections of the form $m\Lambda^2$.

3. Brief Review of DGLVZ

How to derive Dijkgraaf-Vafa?

Directly equate Feynman rules in the gauge theory and in the matrix model .

 \downarrow

Strategy

1. Introduce an external gauge superfield. In particular, introduce a spacetime constant gaugino.

2. Perturbatively integrate out the matter superfields. $W_{inst}(S)$

3. Make the gauge superfield dynamical.

 $W_{\mathsf{eff}}(S) =$

 $W_{\mathbf{VY}}(S)$

 $+W_{inst}(S)$

dynamical effect from the gauge superfield

Feynman rules for step 2 =Feynman rules for Matrix Model

the propagator

$$\langle \Phi \Phi
angle = rac{ar{m}}{p^2 + m ar{m} + W^lpha \pi_lpha}$$

where

- p: bosonic momentum, W^{α} : field strength superfield,
 - π_{α} : fermionic momentum.

Integration of loop momenta:

$$\prod_{a=1}^l \left(\int rac{d^4 p_a}{(2\pi)^4} \int d^2 \pi_a
ight)$$

 \implies Every *l*-loop diagram carries a factor of W_{α}^{2l} .

 \implies if $W_{\alpha} = 0$, no correction to *F* terms.

This is the Perturbative Non-Renormalization Theorem!

What if $W_{\alpha} \neq 0$?

Origin of Planarity

• $\overline{\operatorname{tr} W_{\alpha}^{m}}$ is \overline{D} -exact for $m \geq 3$, i.e. \sim zero in the F terms. (CDSW)

• Therefore, $W_{\rm eff}$ is a function of $32\pi S = {
m tr} \, W^{lpha} W_{lpha}.$

To give W^{2l}_{α} requires at least l index loops.

• # of index loops h satisfies

 $h = l + 1 - 2 \times$ genus.

Only **GENUS 0** diagrams contribute!

• Further tricks reveal the resulting Feynman rules are the same as those of the matrix models in the planar limit.

Making the vector superfield dynamical

This introduces the Veneziano-Yankielowicz term

$$W_{VY} = N_c S(1 - \log \frac{S}{\Lambda 3}).$$

(Λ : the dynamical scale of SQCD) There are arguments against further corrections.

The total effective superpotential:

 $W_{\text{eff}}(S) = W_{\text{VY}}(S) + W_{\text{inst}}(S).$

• $\langle S \rangle$ is determined by the extremalization

 $\partial W_{\rm eff}/\partial S = 0.$

• For $W_{ ext{tree}} = \sum g_i \mathcal{O}_i$, the vevs are

$$\begin{split} \langle \mathcal{O}_{i} \rangle &= \frac{\partial}{\partial g_{i}} W_{\text{eff}}(\langle S \rangle, g_{i}) \\ &= \frac{\partial W_{\text{eff}}}{\partial g_{i}} \Big|_{S} + \frac{\partial \langle S \rangle}{\partial g_{i}} \frac{\partial W_{\text{eff}}}{\partial S} \Big|_{g_{i}} = \frac{\partial W_{\text{eff}}}{\partial g_{i}} \Big|_{S} \end{split}$$

4. ILS from DGLVZ

• Introduce $W_{\text{tree}} = \sum g_i \mathcal{O}_i$.

• From DV, calculate W_{eff} and $\langle W_{tree} \rangle$ in $W_{eff} = W_{n.p.} + \langle W_{tree} \rangle$.

• Is $W_{n.p.}$ independent of g_i as a function of Λ , g_i and $\langle O_i \rangle$? This is the linearity principle.

Note:

 $egin{array}{lll} rac{\partial W}{\partial S} = 0 & egin{array}{ccc} W_{ ext{eff}} & = W_{ ext{VY}} & +W_{ ext{inst}} \ \langle W_{ ext{eff}}
angle \ & \langle W_{ ext{eff}}
angle \ & | \ & \langle W_{ ext{tree}}
angle & ext{Calculate separately} \ & W_{ ext{n.p.}}. \end{array}$

Restriction on the matter rep.

We impose:

• Vector-like , i.e. gauge-invariant mass terms can be given to all fields.

• No U(1) factor left in low energy.

• Each gauge invariants \mathcal{O}_i is a polynomial of F_a 's. e.g. $F_i = \operatorname{tr} \Phi^i$, $(i = 1, \dots, N_c)$ $\mathcal{O} = F_i F_j F_k \cdots = (\operatorname{tr} \Phi^i)(\operatorname{tr} \Phi^j)$, etc.

• Either the R-charge of Λ vanishes, or satisfies the Restriction (\clubsuit) :

no dynamical constraints among $\langle F_a \rangle$ $P(\langle F_1 \rangle, \langle F_2 \rangle, \cdots) = 0.$

on constraints...

(**♣**) may sounds a serious restriction, but it is **NOT**!

Example: SU(Nc) SYM with N_f pairs of fundamentals Q_i , \tilde{Q}_i . Gauge invariants: $T_{ij} = Q_i^a \tilde{Q}_{ja}$,

$$B_{ijkl\dots} = \epsilon_{abc\dots}Q_i^a Q_j^b Q_k^c \cdots$$
$$\tilde{B}_{ijkl\dots} = \epsilon_{abc\dots}\tilde{Q}_i^a \tilde{Q}_j^b \tilde{Q}_k^c \cdots$$

 $N_c > N_f$: No constraints.

 $N_c = N_f$: One constraint:

However, R-charge of Λ is zero. \sim need not impose (\clubsuit)!

The SO, Sp cases are quite similar.
(Non-)existence of constraints can be checked by DV. (more about this later...)

How to prove the ILS from the DV? Strategy

• Step 1. Shows $W_{n.p.} = (N_c - N_f) \langle S \rangle$.

• **Step 2.** Shows, if there's no dynamical constraint (♣),

 $\langle S
angle = f(\langle F_i
angle, \Lambda, \ arphi_i)$

Do not depend explicitly on g_i .

Ş

• If the R-charge of Λ vanishes, $W_{n.p.} = 0$ from Step 1.

• If it does not vanish, by the restriction (\clubsuit) and Step 2, $W_{n.p.} \propto S$ is independent of the coupling constants.

This is the linearity principle. Q.E.D.

Step 1. We show $W_{n.p.} = (N_c - N_f)S.$ $\underbrace{V}_{\text{(vertices)}} - \underbrace{E}_{\text{(propagators)}} + \underbrace{L}_{\text{(loops)}} = 1$ • V, E and L can be counted by $g_j\partial/\partial g_j, \quad -m_i\partial/\partial m_i, \quad S\partial/\partial S$ $\left(1-Srac{\partial}{\partial S}
ight)D=\left(\sum m_irac{\partial}{\partial m_i}+\sum g_jrac{\partial}{\partial g_j}
ight)D.$ the contrib. of D to $\langle W_{\text{tree}} \rangle$ ullet One loop diagrams $\propto N_f S \log m$ Another contrib. $N_f S$ to $\langle W_{
m tree}
angle$ $\langle W_{\text{tree}} \rangle = N_f S + \left(1 - S \frac{\partial}{\partial S}\right) \sum D$ • Because $\frac{\partial W_{\text{eff}}}{\partial S} = \frac{\partial}{\partial S}(W_{\text{VY}} + \sum D) = 0,$ $\langle W_{\text{tree}} \rangle = \sum D + S \frac{\partial W_{\text{VY}}}{\partial S}.$

• Hence $W_{n.p.} = (N_c - N_f)S.$

Note $N_c - N_f$ is half the R-charge of Λ^eta

Step 2.

We show *S* is independent of g_i when expressed as a function of Λ and $\langle O_i \rangle$.

个

The same as inquiring whether S does not change when g_i 's are varied as long as $\langle O_i \rangle$ remain fixed .

by the factorization, the same as fixing $\langle F_a \rangle$

Take $O_1 = F_1$, $O_2 = F_2$, ..., $O_r = F_r$, and O_i (i > r) be polnomials

<DERIVATION>

• From $\delta(\partial W_{
m eff}/\partial S)=0$,

$$-rac{\partial^2 W_{ ext{eff}}}{\partial S \partial S} \delta \langle S
angle = \sum_i \delta g_i rac{\partial^2 W_{ ext{eff}}}{\partial g_i \partial S}.$$

• Hence $\delta \langle F_j \rangle = \sum_i \delta g_i G_{ij}$ where

$$egin{aligned} G_{ij} &= rac{\partial^2 W_{ ext{eff}}}{\partial g_i \partial g_j} - rac{\partial^2 W_{ ext{eff}}}{\partial g_i \partial S} rac{\partial^2 W_{ ext{eff}}}{\partial S \partial g_j} ig/rac{\partial^2 W_{ ext{eff}}}{\partial S \partial S} \ &= rac{\partial \langle O_i
angle}{\partial g_j} - rac{\partial \langle O_i
angle}{\partial S} rac{\partial^2 W_{ ext{eff}}}{\partial S \partial g_j} ig/rac{\partial^2 W_{ ext{eff}}}{\partial S \partial S}. \end{aligned}$$

• From factorization,

$$G_{ij} = \langle rac{\partial O_i}{\partial F_a}
angle G_{aj}.$$

Hence

$$\delta \langle F_j
angle = \sum_{a} \left(\delta g_i \langle rac{\partial O_i}{\partial F_a}
angle
ight) G_{aj}$$

This sum only runs over $1, 2, \ldots, r$

• Similarly, one obtains

$$-rac{\partial^2 W_{ ext{eff}}}{\partial S \partial S} \delta \langle S
angle = \sum_{a} \left(\delta g_i \langle rac{\partial O_i}{\partial F_a}
angle
ight) rac{\partial \langle F_a
angle}{\partial S}$$

• The restriction (\clubsuit) ensures that the rank of G_{ij} is maximal.

Thus, $\delta \langle F_i \rangle = 0$ implies $\delta \langle S \rangle = 0$.

<u>N.B.</u>

When the rank of G_{ij} is not maximal, G_{ij} contains the info of the dynamical constraints. Further, G_{ij} can be computed perturbatively!

₩

The dynamical constraints, if any, can be readily studied in this approach.

5. Conclusions

Summary

• We derived the ILS linearity principle in the framework of Dijkgraaf-Vafa

Future work

Directly related to this work:

• Lifting the restriction (\clubsuit)

More generally, interesting directions around the DV framework are:

- Direct topological twisting of $\mathcal{N}=1$ SYM theories
- Extending to matter superfields not in a vector-like representation.