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1. Introduction to DV |

d=4,N =1 DUALITY
SYM theories —

e Gauge Theory: N. Fini
$: adjoint, N, X Ng

S: gaugino condensate tr W
Wa: (Ao (gaugino), Fy,, T (field

Old
matrix models

te and Fixed

AW,
strength))

e Matrix Model : Planar Limit

$: M x M matrix,

S: 't Hooft coupling M — oo with S fixed

Gauge Matrix
2are superpotential Action
Wtree((I)) Wtree((I))
\ 2
=1r. superpotential | Free energy
Weff(S) ]:(S)
e T he Correspondence :
Weff(S) — Nca—}-
0S

conjectured to be EXACT



* Matrix Model Side
Example:

M /1 5 1 3
/dfbexp -y gmtrfb —l—ggtrq)

e (Propagators)—! and couplings o M/S

° V— 2y —I—_ e = X,
vertices propagators index loops Euyler#
e

M\ V—E
diagram o« M" (?) — MXSV—FE

¢

M — oo, planars dominate,
correlation functions factorize:

in (AB),
X X (AB) oAy
X X (AB)conn. h]\jz?:g’z\”

(E=5, V =4)



*Gauge theory side
Chiral VEVs factorize:

(P1(x)P2(y)) = (P1(x)) (P2(y))
Because

¢ 9,%1(x) = {D, D, ®1(x)]} is D-exact.

e Hence,

0 (®1(x)®2(y)) = ({D, [D, ®1(x)] } ®2(y))

= ([D, 21(2)|{ D, 22(y)})
=0

e Next, Take |z — y| — oo

e Finally use the Cluster Property.



DV arrived this proposal
by chasing the following dualities:

N=1sSYM ' matrix model
a |
D5 wrapped on B brane on
S2 in CY twist S2 in CY
large N I large N
dual dual
IIB on CY B model on CY
with flux in §3 2% with flux in S3




Checking the proposal

Known Exact Results
Wiree = 0 (ADS superpotential,
SW curve...)

U

Use the (conjectured)
ILS linearity!
(more on this in section 2.)

U

Wtree 75 0 Weff(S)

)

Use Matrix Model!

f

Wtree((I))



Field-theoretic derivations
There are two:

e Dijkgraaf-Grisaru-Lam-Vafa-Zanon
Perturbation in an external gaugino
(more on this in section 3.)

e Cachazo-Douglas-Seiberg-Witten ,
Seiberg
Factorization and generalized anomaly

2
We can now use DV to study SYM!

An example:
the ILS linearity principle from DV



2. Brief Review of ILS |

From the bare lagrangian

Lpare = Lo + /dzHWtree((I)) + C.C.,

where Wiree = ) 9;0;
4

To the low energy superpotential
/d29 Weff((I’)

Coupling constants g; as the vevs of chi-
ral superfields

¢

Wesr(®) depends only on g; , not on g;.

e Many classical symmetries on chiral su-
perfields and coupling constants.

e Even anomalous symmetries are useful
once one assigns charges to the dynami-
cal scale A appropriately.



e In the classical limit A — 0, Wee(P)
must approach Wiee(®P).
e If one takes some coupling g, — 0 ,
Wesr sShould smoothly become Wiyee-

4
Wesr does not contain negative powers
of A and g;.

Strong constraint for in Wgge(®)
fixing completely in some simple cases .

SU(N¢) SYM with Ny < N, pairs of quarks
Q; and Q;.
e Gauge invariants are

T;j = Q;Qj-
® Wiree = m;;1I;; as the bare superpo-
tential
o SU(Ny)xSU(Nyg) flavor symmetry on
quarks and antiquarks.



e R-charges:

9 Q Q m W,
R-charge |1 0 0 2 1

e T he anomaly from

q — e_wq, A — eTPP)

9

leads to:

0 — 6+ 2(Ne — Nyf)o.

Because

_ 3N.—N 82
ASNC Nf ~Y AO / exp <—g2 —I— ZH) )
0

the R-charge of A3Ne=NVris 2(IN, — Ny) .

U

+ my;T554,
N’

/
the coeff. is fixed by m — 0 limit.

ASNC—Nf> 1/(Nc—Ny)

Wesf = C
eff ( det T’LJ



e [ he result can be summarized as
Weasr = Wh.po. + W,
eff D_, tree
non-perturbative,

independent of
coupling constants

e Various other models have this form.
ILS proposed this linearity as an organiz-
iINng principle.

e However, symmetry arguments are not
always strong enough.

e Consider N' =1 SU(N.) SYM with one
adjoint &,

e The R-charge of A is zero .

e Introduce the bare superpotential
mtr &2 /2.

e Symmetry alone cannot exclude the cor-
rections of the form mA?Z2.



_3. Brief Review of DGLVZ |

How to derive Dijkgraaf-VVafa?

\
Directly equate Feynman rules in the
gaugdge theory and in the matrix model .

1. Introduce an external gauge super-
field. In particular, introduce a space-
time constant gaugino.

2. Perturbatively integrate out the mat-
ter superfields. Wit (S)

3. Make the gauge superfield dynamical.
Wesr(S) = WVY(Sl +Winst(5)

dynamic?gnl effect
from the gauge superfield

Feynman rules for step 2
—=Feynman rules for Matrix Model




m

(PP) = — -
p? 4+ mm + W,
where
p : bosonic momentum,
we : field strength superfield,
To + fermionic momentum.

Integration of loop momenta:

l d4pa 2
E( i ] ¢ ”“)

—> Every [-loop diagram carries a factor
of W2l .

— If W, = 0, no correction to F terms.

This is the Perturbative
Non-Renormalization T heorem!

What if W, # 07



o tr W is D-exact for m > 3, i.e. ~ zero
in the F terms. (CDSW)

e T herefore, Wesr is a function of
327S = tr WW,.

¢

To give W2l requires at least [ index
loops.

e 7 of index loops h satisfies
h=10l+1—-—2 X genus.

A V
h=4 h =2

Only GENUS 0 diagrams contribute!

e Further tricks reveal the resulting Feyn-
man rules are the same as those of the
matrix models in the planar limit.



This introduces the Veneziano-Yankielowicz
term

S
Wyy = NeS(1 — log F)
(A: the dynamical scale of SQCD)

There are arguments against further corrections.

The total effective superpotential:
Weff(s) — WVY(S) + VVinst(S)'

e (S) is determined by the extremaliza-

tion
OWesr/0S = 0.
o For Wiree = > 9;0;, the vevs are
o,
(i) = - —Werr((5), i)

1
_ OWerr N 0(S) OWesr
dg; |l Og; 0S8

_ OWerr

gi 99,

S



4. ILS from DGLVZ |

e Introduce Wtree = Zgzoz.

e From DV, calculate Weg and (Wiree) in
Westr = Wh.p. + (Wiree)-

e Is Wi p. independent of g; as a function
of A, g; and (O;) ? This is the linearity
principle.

Note:
Werr = Wyy +Winst
3_%/ —0 I
<Weff>

(Wiree)  Calculate separately
|

Wn.p.



We impose:
e Vector-like , 1.e. gauge-invariant mass
terms can be given to all fields.

e No U(1) factor left in low energy.

e Each gauge invariants O; is a polyno-
mial of F,’s. e.g.

Fi=tr®’, (i=1,...,Ng)

O = F;F;F--- = (tr &) (tr &7), etc.

e Either the R-charge of A vanishes, or
satisfies the Restriction (&) :

no dynamical constraints
among (Fg)
P((F1),(F2),-++) = 0.




(&) may sounds a serious restriction, but
itis NOT!

Example: SU(Nc) SYM with Np pairs of
fundamentals Q;, Q;.

Gauge invariants: T;; = CbQ,?Qja,

Bijkl... = €abe... Q7 QjQp -+ -

eabc...Q?Q?Qz ce

Bijki...

Ne > Nf : No constraints.
Ne = Nf : One constraint:

classical quantum

*
- O . .

det T;; = BB

However, R-charge of A is zero.
~> need not impose (&)!



NC<Nf:

classical quantum
/i 4
|
|
I =
|
e o = o oL o
L7 ./ %
detT;; = BB Dissolves!

Satisfies (&)!

e The SO, Sp cases are quite similar.
e (Non-)existence of constraints can be
checked by DV. (more about this later...)



How to prove the ILS from the DV?

e Step 1. Shows Wy p. = (Nc—Nf)(S).
e Step 2. Shows, if there’s no dynami-
cal constraint (&),

<S> — f((Fi>9A9 g@)
Do not depend explicitly on g;.

¢

e If the R-charge of A vanishes, Wp p. =0
from Step 1.

e If it does not vanish, by the restriction
(&) and Step 2, Wy p. x S is independent
of the coupling constants.

This is the linearity principle. Q.E.D.



We show Wy p. = (N¢ — Nf)S.

° A E + L, =1

#(vertices) #(propagators) F(loops)

e V, F and L can be counted by
g;0/0g;, —m;0/0m;, S9/0S

0

4
0 0
( 35) (Z m’ami + Zgﬂagj>

7

the contrib. c;? D to (Wiree)

e One loop diagrams o« NS logm =
Another contrib. NS to (Wiree) =
o
(Wiree) = NS + <1 — S%> ZD
Because = — (W D)=0
* 55 — as Wy T2 D) =0,

e Hence Wn_p_ = (Nc — Nf)S.

Note N.— Ny is half the R-charge of AP



We show S is independent of g; when
expressed as a function of A and (O;).

)
The same as inquiring whether S does
not change when g;’s are varied as long
as {O;) remain fixed

by the fa&forization,
the same as fixing (Fy)

Take Oy = Fy, Oy = F5, ..., O, = F,, and
O; (¢ > r) be polnomials
<DERIVATION>

e From 6(OWeg/0S) = 0,

0% Wasr
_ 5(S) = 5q;
9S9S < > Z g;

e Hence §(F;) = ) ,dg9;G;; where

 0*Werr  0*Werr0°Werr /0°Werr

~ 9g;0g; 09,08 8S9dg;/ 0S0S

_9{(0;) 9(0;) *Wesr 10*Werr
a9, 9S 0Sdg;/ 0SS

]




e From factorization,

80,
Gij = <8—Fa>Gaj°

Hence
00;
5<Fj> — Z (59’&( >> Gaj
—
This sum only runs over 1,2,...,r

e Similarly, one obtains

O*Wesr
— 5(S) =
8SOS (5) Z( ’<8Fa

a

)7

e The restriction (&) ensures that the
rank of G;; is maximal.

Thus, §(F;) = 0 implies §(S) = 0.



When the rank of G;; is not maximal, G;;
contains the info of the dynamical con-
straints. Further, G;; can be computed
perturbatively!

\
The dynamical constraints, if any, can be
readily studied in this approach.



5. Conclusions |

e \\\Ve derived the ILS linearity principle in
the framework of Dijkgraaf-VVafa

Directly related to this work:
e Lifting the restriction (&)

More generally, interesting directions around
the DV framework are:

e Direct topological twisting of N/ = 1
SYM theories

e Extending to matter superfields not in

a vector-like representation.



