Comments on the Takahashi-Tanimoto tachyon vacuum solution

N. Ishibashi
University of Tsukuba

July 29, 2014

Classical solutions of the cubic SFT

$$
Q \Psi_{\mathrm{cl}}+\Psi_{\mathrm{cl}}^{2}=0
$$

- Tachyon vacuum solution (Schnabl, Okawa, Erler, Erler-Schnabl, ...)
- Marginal deformation (Kiermaier-Okawa-Rastelli-Zwiebach, Schnabl, Fuchs-Kroyter-Potting, ...)
- Relevant deformation (Bonora-Maccaferri-Tolla, ...)
- . .
- "Any background" solution (Erler-Maccaferri)

Takahashi-Tanimoto (TT) solutions

tachyon vacuum solution

$$
\begin{gathered}
\Psi_{\mathrm{TT}}=\int_{C_{L}} \frac{d \xi}{2 \pi i}\left(\left(e^{h}-1\right) j_{\mathrm{B}}(\xi)-(\partial h)^{2} e^{h} c(\xi)\right) I \\
j_{\mathrm{B}}=c T^{\mathrm{m}}+b c \partial c+\frac{3}{2} \partial^{2} c \\
e^{h(\xi)}=-\frac{1}{4}\left(\xi-\frac{1}{\xi}\right)^{2} \\
\end{gathered}
$$

Identity-based solutions

$$
\Psi_{\mathrm{cl}}=\mathcal{O} I
$$

- I: identity string field

$$
\Psi_{\mathrm{cl}}=\lim _{\alpha \rightarrow 0} \mathcal{O}_{0}^{\alpha}
$$

- Impossible to calculate observables

$$
E \sim \int \Psi_{\mathrm{cl}}^{3}=\lim _{\alpha \rightarrow 0}
$$

SFT around the identity-based solutions

$$
\begin{gathered}
\Psi \rightarrow \Psi_{\mathrm{cl}}+\Psi \\
\qquad S^{\prime}=-\frac{1}{g^{2}} \int\left[\frac{1}{2} \Psi Q \Psi+\Psi \Psi_{\mathrm{cl}} \Psi+\frac{1}{3} \Psi \Psi \Psi\right] \\
=-\frac{1}{g^{2}} \int\left[\frac{1}{2} \Psi Q^{\prime} \Psi+\frac{1}{3} \Psi \Psi \Psi\right] \\
Q^{\prime} \Psi=Q \Psi+\left\{\Psi_{\mathrm{cl}}, \Psi\right\}_{*}
\end{gathered}
$$

- In the case of identity-based solutions, Q^{\prime} can be expressed by using local fields on the worldsheet. For TT solution

$$
Q^{\prime}=\oint \frac{d \xi}{2 \pi i}\left(e^{h} j_{\mathrm{B}}(\xi)-(\partial h)^{2} e^{h} c(\xi)\right)
$$

Evidences

There are many evidences for the claim that Ψ_{TT} describes tachyon vacuum:

- No physical open string excitation around the background $\Psi_{\text {TT }}$ (Kishimoto-Takahashi, Inatomi-Kishimoto-Takahashi)
- Open string amplitudes vanish (Takahashi-Zeze)
- Existence of an unstable solution around the background Ψ_{TT} (Takahashi, Kishimoto-Takahashi)

In this talk

- I would like to add one more to the list of these evidences.
- I will consider the Erler-Schnabl solution in the SFT around the TT solution.
- I will calculate the observables of the solution and the results indicate that the TT solution corresponds to the tachyon vacuum.
- I will study the SFT around the TT solution and discuss how we should calculate various quantities.
c.f. Takahashi's talk

Outline

(1) Erler-Schnabl solution
(2) Observables
(3) SFT around the TT solution
(4) Conclusions and discussions

Erler-Schnabl solution

Tachyon vacuum solution

$$
\begin{aligned}
\Psi_{\mathrm{ES}} & =\frac{1}{1+K}(c+Q(B c)) \\
B & =\int_{-i \infty}^{i \infty} \frac{d z}{2 \pi i} b(z) I \\
c & =c(0) I \\
K & =Q B
\end{aligned}
$$

All the conditions in Sen's conjectures are checked

- homotopy operator $A=B \frac{1}{1+K}$, s.t. $Q A=1$
- $E\left[\Psi_{\mathrm{ES}}\right]=-\frac{V}{2 \pi^{2}}$

Erler-Schnabl solution around the TT solution

One can construct ES solution in the SFT around the TT solution

$$
\begin{aligned}
S^{\prime}= & -\frac{1}{g^{2}} \int\left[\frac{1}{2} \Psi Q^{\prime} \Psi+\frac{1}{3} \Psi \Psi \Psi\right] \\
\Psi_{\mathrm{ES}}^{\prime} & =\frac{1}{1+K^{\prime}}\left(c+Q^{\prime}(B c)\right) \\
K^{\prime} & =Q^{\prime} B \\
& =K+\left\{\Psi_{\mathrm{TT}}, B\right\}
\end{aligned}
$$

- With the homotopy operator $A^{\prime}=B \frac{1}{1+K^{\prime}}$, this solution will correspond to the tachyon vacuum.

Remark

Here we assume that $\frac{1}{1+K^{\prime}}$ is well-defined with the definition

$$
\begin{aligned}
\frac{1}{1+K^{\prime}} & =\frac{1}{1+K+\left\{B, \Psi_{\mathrm{TT}}\right\}} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{1+K}\left\{B, \Psi_{\mathrm{TT}}\right\}\right)^{n} \frac{1}{1+K}
\end{aligned}
$$

Observables

We will calculate the observables of the $\Psi_{\text {ES }}^{\prime}$

$$
\begin{aligned}
E\left[\Psi_{\mathrm{ES}}^{\prime}\right] & =-S\left[\Psi_{\mathrm{ES}}^{\prime}\right] \\
& =E_{\Psi_{\mathrm{ES}}^{\prime}}-E_{\mathrm{TT}} \\
\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime} & =\langle V c\rangle_{\Psi_{\mathrm{ES}}^{\prime}}-\langle V c\rangle_{\mathrm{TT}}
\end{aligned}
$$

and show that they vanish.

- Assuming $\Psi_{\mathrm{ES}}^{\prime}$ corrsponds to the tachyon vacuum, this implies that the TT solution also coresponds to the tachyon vacuum.

Remark

- Recently Maccaferri gives a way to construct a regular solution out of an identity-based solution by a gauge transformation

$$
\begin{aligned}
\Psi_{\mathrm{TT}} \rightarrow & \Psi_{\mathrm{M}}=U Q U^{-1}+U \Psi_{\mathrm{TT}} U^{-1} \\
& U=1+B \frac{1}{1+K} \Psi_{\mathrm{TT}}
\end{aligned}
$$

The observables become

$$
\begin{aligned}
E\left[\Psi_{\mathrm{M}}\right] & =E\left[\Psi_{\mathrm{ES}}\right]-E\left[\Psi_{\mathrm{ES}}^{\prime}\right] \\
\operatorname{Tr}_{V} \Psi_{\mathrm{M}} & =\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}-\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime}
\end{aligned}
$$

What we will show $\left(E\left[\Psi_{\mathrm{ES}}^{\prime}\right]=\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime}=0\right)$ implies that Ψ_{M} is a tachyon vacuum solution.

§2 Observables

From

$$
\Psi_{\mathrm{ES}}^{\prime}=\frac{1}{1+K^{\prime}}\left(c+Q^{\prime}(B c)\right)
$$

one can derive

$$
\begin{aligned}
E\left[\Psi_{\mathrm{ES}}^{\prime}\right] & =-\frac{1}{6} \operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right] \\
\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime} & =\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]
\end{aligned}
$$

We would like to show that the RHS vanish.

Proof

One can show

$$
\begin{aligned}
\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right] & =0 \\
\operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right] & =0
\end{aligned}
$$

by using $Q^{\prime}\left(\frac{1}{\pi^{2}} b\right)=1, Q^{\prime} c=0$.

$$
\begin{aligned}
\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right] & =\operatorname{Tr}_{V}\left[\frac{1}{\sqrt{1+K^{\prime}}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) \frac{1}{\sqrt{1+K^{\prime}}} c\right] \\
& =0
\end{aligned}
$$

$Q^{\prime}\left(\frac{1}{\pi^{2}} b\right)=1, Q^{\prime} c=0$

Treating them more rigorously, these should be expressed as

$$
\begin{aligned}
e^{-\epsilon K} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K} & =e^{-2 \epsilon K} \\
e^{-\epsilon K} Q^{\prime} c e^{-\epsilon K} & =0
\end{aligned}
$$

With the $e^{-\epsilon K}$'s, we have worldsheet with no operator insertions and

$$
e^{-\epsilon K} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K}=e^{-2 \epsilon K}
$$

$$
\begin{aligned}
Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) & =\oint_{0} \frac{d z}{2 \pi i}\left(-\frac{\sin ^{2} \pi z}{\cos ^{2} \pi z} j_{\mathrm{B}}(z)+\frac{4 \pi^{2}}{\cos ^{4} \pi z} c(z)\right) \frac{1}{\pi^{2}} b(0) \\
& =1
\end{aligned}
$$

- $e^{-\epsilon K}\left(Q^{\prime} c\right) e^{-\epsilon K}=0$ can be proven in the same way.

$\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]=0$

$$
\begin{aligned}
\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right] & =\operatorname{Tr}_{V}\left[\frac{1}{\sqrt{1+K^{\prime}}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) \frac{1}{\sqrt{1+K^{\prime}}} c\right] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{1+K^{\prime}}}= & \frac{1}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} d t t^{-\frac{1}{2}} e^{-t} e^{-t K^{\prime}} \\
e^{-t K^{\prime}}= & \sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\infty} d t_{1} \cdots \int_{0}^{\infty} d t_{n+1} \\
& \quad \times \delta\left(\sum_{i=1}^{n+1} t_{i}-t\right) e^{-t_{1} K}\left\{B, \Psi_{\mathrm{TT}}\right\} e^{-t_{2} K} \cdots\left\{B, \Psi_{\mathrm{TT}}\right\} e^{-t_{n+1} K}
\end{aligned}
$$

$Q^{\prime}\left(\frac{1}{\pi^{2}} b\right)=1, Q^{\prime}(c)=0$ can be used safely.

Remark

- Actually, since $Q^{\prime} c=0, \Psi_{\mathrm{ES}}^{\prime}$ becomes identity-based

$$
\Psi_{\mathrm{ES}}^{\prime}=\frac{1}{1+K^{\prime}}\left(c+Q^{\prime}(B c)\right)=c
$$

- One can avoid this by replacing

$$
c \rightarrow c_{y}=c(i y) I, \quad(y \neq 0)
$$

$\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c_{y}\right], \operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c_{y} \frac{1}{1+K^{\prime}} Q^{\prime} c_{y}\right]$ are independent of y, and we get the same answers for the observables

§3 SFT around the TT solution

We have shown

$$
\begin{aligned}
E\left[\Psi_{\mathrm{ES}}^{\prime}\right] & =-\frac{1}{6} \operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right]=0 \\
\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime} & =\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]=0
\end{aligned}
$$

using the definition

$$
\begin{aligned}
e^{-t K^{\prime}} \equiv \sum_{n=0}^{\infty}(& -1)^{n} \int_{0}^{\infty} d t_{1} \cdots \int_{0}^{\infty} d t_{n+1} \\
& \times \delta\left(\sum_{i=1}^{n+1} t_{i}-t\right) e^{-t_{1} K}\left\{B, \Psi_{\mathrm{TT}}\right\} e^{-t_{2} K} \cdots\left\{B, \Psi_{\mathrm{TT}}\right\} e^{-t_{n+1} K}
\end{aligned}
$$

SFT around the TT solution

$$
S^{\prime}=-\frac{1}{g^{2}} \int\left[\frac{1}{2} \Psi Q^{\prime} \Psi+\frac{1}{3} \Psi \Psi \Psi\right]
$$

Since Q^{\prime} is given by a local operator, we should be able to show

$$
\begin{aligned}
E\left[\Psi_{\mathrm{ES}}^{\prime}\right] & =-\frac{1}{6} \operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right]=0 \\
\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime} & =\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]=0
\end{aligned}
$$

by dealing with the operator $K^{\prime}=Q^{\prime} B$ more directly.
We find that doing so is a little bit nontrivial.

Similarity transformation

Since K^{\prime} itself is still difficult to deal with, we use the relation discovered by Kishimoto-Takahshi

$$
\begin{aligned}
Q^{\prime}= & -\frac{1}{4} U Q U^{-1} \\
& U=e^{-q(\lambda)} U_{2} \\
q(\lambda)= & 2 \sum_{n=1}^{\infty} \frac{1}{n} q_{-2 n} \\
j_{\mathrm{gh}}(\xi)= & \sum_{m} \xi^{-m-1} q_{m}
\end{aligned}
$$

$U_{2}: b c$-shift operator

$$
\begin{aligned}
U_{2} c_{n} U_{2}^{-1} & =c_{n+2} \\
U_{2} b_{n} U_{2}^{-1} & =b_{n-2} \\
U_{2} \phi^{\mathrm{m}} U_{2}^{-1} & =\phi^{\mathrm{m}} \\
U_{2}|0\rangle & =b_{-3} b_{-2}|0\rangle \\
\langle 0| U_{2}^{-1} & =\langle 0| c_{-1} c_{0}
\end{aligned}
$$

- U_{2} is of ghost number -2

Useful relations

$$
\begin{aligned}
Q^{\prime} & =-\frac{1}{4} U Q U^{-1} \\
U c(\xi) U^{-1} & =\frac{\left(\xi^{2}-1\right)^{2}}{\xi^{2}} c(\xi) \\
U b(\xi) U^{-1} & =\frac{\xi^{2}}{\left(\xi^{2}-1\right)^{2}} b(\xi) \\
U|0\rangle & =\frac{1}{16} \partial b b(1) \partial b b(-1) c_{0} c_{1}|0\rangle \\
U^{-1}|0\rangle & =\frac{1}{16} \partial c c(1) \partial c c(-1) b_{-3} b_{-2}|0\rangle \\
\langle 0| U & =\langle 0| b_{2} b_{3} \\
\langle 0| U^{-1} & =\langle 0| c_{-1} c_{0}
\end{aligned}
$$

Useful relations

$$
\begin{aligned}
Q^{\prime} & =-\frac{1}{4} U Q U^{-1} \\
U|I\rangle & =\frac{1}{32} \partial b b(1)|I\rangle \\
U^{-1}|I\rangle & =2 \partial c c(1)|I\rangle \\
\langle I| U & =0 \\
\langle I| U^{-1} & =0
\end{aligned}
$$

Using the similarity transformation and these relations, it should be possible to calculate various quantities.

Q^{\prime} cohomology

- Kishimoto-Takahashi

$$
Q^{\prime}=-\frac{1}{4} U Q U^{-1}
$$

the representative state of the cohomology of Q^{\prime}

$$
\begin{array}{rll}
U c V(0)|0\rangle & : \quad \text { gh\# }=-1 \\
U \partial c c V(0)|0\rangle & : \quad \text { gh\# }=0
\end{array}
$$

- In conflict with the homotopy operator $A=\frac{1}{\pi^{2}} b$?

$$
\left\{Q^{\prime}, b(1)\right\}=1
$$

$U c V(0)|0\rangle, U \partial c c V(0)|0\rangle$

- These are outside of the Fock space (Inatomi-Kishimoto-Takahashi)

$$
\begin{aligned}
& U c V(0)|0\rangle \\
& \quad=\frac{1}{32} \partial b b(1) \partial b b(-1) \partial^{2} c \partial c c V(0)|0\rangle \\
& A U c V(0)|0\rangle=b(1) U c V(0)|0\rangle=0
\end{aligned}
$$

- $\left\{Q^{\prime}, b(1)\right\}=1$ is not correct with $\partial b b(1)$.
- Having some worldsheet with no operator insertions is crucial for $Q^{\prime} A=1$.

Observables

$$
\begin{aligned}
E\left[\Psi_{\mathrm{ES}}^{\prime}\right] & =-\frac{1}{6} \operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right]=0 \\
\operatorname{Tr}_{V} \Psi_{\mathrm{ES}}^{\prime} & =\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]=0
\end{aligned}
$$

are derived from $e^{-\epsilon K} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K}=e^{-2 \epsilon K}, e^{-\epsilon K} Q^{\prime} c e^{-\epsilon K}=0$.
Let us see if we can show

$$
\begin{aligned}
e^{-\epsilon K^{\prime}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K^{\prime}} & =e^{-2 \epsilon K^{\prime}} \\
e^{-\epsilon K^{\prime}} Q^{\prime} c e^{-\epsilon K^{\prime}} & =0
\end{aligned}
$$

instead.

$$
e^{-\epsilon K^{\prime}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K^{\prime}}=e^{-2 \epsilon K^{\prime}}
$$

$$
\left(e^{-\epsilon K^{\prime}}|I\rangle\right) * Q^{\prime}(b(1)|I\rangle) *\left(e^{-\epsilon K^{\prime}}|I\rangle\right)=e^{-2 \epsilon K^{\prime}}|I\rangle
$$

Inserting $Q^{\prime}=-\frac{1}{4} U Q U^{-1}$, the left hand side becomes

$$
\begin{aligned}
&- \frac{1}{4}\left(e^{-\epsilon K^{\prime}}|I\rangle\right) * U Q U^{-1}(b(1)|I\rangle) *\left(e^{-\epsilon K^{\prime}}|I\rangle\right) \\
& \quad=-\frac{1}{4} U\left(e^{-\epsilon \tilde{K}^{\prime}}|I\rangle * Q(2 c(1)|I\rangle) * e^{-\epsilon \tilde{K}^{\prime}}|I\rangle\right) \\
& \quad \rightarrow-\frac{1}{4} U\left(e^{-\epsilon \tilde{K}^{\prime}} Q(2 \pi c) e^{-\epsilon \tilde{K}^{\prime}}\right)
\end{aligned}
$$

where

$$
\tilde{K}^{\prime}=-\int_{-i \infty}^{i \infty} \frac{d z}{2 \pi i} T(z) \tan ^{2} \pi z
$$

$$
\tilde{K}^{\prime}=-\int_{-i \infty}^{i \infty} \frac{d z}{2 \pi i} T(z) \tan ^{2} \pi z
$$

We can use the method of Kiermaier-Sen-Zwiebach to show that \tilde{K}^{\prime} does not move the points on the boundary.

We cannot prove $e^{-\epsilon K^{\prime}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K^{\prime}}=e^{-2 \epsilon K^{\prime}}$.

Regularization

- The homotopy operator seems to be crucial for Ψ_{TT} to be a tachyon vacuum solution.
- The surface should be defined as a limit of regular surfaces anyway.
- We propose a regularization such that the homotopy operator becomes well-defined.

Regularization

Replace \tilde{K}^{\prime} by

$$
\tilde{K}_{\delta}^{\prime}=\int_{-i \infty}^{i \infty} \frac{d z}{2 \pi i} T(z) \frac{-\sin ^{2} \pi z+\delta}{\cos ^{2} \pi z}
$$

and take the limit $\delta \rightarrow 0$

Homotopy operator

With this prescription,

$$
\begin{aligned}
e^{-\epsilon K^{\prime}} Q^{\prime}\left(\frac{1}{\pi^{2}} b\right) e^{-\epsilon K^{\prime}} & =-\frac{1}{4} U\left(e^{-\epsilon \tilde{K}^{\prime}} Q(2 \pi c) e^{-\epsilon \tilde{K}^{\prime}}\right) \\
& \rightarrow-\frac{1}{4} U\left(\lim _{\delta \rightarrow 0} e^{-\epsilon \tilde{K}_{\delta}^{\prime}} Q(2 \pi c) e^{-\epsilon \tilde{K}_{\delta}^{\prime}}\right) \\
& =\frac{\pi}{4} U\left(\lim _{\delta \rightarrow 0} e^{-\epsilon \tilde{K}_{\delta}^{\prime}} \partial c c e^{-\epsilon \tilde{K}_{\delta}^{\prime}}\right) \\
& =e^{-2 \epsilon K^{\prime}}
\end{aligned}
$$

One also has $e^{-\epsilon K^{\prime}} Q^{\prime} c e^{-\epsilon K^{\prime}}=0$ and we can derive

$$
\operatorname{Tr}_{V}\left[\frac{1}{1+K^{\prime}} c\right]=\operatorname{Tr}\left[\frac{1}{1+K^{\prime}} c \frac{1}{1+K^{\prime}} Q^{\prime} c\right]=0
$$

§4 Conclusions and discussions

- We have calculated the observables of the Erler-Schnabl solution around the TT solution. The results imply that TT solution corresponds to the tachyon vacuum.
- We explain how to deal with kinetic operator of the SFT around the TT solution.
- We will be able to calculate various quantities from the SFT around the TT solution. We may be able to see its relation to the VSFT. (Drukker, Drukker-Okawa)

