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1. Introduction to DV

d = 4, N = 1 DUALITY Old
SYM theories ⇐⇒ matrix models

• Gauge Theory : Nc Finite and Fixed

Φ: adjoint, Nc × Nc
S: gaugino condensate trW αWα
Wα: (λα (gaugino), Fµν

+ (field strength))

• Matrix Model : Planar Limit

Φ: M × M matrix,

S: ’t Hooft coupling M → ∞ with S fixed

Gauge Matrix

Bare superpotential Action

Wtree(Φ) Wtree(Φ)
⇓ ⇓

Eff. superpotential Free energy
Weff(S) F(S)

• The Correspondence :

Weff(S) = Nc
∂F

∂S
conjectured to be EXACT



First Indication — Factorization

? Matrix Model Side

Example:
∫

dΦ exp

[

−
M

S

(
1

2
m trΦ2 +

1

3
g trΦ3

)]

• (Propagators)−1 and couplings ∝ M/S
• V︸︷︷︸

vertices

− E︸︷︷︸
propagators

+ h︸︷︷︸

index loops

= χ
︸︷︷︸

Euler#

⇓

diagram ∝ Mh
(

M

S

)V −E

= MχSV −E
;

M → ∞, planars dominate,

correlation functions factorize:

in 〈AB〉,

〈A〉〈B〉
h = 5 ;

M4S2

〈AB〉conn.
h = 3 ;

M2S2

(E = 5, V = 4)



?Gauge theory side

Chiral VEVs factorize:

〈Φ1(x)Φ2(y)〉 = 〈Φ1(x)〉〈Φ2(y)〉

Because

• ∂µΦ1(x) = {D̄, [D, Φ1(x)]} is D̄-exact.

• Hence,

∂µ〈Φ1(x)Φ2(y)〉 = 〈{D̄, [D, Φ1(x)]}Φ2(y)〉

= 〈[D, Φ1(x)]{D̄, Φ2(y)}〉

= 0

• Next, Take |x − y| → ∞

• Finally use the Cluster Property.



Stringy ideas behind the proposal

DV arrived this proposal

by chasing the following dualities:

N = 1 SYM
!!!

←→ matrix model

∩ ‖
D5 wrapped on B brane on

S2 in CY
twist
=⇒ S2 in CY

largeN
dual l l largeN

dual

IIB on CY B model on CY

with flux in S3 twist
=⇒ with flux in S3



Checking the proposal

Known Exact Results
Wtree = 0 (ADS superpotential,

SW curve...)

⇓
Use the (conjectured)

ILS linearity!
(more on this in section 2.)

⇓

Wtree 6= 0 Weff(S)

⇑
Use Matrix Model!

⇑

Wtree(Φ)



Field-theoretic derivations

There are two:

• Dijkgraaf-Grisaru-Lam-Vafa-Zanon

Perturbation in an external gaugino

(more on this in section 3.)

• Cachazo-Douglas-Seiberg-Witten ,

Seiberg

Factorization and generalized anomaly

⇓
We can now use DV to study SYM!

An example:

the ILS linearity principle from DV



2. Brief Review of ILS

From the bare lagrangian

Lbare = L0 +

∫

d2θWtree(Φ) + c.c.,

where Wtree =
∑

giOi

⇓
To the low energy superpotential∫

d2θ Weff(Φ)

holomorphy

Coupling constants gi as the vevs of chi-

ral superfields

;

Weff(Φ) depends only on gi , not on gi.

symmetry

• Many classical symmetries on chiral su-

perfields and coupling constants.

• Even anomalous symmetries are useful

once one assigns charges to the dynami-

cal scale Λ appropriately.



classical and perturbative limit

• In the classical limit Λ → 0 , Weff(Φ)

must approach Wtree(Φ).

• If one takes some coupling gi → 0 ,

Weff should smoothly become Wtree.

⇓
Weff does not contain negative powers

of Λ and gi.

Strong constraint for in Weff(Φ) ,

fixing completely in some simple cases .

Example.

SU(Nc) SYM with Nf < Nc pairs of quarks

Qi and Q̃i.

• Gauge invariants are

Tij = QiQ̃j.

• Wtree = mijTij as the bare superpo-

tential

• SU(Nf)× SU(Nf) flavor symmetry on

quarks and antiquarks.



• R-charges:
θ Q Q̃ m Wα

R-charge 1 0 0 2 1

• The anomaly from

q → e−iφq, λ → e+iφλ,

leads to:

θ → θ + 2(Nc − Nf)φ.

Because

Λ3Nc−Nf ∼ Λ
3Nc−Nf
0 exp

(

−
8π2

g2
0

+ iθ

)

,

the R-charge of Λ3Nc−Nf is 2(Nc − Nf) .

⇓

Weff = c

(

Λ3Nc−Nf

det Tij

)1/(Nc−Nf)

+ mijTij
︸ ︷︷ ︸

↗

,

the coeff. is fixed by m → 0 limit.



the linearity principle

• The result can be summarized as

Weff = Wn.p.
︸ ︷︷ ︸

non-perturbative,

independent of

coupling constants

+Wtree

• Various other models have this form.

ILS proposed this linearity as an organiz-

ing principle.

• However, symmetry arguments are not

always strong enough.

Another Example

• Consider N = 1 SU(Nc) SYM with one

adjoint Φ.

• The R-charge of Λ is zero .

• Introduce the bare superpotential

m trΦ2/2.

• Symmetry alone cannot exclude the cor-

rections of the form mΛ2.



3. Brief Review of DGLVZ

How to derive Dijkgraaf-Vafa?

⇓
Directly equate Feynman rules in the

gauge theory and in the matrix model .

Strategy

1. Introduce an external gauge super-

field. In particular, introduce a space-

time constant gaugino.

2. Perturbatively integrate out the mat-

ter superfields. Winst(S)

3. Make the gauge superfield dynamical.

Weff(S) = WVY(S)
︸ ︷︷ ︸

dynamical effect
from the gauge superfield

+Winst(S)

Feynman rules for step 2

=Feynman rules for Matrix Model



the propagator

〈ΦΦ〉 =
m̄

p2 + mm̄ + W απα
where

p : bosonic momentum,
W α : field strength superfield,
πα : fermionic momentum.

Integration of loop momenta:

l∏

a=1

(
∫

d4pa

(2π)4

∫

d2πa

)

=⇒ Every l-loop diagram carries a factor

of Wα
2l .

=⇒ if Wα = 0, no correction to F terms.

This is the Perturbative

Non-Renormalization Theorem!

What if Wα 6= 0?



Origin of Planarity

• trW m
α is D̄-exact for m ≥ 3, i.e. ∼ zero

in the F terms. (CDSW)

• Therefore, Weff is a function of

32πS = trW αWα.

;

To give W 2l
α requires at least l index

loops.

• # of index loops h satisfies

h = l + 1 − 2 × genus.

l = 3 l = 3
∧ ∨

h = 4 h = 2

Only GENUS 0 diagrams contribute!

• Further tricks reveal the resulting Feyn-

man rules are the same as those of the

matrix models in the planar limit.



Making the vector superfield dynamical

This introduces the Veneziano-Yankielowicz

term

WVY = NcS(1 − log
S

Λ3
).

(Λ: the dynamical scale of SQCD)

There are arguments against further corrections.

The total effective superpotential:

Weff(S) = WVY(S) + Winst(S).

• 〈S〉 is determined by the extremaliza-

tion

∂Weff/∂S = 0.

• For Wtree =
∑

giOi, the vevs are

〈Oi〉 =
∂

∂gi
Weff(〈S〉, gi)

=
∂Weff

∂gi

∣
∣
∣
∣
S

+
∂〈S〉

∂gi

∂Weff

∂S

∣
∣
∣
∣
gi

=
∂Weff

∂gi

∣
∣
∣
∣
S
.



4. ILS from DGLVZ

• Introduce Wtree =
∑

giOi.

• From DV, calculate Weff and 〈Wtree〉 in

Weff = Wn.p. + 〈Wtree〉.

• Is Wn.p. independent of gi as a function

of Λ , gi and 〈Oi〉 ? This is the linearity

principle.

Note:

Weff = WVY +Winst
∂W
∂S = 0 ⇓

〈Weff〉

−

〈Wtree〉 Calculate separately

=

Wn.p.



Restriction on the matter rep.

We impose:

• Vector-like , i.e. gauge-invariant mass

terms can be given to all fields.

• No U(1) factor left in low energy.

• Each gauge invariants Oi is a polyno-

mial of Fa’s. e.g.

Fi = trΦi, (i = 1, . . . , Nc)

O = FiFjFk · · · = (trΦi)(trΦj), etc.

• Either the R-charge of Λ vanishes, or

satisfies the Restriction (♣) :

no dynamical constraints

among 〈Fa〉
P (〈F1〉, 〈F2〉, · · · ) = 0.



on constraints...

(♣) may sounds a serious restriction, but

it is NOT!

Example: SU(Nc) SYM with Nf pairs of

fundamentals Qi, Q̃i.

Gauge invariants: Tij = Qa
i Q̃ja,

Bijkl... = εabc...Q
a
i Qb

jQ
c
k · · ·

B̃ijkl... = εabc...Q̃
a
i Q̃b

jQ̃
c
k · · ·

Nc > Nf : No constraints.

Nc = Nf : One constraint:

classical quantum

⇒

det Tij = BB̃ det Tij − BB̃ = Λ2Nf

However, R-charge of Λ is zero.

; need not impose (♣)!



Nc < Nf :

classical quantum

⇒

det Tij = BB̃ Dissolves!

Satisfies (♣)!

• The SO, Sp cases are quite similar.

• (Non-)existence of constraints can be

checked by DV. (more about this later...)



How to prove the ILS from the DV?

Strategy

• Step 1. Shows Wn.p. = (Nc −Nf)〈S〉.
• Step 2. Shows, if there’s no dynami-

cal constraint (♣),

〈S〉 = f(〈Fi〉, Λ, gi×)

Do not depend explicitly on gi.
;

• If the R-charge of Λ vanishes, Wn.p. = 0

from Step 1.

• If it does not vanish, by the restriction

(♣) and Step 2, Wn.p. ∝ S is independent

of the coupling constants.

This is the linearity principle. Q.E.D.



Step 1.

We show Wn.p. = (Nc − Nf)S.

• V︸︷︷︸
#(vertices)

− E︸︷︷︸
#(propagators)

+ L︸︷︷︸

#(loops)

= 1

• V , E and L can be counted by

gj∂/∂gj, − mi∂/∂mi, S∂/∂S

⇓
(

1 − S
∂

∂S

)

D =

(
∑

mi
∂

∂mi
+

∑

gj
∂

∂gj

)

D.

︸ ︷︷ ︸

the contrib. of D to 〈Wtree〉
• One loop diagrams ∝ NfS log m ⇒
Another contrib. NfS to 〈Wtree〉 ⇒

〈Wtree〉 = NfS +

(

1 − S
∂

∂S

)
∑

D

• Because
∂Weff

∂S
=

∂

∂S
(WVY +

∑

D) = 0,

〈Wtree〉 =
∑

D + S
∂WVY

∂S
.

• Hence Wn.p. = (Nc − Nf)S.

Note Nc − Nf is half the R-charge of Λβ



Step 2.

We show S is independent of gi when

expressed as a function of Λ and 〈Oi〉.
⇑

The same as inquiring whether S does

not change when gi’s are varied as long

as 〈Oi〉 remain fixed
︸ ︷︷ ︸

by the factorization,
the same as fixing 〈Fa〉

.

Take O1 = F1, O2 = F2, . . . , Or = Fr, and

Oi (i > r) be polnomials

<DERIVATION>

• From δ(∂Weff/∂S) = 0,

−
∂2Weff

∂S∂S
δ〈S〉 =

∑

i

δgi
∂2Weff

∂gi∂S
.

• Hence δ〈Fj〉 =
∑

i δgiGij where

Gij =
∂2Weff

∂gi∂gj
−

∂2Weff

∂gi∂S

∂2Weff

∂S∂gj

/∂2Weff

∂S∂S

=
∂〈Oi〉

∂gj
−

∂〈Oi〉

∂S

∂2Weff

∂S∂gj

/∂2Weff

∂S∂S
.



• From factorization,

Gij = 〈
∂Oi

∂Fa
〉Gaj.

Hence

δ〈Fj〉 =
∑

a
︸︷︷︸

This sum only runs over 1, 2, . . . , r

(

δgi〈
∂Oi

∂Fa
〉

)

Gaj

• Similarly, one obtains

−
∂2Weff

∂S∂S
δ〈S〉 =

∑

a

(

δgi〈
∂Oi

∂Fa
〉

)
∂〈Fa〉

∂S

• The restriction (♣) ensures that the

rank of Gij is maximal.

Thus, δ〈Fi〉 = 0 implies δ〈S〉 = 0.



N.B.

When the rank of Gij is not maximal, Gij

contains the info of the dynamical con-

straints. Further, Gij can be computed

perturbatively!

⇓
The dynamical constraints, if any, can be

readily studied in this approach.



5. Conclusions

Summary

• We derived the ILS linearity principle in

the framework of Dijkgraaf-Vafa

Future work

Directly related to this work:

• Lifting the restriction (♣)

More generally, interesting directions around

the DV framework are:

• Direct topological twisting of N = 1

SYM theories

• Extending to matter superfields not in

a vector-like representation.


