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Dimensional regularization in string theory?

Why regularization?
Superstring theory is UV �nite. Why do we need regularization?

We use the dimensional regularization to deal with so-called �contact
term problem�.

Dimensional regularization?
The theory should be formulated in the critical dimensions.
Dimensional regularization should be impossible.

We consider dimensional regularization of LC gauge SFT. It provides a
Lorentz noninvariant but gauge invariant regularization.
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In this talk

I would like to explain

1 What were the problems/questions? (∼ 3
4 of the talk)

SuperSFT perturbation theores su�er from the contact term problem.
This problem is related to the problems of superstring perturbation
theory much discussed in 1980's.
Recently, Witten gave a way to de�ne the amplitudes without any
ambiguities.

2 What is the answer we propose? (∼ 1
4 of the talk)

In the case of LC SFT, the contact term problem can be dealt with by
using the dimensional regularization.

Based on collaborations with Baba and Murakami.
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Outline
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2. Problems about superstring perturbation theory

3. Supermoduli space
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5. Outlook
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�1 Contact term problem

�1 Contact term problem

String perturbation theory from SFT

Example: Witten's cubic SFT (bosonic) (1986)

S =

∫ [
1

2
ΨQΨ+

g

3
Ψ · (Ψ ∗Ψ)

]

String �eld: Ψ [Xµ (σ) , b (σ) , c (σ)]
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�1 Contact term problem

Perturbation theory of bosonic strings

Taking the Siegel gauge b0Ψ = 0,

gauge �xed action

S =

∫ [
1

2
Ψ′c0L0Ψ

′ +
g

3
Ψ′ · (Ψ′ ∗Ψ′)

]
Feynman rule
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�1 Contact term problem

Feynman diagram

Four point tree amplitude

General amplitudes are expressed in the form

AN =
∑

worldsheet

∫ ∏
α

dtα

⟨
V1 · · ·VN

∏
α

∫
Cα

b

⟩
worldsheet

with tα: Feynman parameters
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�1 Contact term problem

Amplitudes from the �rst-quantized formalism

GO

A =
∑

worldsheet

∫
[dgmndX

µ]

rep.×Weyl
e−IV1 · · ·VN

=
∑

worldsheet

∫ ∏
α

dmα [dX
µdbdc] e−Ig.f.V1 · · ·VN

∏
α

Bα

space of gmn

rep.×Weyl
=moduli space of worldsheet Riemann surface

mα: coordinates of the moduli space GO

Bα: antighost insertions to soak up the zero modes:

Bα =

∫
d2σ

√
g
∂grep.mn

∂mα
bmn
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�1 Contact term problem

First-quantized formalism

A =
∑

worldsheet

∫ ∏
α

dmα [dX
µdbdc] e−Ig.f.V1 · · ·VN

∏
α

Bα

This coincides with the SFT result:

A =
∑

worldsheet

∫ ∏
α

dtα

⟨
V1 · · ·VN

∏
α

∫
Cα

b

⟩

The Feynman parameters tαof SFT parametrize the moduli space of
Riemann surfaces. (.....,Zwiebach 1991)

Bα =
∫
d2σ

√
g
∂grep.

mn

∂tα
bmn =

∫
Cα
b
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�1 Contact term problem

Superstring perturbation theory

Witten's cubic SFT for superstrings (1987)

S =

∫ [
1

2
ΨQΨ+

g

3
Ψ ·X

(π
2

)
(Ψ ∗Ψ)

]
+ fermions

X (σ): picture changing operator

X (σ) = δ (β)G (σ) + · · ·

G (σ): worldsheet supercharge

G = ψµi∂Xµ + ghost part
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�1 Contact term problem

Superstring perturbation theory

Taking the Siegel gauge b0Ψ = 0

gauge �xed action

S =
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2
Ψ′c0L0Ψ

′ +
g

3
Ψ′ ·X

(π
2

)
(Ψ′ ∗Ψ′)

]
Feynman rule
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�1 Contact term problem

Superstring perturbation theory

Four point tree amplitude

A =

∫ ∞

0
dt

⟨
V1 · · ·V4X (z1 (t))X (z2 (t))

∫
b

⟩
+ other channels

The integral diverges because z1 (0) = z2 (0) and

X (z1)X (z2)∼(z1 − z2)
−2 × regular operator (z1 ∼ z2)
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�1 Contact term problem

Contact term problem

The superSFT yields obviously a wrong answer

Even the four point tree amplitude is divergent, because the picture
changing operators come close to each other

This phenomenon is ubiquitous. Amplitudes generically diverge.

This is called the contact term problem. (Wendt, 1987)
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�2 Problems about superstring perturbation theory

�2 Problems about superstring perturbation theory

The amplitudes from the superstring �eld theory are obviously wrong.
We need to modify the action so that it reproduce the right (the
�rst-quantized) results.

Actually the �rst-quantized formalism also has problems in multi-loop
calculations.
The contact term problem can be discussed in the context of the
problems of �rst quantized superstring perturbation theory.
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�2 Problems about superstring perturbation theory

Amplitudes from the �rst-quantized formalism

Martinec, Chaudhuri-Kawai-Tye GO

A =
∑

worldsheet

∫
[dgmndχadX

µdψµ]

superrep.× superWeyl
e−IV1 · · ·VN

=
∑

worldsheet

∫ ∏
α

dmα

∏
σ

dησ [dX
µdψµdbdcdβdγ]

× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
δ (βσ)

space of gmn,χa

superrep.×superWeyl
=supermoduli space of superRiemann surface

mα,ησ: coordinates of the supermoduli space GO

Bα, δ (βσ): antighost insertions to soak up the zero modes

βσ =

∫
d2z

∂χθrep.
z̄

∂ησ
β

15 / 54



�2 Problems about superstring perturbation theory

Picture changing operator

Verlinde-Verlinde

If one takes ησ so that
∂χθrep.

z̄
∂ησ

= δ2 (z − zσ) and integrating over ησ we get

A =
∑

worldsheet

∫ ∏
α

dmα

∏
σ

dησ [dX
µdψµdbdcdβdγ]

× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
σ

δ (βσ)

=
∑

worldsheet

∫ ∏
α

dmα [dX
µdψµdbdcdβdγ]

× e−IV1 · · ·VN
∏
α

Bα

∏
σ

X (zσ)
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�2 Problems about superstring perturbation theory

Picture changing operators

Taking
∂χθrep.

z̄
∂ησ

= δ2 (z − zσ) we get the amplitudes with picture
changing operators inserted.

We can freely take zσ as long as
∂χθrep.

z̄
∂ησ

(σ = 1, · · · 2g − 2 +N) span
the space transverse to the symmetry orbits. It is like a gauge choice.
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�2 Problems about superstring perturbation theory

SFT amplitude

SFT amplitude

A4 =

∫ ∞

0
dt

⟨
V1 · · ·V4X (z1 (t))X (z2 (t))

∫
b

⟩
The 1-st quantized result

A =
∑

worldsheet

∫ ∏
α

dmα [dX
µdψµdbdcdβdγ]

× e−IV1 · · ·VN
∏
α

Bα

∏
σ

X (zσ)

The SFT amplitude corresponds to the speci�c choice

∂χθrep.
z̄

∂ησ
= δ2 (z − zσ (t)) (σ = 1, 2)
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�2 Problems about superstring perturbation theory

Contact term problem

SFT amplitude corresponds to the choice
∂χθrep.

z̄
∂ησ

= δ2 (z − zσ (t))
σ = 1, 2.

The amplitude diverges at t = 0, because
∂χθrep.

z̄
∂η1

,
∂χθrep.

z̄
∂η2

do not span
the two dimensional space transverse to the symmetry orbit. Namely it
is a bad �gauge choice� at t = 0.
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�2 Problems about superstring perturbation theory

In order to avoid divergence

Since the �gauge� we choose is not good at t = 0 in

A4 =

∫ ∞

0
dtF (t)

F (t) =

⟨
V1 · · ·V4X (z1 (t))X (z2 (t))

∫
b

⟩
why don't we take a di�erent gauge for t ∼ 0, namely a di�erent way to
place the picture changing operators:

A4 =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t) ?

F ′ (t) =

⟨
V1 · · ·V4X (z1 (t) + ∆z)X (z2 (t))

∫
b

⟩
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�2 Problems about superstring perturbation theory

Total derivative ambiguity

A4 (a) =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t) ?

This does not work because the expression depends on how we choose a.

F ′ (t)− F (t) = ∂tf (t)

A (b)−A (a) =

∫ b

a

dt
(
F ′ (t)− F (t)

)
=

∫ b

a

dt∂tf (t) = f (b)− f (a) ̸= 0

Since there is no canonical way to choose a, the result becomes ambiguous.
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�2 Problems about superstring perturbation theory

Total derivative ambiguity

F (t) =

⟨
V1 · · ·V4X (z1 (t))X (z2 (t))

∫
b

⟩
F ′ (t) =

⟨
V1 · · ·V4X (z1 (t) + ∆z)X (z2 (t))

∫
b

⟩
Since

X (z1 (t) + c)−X (z1 (t)) = {Q,χ (t)}
we get

F ′ (t)− F (t) =

⟨
V1 · · ·V4{Q,χ (t)}X (z2 (t))

∫
b

⟩
= ∂t ⟨V1 · · ·V4χ (t)X (z2 (t))⟩
≡ ∂tf (t)
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�2 Problems about superstring perturbation theory

The problems about superstring perturbation theory

In general we have

For lower order amplitudes, there is a way to take a good choice of
zσ (m) all over the moduli space.

For higher order amplitudes, this is impossible and the amplitudes
become ambiguous.
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�3 Supermoduli space

�3 Supermoduli space

A4 (a) =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t) ?

The amplitudes become ambiguous because∫ b

a
dtF ′ (t) ̸=

∫ b

a
dtF (t)

The di�erent choice of zσ corresponds to a di�erent choice of ησ.

(
∂χθrep.

z̄
∂ησ

= δ2 (z − zσ))
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�3 Supermoduli space

Supermoduli space

We started from

A =

∫ ∏
α

dmα

∏
σ

dησ [dX
µdψµdbdcdβdγ]

× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
σ

δ (βσ)

=

∫ ∏
α

dmα

∏
σ

dησΛ (m, η)

Considered as an integral over the supermoduli space (m, η), it does not
depend on the choice of η.∏

α

dm′
α

∏
σ

dη′σ =
∏
α

dmα

∏
σ

dησsdet

(
∂ (m′, η′)

∂ (m, η)

)
Λ′ (m′, η′

)
= Λ(m, η)

(
sdet

(
∂ (m′, η′)

∂ (m, η)

))−1
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�3 Supermoduli space

Supermoduli space

Considered as an integral over the supermoduli space, there should not be
any ambiguity. (...,D'Hoker-Phong, Witten)

A4 =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t) + · · · ?

Let us rewrite the amplitude as an integral over the supermoduli space and
see what happens.
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�3 Supermoduli space

Total derivative ambiguity

A4 =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t) + · · · ?

For a ≤ t, the integration over the supermoduli space is∫
dtdη1dη2Λ (t, η1, η2) =

∫
dtdη1dη2 (H (t)− η1η2F (t))

=

∫
dtF (t)

For 0 ≤ t ≤ a∫
dt′dη′1dη

′
2Λ

′ (t′, η′1, η′2) =

∫
dt′dη′1dη

′
2

(
H ′ (t′)− η′1η

′
2F

′ (t′))
=

∫
dt′F ′ (t′)
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�3 Supermoduli space

Total derivative ambiguity

∫
dtF (t) =

∫
dtdη1dη2Λ (t, η1, η2)∫

dt′F ′ (t′) =

∫
dt′dη′1dη

′
2Λ

′ (t′, η′1, η′2)
η′
1 = η1

η′
2 = η2

t′ = t+ g (t) η1η2
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�3 Supermoduli space

Total derivative ambiguity

Formally

∫
dtF (t) =

∫
dtdη1dη2Λ (t, η1, η2) =

∫
dt′dη′

1dη
′
2Λ

′ (t′, η′
1, η

′
2

)
=

∫
dt′F ′ (t′)

but ∫ b

a
dtF (t) ̸=

∫ b

a
dt′F ′ (t′)

because a ≤ t ≤ b does not mean a ≤ t′ ≤ b.
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�3 Supermoduli space

Total derivative ambiguity

∫ b

a
dtF (t) =

∫ b

a
dtdη1dη2Λ (t, η1, η2)

=

∫
dη′1dη

′
2

∫ b+g(b)η1η2

a+g(a)η1η2

dt′Λ′ (t′, η′1, η′2)
=

∫
dη′1dη

′
2

∫ b+g(b)η1η2

a+g(a)η1η2

dt′
(
H ′ (t′)− η′1η

′
2F
(
t′
))

=

∫ b

a
dt′F ′ (t′)−gH ′ (b) + gH ′ (a)

Therefore ∫ b

a
dt
(
F ′ (t)− F (t)

)
=

∫ b

a
dt∂tf (t) = f (b)− f (a)

with f = gH ′ (Atick, Rabin and Sen 1987)
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�3 Supermoduli space

Witten's prescription

The amplitude is given by an integral

A =

∫
Γ
dtdη1dη2Λ (t, η)

Γ is a contour of t which can have a nilpotent part.

Γ is taken to be any contour because Λ is analytic in t, if it behaves
well at in�nity.
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�3 Supermoduli space

Witten's prescription

A =

∫
Γ
dtdη1dη2Λ (t, η)

For our purpose, it is convenient to take Γ to be
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A =
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Γ
dtdη1dη2Λ (t, η)

For our purpose, it is convenient to take Γ to be

∫
dη′1dη

′
2

∫ a+g(a)η1η2

a
dt′
(
H ′ (t′)− η′1η

′
2F
(
t′
))

= −gH ′ (a) = −f (a)
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�3 Supermoduli space

Witten's prescription

A =

∫
Γ
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For our purpose, it is convenient to take Γ to be

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t)− f (a)
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�3 Supermoduli space

Total derivative ambiguity

So we get the amplitude

A4 =

∫ ∞

a
dtF (t) +

∫ a

0
dtF ′ (t)− f (a)

This does not depend on a

∂a (A4) = F ′ (a)− F (a)− ∂af (a) = 0

For a = ϵ≪ 1

A4 =

∫ ∞

ϵ
dtF (t) +

∫ ϵ

0
dtF ′ (t)− f (ϵ)

∼
∫ ∞

ϵ
dtF (t)− f (ϵ)

f (ϵ) gives the conterterm to cancel the divergence of
∫∞
ϵ dtF (t)
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�3 Supermoduli space

General amplitudes

In general, we have the expression

A =

∫
Γ

∏
α

dmα

∏
σ

dησΛ (m, η)

=
∑
U

∫
U

∏
α

dmαF (m) +
∑
∂U

∫
∂U
f∂U

These expressions are not useful in calculating the amplitudes. It is better
if we do not have the second term.

We can have an expression without the second term if the supermoduli
space is projected/split.

For higher genera, the supermoduli space is not holomorphically
projected/split. (Donagi-Witten 2013)

GO
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�3 Supermoduli space

SFT

A4 =

∫ ∞

ϵ
dtF (t) +

∫ ϵ

0
dtF ′ (t)− f (ϵ) + · · ·

∼
∫ ∞

ϵ
dtF (t)− f (ϵ) + · · ·

From the SFT point of view, the counterterm f (ϵ) corresponds to a
4-string counterterm in the SFT action.

We need to add 5-string, 6-string... counterterms. This is a disaster
for SFT.
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�3 Supermoduli space

The way to deal with the contact term problem

In order to deal with the problem, modi�cations of Witten's action are
proposed:

modi�ed cubic (Preitschopf-Thorn-Yost, Arefeva-Medvedev-Zubarev
1990)
BRST invariance of multiloop amplitudes
(Kohriki-Kishimoto-Kugo-Kunitomo-Murata 2011)

Berkovits (1995)
BRST invariance of tree amplitudes
(Kroyter-Okawa-Schnabl-Torii-Zwiebach 2012)

These formulations take the string �eld to have pictures di�erent from the
canonical ones, it will need some work to relate these to the �rst-quantized
results.
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�4 Dimensional regularization of light-cone gauge SFT

�4 Light-cone gauge SFT

t = x+ (Kaku-Kikkawa, Mandelstam, S.J. Sin)

S =

∫ [
1

2
Φ ·

(
i∂t −

L0 + L̃0 − d−2
8

α

)
Φ+

g

6
Φ · (Φ ∗ Φ)

]
(d = 10)

The integral diverges.
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�4 Dimensional regularization of light-cone gauge SFT

Light-cone gauge SFT

There exists a procedure to rewrite the LC gauge amplitude into the
coformal gauge one. (D'Hoker-Giddings, Kugo-Zwiebach,...)

A =

∫
dTdθ

⟨
2∏

I=1

∣∣∣(∂2ρ)− 3
4 GLC (zI)

∣∣∣2∏
r

V LC
r

⟩Xi

C

e−
d−2
16

Γ[ln(∂ρ∂̄ρ̄)]

=

∫
dTdθ

⟨∮
µb

∮
µ̄b̄

2∏
I=1

XX̄ (zI , z̄I)
∏
r

V conf.
r

⟩Xµ,b,c

C

This divergence has the same origin as the one in the previous sections.
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�4 Dimensional regularization of light-cone gauge SFT

Light-cone gauge SFT

A =

∫
dTdθ

⟨∮
µb

∮
µ̄b̄

2∏
I=1

XX̄ (zI , z̄I)
∏
r

V conf.
r

⟩Xµ,b,c

C

The divergence can be dealt with as in the previous section.

A =

∫
M−Dϵ

d2mF (m, m̄) +

∫
Dϵ

d2mF ′ (m, m̄) +

∫
∂Dϵ

f

39 / 54



�4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

Light-cone gauge SFT can be formulated in any d

S =

∫ [
1

2
Φ ·

(
i∂t −

L0 + L̃0 − d−2
8

α

)
Φ+

g

6
Φ · (Φ ∗ Φ)

]

LC gauge SFT is a completely gauge �xed theory.

The Lorentz invariance is broken.
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�4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

Even for d ̸= 10, following the same procedure as that in the previous slide

A =

∫
dTdθ

⟨
2∏

I=1

∣∣∣(∂2ρ)− 3
4 GLC (zI)

∣∣∣2∏
r

V LC
r

⟩Xi

C

e−
d−2
16

Γ[ln(∂ρ∂̄ρ̄)]

=

∫
dTdθ

⟨∮
µb

∮
µ̄b̄

2∏
I=1

XX̄ (zI , z̄I)
∏
r

V conf.
r

⟩Xµ,b,c

C

but with a nontrivial CFT for X± (X± CFT).

The worldsheet theory becomes BRST invariant

X± Xi b, c
ĉ = 12− d + d− 2 − 10 = 0

In the second-quantized language, DR is a gauge invariant
regularization.
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�4 Dimensional regularization of light-cone gauge SFT

X± CFT

SX± = − 1

2π

∫
d2zdθdθ̄

(
D̄X+DX− + D̄X−DX+

)
+
d− 10

8
Γsuper [Φ]

X± ≡ X± + iθψ± + iθ̄ψ̃± + iθθ̄F±

Γsuper [Φ] = − 1

2π

∫
d2zdθdθ̄D̄ΦDΦ

Φ ≡ ln

((
DΘ+

)2 (
D̄Θ̃+

)2)
Θ+ ≡ DX+

(∂X+)
1
2

This theory can be formulated for ⟨∂mX+⟩ ̸= 0

It is a superconformal �eld theory with ĉ = 12− d so that the total
central charge becomes d− 2 + 12− d− 10 = 0.
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�4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

A =

∫
dTdθ

⟨
2∏

I=1

∣∣∣(∂2ρ)− 3
4 GLC (zI)

∣∣∣2∏
r

V LC
r

⟩Xi

C

e−
d−2
16

Γ[ln(∂ρ∂̄ρ̄)]

=

∫
dTdθ

⟨∮
µb

∮
µ̄b̄

2∏
I=1

XX̄ (zI , z̄I)
∏
r

V conf.
r

⟩Xµ,b,c

C

e−
d−2
16

Γ ∼ |z1 − z2|−
d−2
8 for |z1 − z2| ∼ 0

By taking d to be large and negative, the amplitudes do not diverge.
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�4 Dimensional regularization of light-cone gauge SFT

Dimensional regularization

A =

∫
dTdθ

⟨∮
µb

∮
µ̄b̄

2∏
I=1

XX̄ (zI , z̄I)
∏
r

V conf.
r

⟩Xµ,b,c

C

For d large and negative, the integral is convergent and coincides with
the expression

A =

∫
M−Dϵ

d2mF (m, m̄) +

∫
Dϵ

d2mF ′ (m, m̄) +

∫
∂Dϵ

f

the second and the third term vanishes in the limit ϵ→ 0

We can de�ne the amplitudes for d = 10 by analytic continuation. If
the limit d→ 10 can be taken without encountering divergences, the
results coincides with the usual one.
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�4 Dimensional regularization of light-cone gauge SFT

Remarks

The dimensional regularization works as a UV/IR regularization

S =

∫ [
1

2
Φ ·

(
i∂t −

L0 + L̃0 − d−2
8

α

)
Φ+

g

6
Φ · (Φ ∗ Φ)

]

What matters is the Virasoro central charge ĉ rather than the number
of the spacetime coordinates. Therefore we can realize �SFT in
fractional dimensions� and the regularization is not restricted to
perturbation theory.
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�4 Dimensional regularization of light-cone gauge SFT

Remarks

We can use super WZW model to deal with Type II theory.

Dimensional regularization cannot be used to regularize the parity
violating amplitudes. We need to break the gauge symmetry to deal
with them.

One can consider similar way of regularization for Witten's superstring
�eld theory.

ϖ,φ, · · · Xµ b, c
ĉ = 10− d + d − 10 = 0

Baba, Murakami, N.I.
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�5 Outlook

�5 Conclusions and discussions

1 We have proposed a way to describe superstring theory by SFT with
only three string vertex.

2 With this string �eld theory it may be possible to describe
nonperturbative e�ects.
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Backup

First-quantized formalism

Worldsheet action

I =
1

8π

∫
d2σ

√
ggmn∂mX

µ∂nXµ

reparametrization invariance: σm → σm + ϵm (σ)

Weyl invariance: gmn (σ) → eε(σ)gmn (σ)

Amplitude

A =
∑

worldsheet

∫
[dgmndX

µ]

rep.×Weyl
e−IV1 · · ·VN

Vi (i = 1, · · · , N): vertex operators

BACK
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Backup

First-quantized formalism

BACK
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Backup

First-quantized formalism

Worldsheet action

I =
1

8π

∫
d2σ

√
g [gmn∂mX

µ∂nXµ − iψµγm∂mψµ

−ψµγaγmχa∂mXµ +
1

4

(
ψµγaγbχa

)
χbψµ

]

χa: gravitino �eld on the worlsheet

superreparametrization invariance and super Weyl invariance

Amplitude

A =
∑

worldsheet

∫
[dgmndχadX

µdψµ]

superrep.× superWeyl
e−IV1 · · ·VN

BACK
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Backup

First-quantized formalism

ησ: odd moduli (Grassmann odd) BACK
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Backup

Picture changing operator

A convenient choice is χ
(σ)θ
z̄ = δ2 (z − zσ) and χ

θ
z̄ =

∑
σ ησδ

2 (z − zσ)

βσ =

∫
d2zχ

(σ)θ
z̄ βzθ = β (zσ)

Ig.f. = · · ·+
∫
d2zχθ

z̄G = I ′ +
∑
σ

ησG (zσ)

BACK ∫ ∏
α

dmα

∏
σ

dησ [dX
µdψµdbdcdβdγ]

× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
σ

δ (βσ)
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dmα

∏
σ

dησ [dX
µdψµdbdcdβdγ]

× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
σ

δ (βσ)

∝
∫ ∏

α

dmα [dX
µdψµdbdcdβdγ]

× e−I′V1 · · ·VN
∏
α

Bα

∏
σ

(δ (β)G+ · · · ) (zσ)
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Backup

Picture changing operator

A convenient choice is χ
(σ)θ
z̄ = δ2 (z − zσ) and χ

θ
z̄ =

∑
σ ησδ

2 (z − zσ)

βσ =

∫
d2zχ

(σ)θ
z̄ βzθ = β (zσ)

Ig.f. = · · ·+
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× e−Ig.f.V1 · · ·VN
∏
α

Bα

∏
σ

δ (βσ)

∝
∫ ∏

α

dmα [dX
µdψµdbdcdβdγ]

× e−I′V1 · · ·VN
∏
α

Bα

∏
σ

X (zσ)
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Backup

Projected, split

the supermoduli space is covered by patches with the local coordinates
which are related by the transformations of the form

m′
α = fα (m) +O

(
η2
)

η′σ =
∑
σ′

gσσ′ (m) ησ′ +O
(
η3
)

If one can take the transformations of the form

m′
α = fα (m)

η′σ =
∑
σ′

gσσ′ (m) ησ′ +O
(
η3
)

the supermoduli space is projected.

BACK
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Backup

Projected, split

the supermoduli space is covered by patches with the local coordinates
which are related by the transformations of the form

m′
α = fα (m) +O

(
η2
)

η′σ =
∑
σ′

gσσ′ (m) ησ′ +O
(
η3
)

If the supermoduli space is projected

m′
α = fα (m)

η′σ =
∑
σ′

gσσ′ (m) ησ′ +O
(
η3
)

the amplitudes can be expressed∑
U

∫
U

∏
α

dmαF (m)

as an integral over the bosonic moduli space.
Donagi and Witten proved that the super moduli space for the
superRiemann surfaces with genus g and n punctures is not
holomorphically projected for g ≥ 2 and g − 1 ≥ n ≥ 1. Namely it is
not projected as a complex manifold.

BACK
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