Light-cone gauge superstring field theory in linear dilaton

background

N. Ishibashi

University of Tsukuba

22 September, 2016
JPS meeting

Light-cone gauge closed super SFT

$$
S=\int\left[\frac{1}{2} \Phi \cdot\left(i \partial_{t}-\frac{L_{0}+\tilde{L}_{0}-1}{p^{+}}\right) \Phi+\frac{g_{s}}{3} \Phi \cdot(\Phi * \Phi)\right]
$$

propagator

vertex

Feynman amplitudes diverge.

Feynman amplitudes for superstrings suffer from

(1) infrared divergences
(2) spurious singularities

> (a) collisions of the picture changing operators (or T_{F})
> (b) divergences of the $\beta \gamma$ partition function

- formulations using supermoduli space (Witten)
- avoind the singularities patchwise (Sen-Witten)
- SFT with nonpolynomial interactions (Sen)

In the LC SFT, we do not have the problem (b) and may be able to deal with the problem with only the three string interaction.

We would like to get finite amplitudes

Strategy

We regularize the amplitudes, by considering the SFT in linear dilaton background

$$
\Phi=-i Q X^{1}
$$

- The amplitudes become finite for $Q^{2}>10$.
- The amplitudes coincide with those obtained by the 1 -st quantized approach in the limit $Q \rightarrow 0$.

$$
\begin{aligned}
& \text { Based on Murakami-N.I. JHEP } 1606 \text { (2016) } 087 \\
& \text { N.I. arXiv:106504666, Murakami-N.I. to appear }
\end{aligned}
$$

LC gauge super SFT in LD background

Linear dilaton background $\Phi=-i Q X^{1}\left(d s^{2}=2 \hat{g}_{z \bar{z}} d z d \bar{z}\right)$

$$
S=\frac{1}{16 \pi} \int d z \wedge d \bar{z} i \sqrt{\hat{g}}\left(\hat{g}^{a b} \partial_{a} X^{1} \partial_{b} X^{1}-2 i Q \hat{R} X^{1}\right)
$$

We construct SFT (type II) with the worldsheet theory for $X^{i}, \psi^{i}, \bar{\psi}^{i}(i=1, \cdots 8)$ GO

$$
S=\int\left[\frac{1}{2} \Phi \cdot\left(i \partial_{t}-\frac{L_{0}+\tilde{L}_{0}-1+Q^{2}-i \varepsilon}{p^{+}}\right) \Phi+\frac{g_{s}}{3} \Phi \cdot(\Phi * \Phi)\right]
$$

LC gauge super SFT in LD background

Feynman amplitude

$$
\begin{aligned}
A_{Q}^{\mathrm{LC}} & \left.=\left.\int \prod_{K} d t_{K}\left\langle\prod_{I=1}^{2 g-2+N}\right|\left(\partial^{2} \rho\right)^{-\frac{3}{4}} T_{F}^{\mathrm{LC}}\left(z_{I}\right)\right|^{2} \prod_{r=1}^{N} V_{r}^{\mathrm{LC}}\right\rangle_{g_{z \bar{z}}} e^{-\left(1-Q^{2}\right) \Gamma} \\
& \equiv \int \prod_{K} d t_{K} F(\vec{t})
\end{aligned}
$$

- $F(\vec{t})$ is expressed explicitly in terms of the theta functions defined on the Riemann surface.

Possible divergences arise from the combinations of

Contact term

$T \rightarrow 0$
$\theta \rightarrow \theta_{0}$

Infinitely thin cylinder

$\alpha \rightarrow 0$

Tiny neck

Finiteness

Infinitely long cylinder

$$
\int_{0}^{\infty} d T \exp \left[-T\left(\sum_{j} \frac{L_{0}^{(j)}+\bar{L}_{0}^{(j)}-1+Q^{2}-i \varepsilon}{\alpha_{j}}-P^{-}\right)\right]
$$

- Following Berera, Witten, we modify the contour as

$$
\int_{0}^{\infty} d T \rightarrow\left(\int_{0}^{T_{0}}+\int_{T_{0}}^{T_{0}+i \infty}\right) d T
$$

- The Feynman $i \varepsilon$ takes care of the divergences of this kind.

Finiteness

Contact term

$$
F(\vec{t}) \sim \epsilon^{-\frac{10}{3}+\frac{1}{3} Q^{2}}
$$

- For $Q=0, F(\vec{t})$ becomes singular.
- For $Q^{2}>10, F(\vec{t})$ becomes regular.
- For $Q^{2}>10, \varepsilon>0$, we find $F(\vec{t})$ is a continuous function without singularities and $A_{Q}^{\mathrm{LC}}=\int \prod_{K} d t_{K} F(\vec{t})$ is finite.
- We can define the amplitudes for $Q^{2}>10$ as analytic functions of Q and take the the limit $Q \rightarrow 0 \varepsilon \rightarrow 0$.
- The results coincide with those of the first quantized approach.

Conclusions and discussions

- In order to regularize the Feynman amplitudes, we consider light-cone gauge superstring field theory in linear dilaton background $\Phi=-i Q X^{1}$.
- The amplitudes become finite for $Q^{2}>10$ and they can be defined as analytic functions of Q. The amplitudes without the background is given by the limit $Q \rightarrow 0$.
- The results coincide with those from the first quantized approach.

Outlook

- Equivalence of the amplitudes with odd spin structure.
- Our approach looks quite similar to the dimensional regularization in field theory, but there are crucial differences:
- The number of $\psi^{i}, \bar{\psi}^{i}$ is not changed. Therefore the number of the gamma matrices is not changed and we do not have any problems with fermions.
- We have a concrete theory for $Q \neq 0$. It may be possible to discuss nonperturbative problems using this approach.

Three-string vertex

- BACK

$$
\begin{aligned}
\int \Phi_{1} \cdot\left(\Phi_{2} * \Phi_{3}\right)=\int d t & \prod_{r=1}^{3}\left(\frac{p_{r}^{+} d p_{r}^{+}}{4 \pi}\right) \delta\left(\sum_{r=1}^{3} p_{r}^{+}\right) \\
& \times\left(p_{1}^{+} p_{2}^{+} p_{3}^{+}\right)^{-\frac{1}{2}\left(1-Q^{2}\right)} e^{-\left(1-Q^{2}\right) \sum_{r} \frac{1}{p_{r}^{+}} \sum_{s=1}^{3} p_{s}^{+} \ln \left|p_{s}^{+}\right|} \\
\times & \left.\langle | \partial^{2} \rho\left(z_{0}\right)\right|^{-\frac{3}{2}} T_{F}^{\mathrm{LC}}\left(z_{0}\right) \bar{T}_{F}^{\mathrm{LC}}\left(\bar{z}_{0}\right) \\
& \times \rho^{-1} h_{1} \circ \mathcal{O}_{\left.\Phi_{1}\left(t, \alpha_{1}\right)^{\rho^{-1}} h_{2} \circ \mathcal{O}_{\Phi_{2}\left(t, \alpha_{2}\right)^{\rho}}{ }^{-1} h_{3} \circ \mathcal{O}_{\Phi_{3}\left(t, \alpha_{3}\right)}\right\rangle_{\mathbb{C}}}^{\underline{E}}
\end{aligned}
$$

Anomaly factor

$$
e^{-\Gamma} \propto \prod_{r=1}^{N}\left[\alpha_{r}^{-1}\left(g_{Z_{r} \bar{Z}_{r}}^{\mathrm{A}}\right)^{-\frac{1}{2}} e^{-\operatorname{Re} \bar{N}_{00}^{r r}}\right]_{I=1}^{2 g-2+N}\left[\left(g_{z_{I} \bar{z}_{I}}^{\mathrm{A}}\right)^{-\frac{1}{2}}\left|\partial^{2} \rho\left(z_{I}\right)\right|^{-\frac{1}{2}}\right]
$$

- $r=1, \ldots, N$ label the punctures
- $I=1, \ldots, 2 g-2+N$ label the interaction points, where $\partial \rho\left(z_{I}\right)=0$.
- $g_{z \bar{z}}^{\mathrm{A}}$: Arakelov metric on the surface
- $\bar{N}_{00}^{r r} \equiv \frac{1}{p_{r}^{+}}\left(\rho\left(z_{I^{(r)}}\right)-\lim _{z \rightarrow Z_{r}}\left(\rho(z)-p_{r}^{+} \ln \left(z-Z_{r}\right)\right)\right)$

Remark ceack

Tadpoles and mass renormalization are irrelevant to the limit $\varepsilon \rightarrow 0$.

- Tadpoles: belong to the "Tiny neck" category

- Mass renormalization: If p_{1} is on-shell, p_{2} is generically off-shell for $Q \neq 0$.

$$
p_{1}^{1}+p_{2}^{1}+2 Q(1-g)=0
$$

$X^{ \pm}$CFT

$$
\begin{aligned}
S_{X^{ \pm}}= & -\frac{1}{2 \pi} \int d^{2} z d \theta d \bar{\theta}\left(\bar{D} X^{+} D X^{-}+\bar{D} X^{-} D X^{+}\right)-Q^{2} \Gamma_{\text {super }}[\Phi] \\
& X^{ \pm} \equiv x^{ \pm}+i \theta \psi^{ \pm}+i \bar{\theta} \tilde{\psi}^{ \pm}+i \theta \bar{\theta} F^{ \pm} \\
& \Gamma_{\text {super }}[\Phi]=-\frac{1}{2 \pi} \int d^{2} z d \theta d \bar{\theta}\left(\bar{D} \Phi D \Phi+\theta \bar{\theta} \hat{g}_{z \bar{z}} \hat{R} \Phi\right) \\
& \Phi \equiv \ln \left|\partial X^{+}-\frac{\partial D X^{+} D X^{+}}{\left(\partial X^{+}\right)^{2}}\right|^{2}-\ln \hat{g}_{z \bar{z}}
\end{aligned}
$$

- This theory can be formulated in the case $\left\langle\partial_{m} X^{+}\right\rangle \neq 0$.
- In the case of the LC gauge amplitudes, we always have $\prod e^{-i p_{r}^{+} X^{-}}\left(p_{r}^{+} \neq 0\right)$ and $\left\langle\partial_{m} X^{+}\right\rangle \neq 0$.

$X^{ \pm}$CFT cesce

$$
\begin{aligned}
S_{X^{ \pm}} & =-\frac{1}{2 \pi} \int d^{2} z d \theta d \bar{\theta}\left(\bar{D} X^{+} D X^{-}+\bar{D} X^{-} D X^{+}\right)-Q^{2} \Gamma_{\text {super }}[\Phi] \\
T(z, \theta) & =G(z)+\theta T(z) \\
& =\frac{1}{2}: \partial X^{+} D X^{-}(\mathbf{z}):+\frac{1}{2}: D X^{+} \partial X^{-}(\mathbf{z}):+2 Q^{2} S\left(\mathbf{z}, X^{+}\right)
\end{aligned}
$$

- It is a superconformal field theory with $\hat{c}=2+8 Q^{2}$.
- The worldsheet theory becomes BRST invariant

$$
\begin{array}{ccc}
X^{ \pm} & X^{i} & \text { ghosts } \\
\hat{c}= & 2+8 Q^{2}+8-8 Q^{2} & -10=0
\end{array}
$$

Comparison with the first quantized approach

The LC amplitude can be recast into a conformal gauge expression (even spin structure)

$$
\begin{aligned}
A_{Q}^{\mathrm{LC}} & \left.=\left.\int \prod_{K} d t_{K}\left\langle\prod_{I=1}^{2 g-2+N}\right|\left(\partial^{2} \rho\right)^{-\frac{3}{4}} T_{F}^{\mathrm{LC}}\left(z_{I}\right)\right|^{2} \prod_{r=1}^{N} V_{r}^{\mathrm{LC}}\right\rangle_{g_{z \bar{z}}^{\mathrm{A}}} e^{-\left(1-Q^{2}\right) \Gamma} \\
& =\int \prod_{j} d m_{j}\left\langle\prod_{j} \oint\left(\mu_{j} b+\bar{\mu}_{j} \bar{b}\right) \prod_{I=1}^{2 g-2+N} X\left(z_{I}\right) \bar{X}\left(\bar{z}_{I}\right) \prod_{r=1}^{N} V_{r}^{\text {conf. }}\right\rangle^{X^{\mu}, \psi^{\mu}, \text { ghosts }}
\end{aligned}
$$

- with a nontrivial CFT for $X^{ \pm}, \psi^{ \pm}\left(X^{ \pm}\right.$CFT). (Murakami-N.I.)
- $X(z)=-e^{\phi} G+c \partial \xi+\frac{1}{4} \partial b \eta e^{2 \phi}+\frac{1}{4} b\left(2 \partial \eta e^{2 \phi}+\eta \partial e^{2 \phi}\right)$: picture changing operator (PCO)
- PCO's are placed at the interaction points.

First quantized approach (Verlinde-Verlinde)

- If the PCO's are placed at $z=z_{i}(m)$, but the amplitudes suffer from the so called spurious singularities.
- Sen-Witten gave a prescription to write down amplitudes placing PCO's avoiding the spurious singularities patchwise.

$$
A_{Q}^{S W}=\sum_{\alpha} \int_{\mathcal{M}^{\alpha}} \prod_{j} d m_{j}\left\langle\prod_{j} \oint\left(\mu_{j} b+\bar{\mu}_{j} \bar{b}\right) \prod_{i}^{2 g-2+N} X\left(z_{i}(m)\right) \bar{X}\left(\bar{z}_{i}(m)\right) \prod_{r=1}^{N} V_{r}^{\text {conf. }}\right\rangle
$$

$$
A_{Q}^{\mathrm{LC}}=A_{Q}^{S W}
$$

- When $Q^{2}>10$,

$$
\begin{aligned}
A_{Q}^{S W}= & \sum_{\alpha} \int_{\mathcal{M}^{\alpha}} \prod_{j} d m_{j}\left\langle\prod_{j} \oint\left(\mu_{j} b+\bar{\mu}_{j} \bar{b}\right) \prod_{i}^{2 g-2+N} X\left(z_{i}(m)\right) \bar{X}\left(\bar{z}_{i}(m)\right) \prod_{r=1}^{N} V_{r}^{\text {conf. }}\right\rangle \\
& +\cdots \\
= & \int_{\mathcal{M}} \prod_{j} d m_{j}\left\langle\prod_{j} \oint\left(\mu_{j} b+\bar{\mu}_{j} \bar{b}\right) \prod_{I=1}^{2 g-2+N} X\left(z_{I}\right) \bar{X}\left(\bar{z}_{I}\right) \prod_{r=1}^{N} V_{r}^{\text {conf. }}\right\rangle \\
= & A_{Q}^{\mathrm{LC}}
\end{aligned}
$$

because

- putting $z_{i}(m)=z_{I}$ does not make the amplitude diverge
- Sen-Witten prescription does no depend on the choice of $z_{i}(m)$

Therefore as an analytic function of $Q, A_{Q}^{\mathrm{LC}}=A_{Q}^{S W}$.
We can get $\lim _{Q \rightarrow 0} A_{Q}^{\mathrm{LC}}=A_{0}^{S W}$, if $A_{0}^{S W}$ is well-defined.

