Energy from the gauge invariant observables

Nobuyuki Ishibashi

University of Tsukuba
October 2012

§1 Introduction

A great variety of analytic classical solutions of Witten type OSFT has been discovered, especially since the discovery of Schnabl's tachyon vacuum solution.

Once a solution is found, there are two important gauge invariant quantities to be calculated.

- energy
- the gauge invariant observables

"Energy"

For a static solution $|\Psi\rangle$

$$
\begin{aligned}
E & \equiv-S \\
& =\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle\right] \\
& =E_{\Psi}-E_{0}
\end{aligned}
$$

E_{Ψ} : "energy" for the vacuum corresponding to $|\Psi\rangle$
E_{0} : "energy" for the perturbative vacuum
"the gauge invariant observables"

With an on-shell closed string vertex operator $\mathcal{V}=c \bar{c} V^{\mathrm{m}}$, one can construct

$$
\langle I| \mathcal{V}(i)|\Psi\rangle
$$

Hashimoto-Itzhaki, Gaiotto-Rastelli-Sen-Zwiebach

- $\langle I| \mathcal{V}(i)|\Psi\rangle$ corresponds to the difference of one point functions

$$
\begin{gathered}
-4 \pi i\langle I| \mathcal{V}(i)|\Psi\rangle=\langle\mathcal{V}| c_{0}^{-}\left|B_{\Psi}\right\rangle-\langle\mathcal{V}| c_{0}^{-}\left|B_{0}\right\rangle \\
\sim \cup \mathcal{V}\left|B_{\Psi}\right\rangle-\sim \cup \mathcal{V}\left|B_{0}\right\rangle
\end{gathered}
$$

Ellwood, Kiermaier-Okawa-Zwiebach

Energy and the gauge invariant observables

- Usually it is more difficult to calculate $E=\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle\right]$ compared to the gauge invariant observable $\langle I| \mathcal{V}(i)|\Psi\rangle$.
- For

$$
\mathcal{V} \propto c \bar{c} \partial X^{0} \bar{\partial} X^{0}
$$

we expect that the gauge invariant observable is proportional to E.

- It will be useful to prove that the gauge invariant observable for such \mathcal{V} yields E.

Energy from the gauge invariant observables

We would like to show

$$
E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle
$$

for

$$
\mathcal{V}=\frac{2}{\pi i} c \bar{c} \partial X^{0} \bar{\partial} X^{0}
$$

assuming that $|\Psi\rangle$ satisfies

- the equation of motion
- some regularity conditions

Takayuki Baba and N. I. arXiv:1208.6206

Outline

(1) Introduction
(2) A proof of $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$
(3) Solutions with K, B
(2) Conclusions

§2 A proof of $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$

String field

$$
|\Psi\rangle=\mathcal{O}_{\Psi}(0)|0\rangle
$$

Let us assume that \mathcal{O}_{Ψ} is expressed in terms of really local operators located away from the arc $|\xi|=1$.

A proof of $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$

In order to prove $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$, we consider for $h \ll 1$

$$
S_{h}[|\Psi\rangle] \equiv-\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle+h\langle I| \mathcal{V}(i)|\Psi\rangle\right]
$$

- $\mathcal{V}=\frac{2}{\pi i} c \bar{c} \partial X^{0} \bar{\partial} X^{0}$ is a linear combination of graviton and dilaton vertex operators. c.f. Belopolsky-Zwiebach
- S_{h} should describe the string field theory in a constant metric and dilaton background. Zwiebach
- The constant metric can be gauged away and the effect of the constant dilaton is reduced to a rescaling of g.

Soft dilaton theorem

A "Soft dilaton theorem"

S_{h} can be shown to be equivalent to the original SFT action with a rescaling of g.

$$
\begin{gathered}
S_{h}[|\Psi\rangle]=-\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle+h\langle I| \mathcal{V}(i)|\Psi\rangle\right] \\
=-\frac{1+h}{g^{2}}\left[\frac{1}{2}\left\langle\Psi^{\prime \prime}\right| Q\left|\Psi^{\prime \prime}\right\rangle+\frac{1}{3}\left\langle\Psi^{\prime \prime} \mid \Psi^{\prime \prime} * \Psi^{\prime \prime}\right\rangle\right]+\mathcal{O}\left(h^{2}\right) \\
\left|\Psi^{\prime \prime}\right\rangle=|\Psi\rangle+\mathcal{O}(h)
\end{gathered}
$$

$E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$ from the soft dilaton theorem

$$
\begin{aligned}
- & \frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle+h\langle I| \mathcal{V}(i)|\Psi\rangle\right] \\
& =-\frac{1+h}{g^{2}}\left[\frac{1}{2}\left\langle\Psi^{\prime \prime}\right| Q\left|\Psi^{\prime \prime}\right\rangle+\frac{1}{3}\left\langle\Psi^{\prime \prime} \mid \Psi^{\prime \prime} * \Psi^{\prime \prime}\right\rangle\right]+\mathcal{O}\left(h^{2}\right),
\end{aligned}
$$

Substituting a classical solution $\left|\Psi_{\mathrm{cl}}\right\rangle$ into it

$$
-E-\frac{h}{g^{2}}\langle I| \mathcal{V}(i)\left|\Psi_{\mathrm{cl}}\right\rangle=-(1+h) E+\mathcal{O}\left(h^{2}\right)
$$

and comparing the $\mathcal{O}(h)$ terms

$$
E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)\left|\Psi_{\mathrm{cl}}\right\rangle
$$

Soft dilaton theorem

The soft dilaton theorem is proved in two steps. There exists χ such that

$$
\mathcal{V}(i)=\{Q, \chi\}
$$

Using this fact, we obtain

$$
\begin{gathered}
S_{h}[|\Psi\rangle]=-\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle+h\langle I| \mathcal{V}(i)|\Psi\rangle\right] \\
=-\frac{1}{g^{2}}\left[\frac{1}{2}\left\langle\Psi^{\prime}\right| Q^{\prime}\left|\Psi^{\prime}\right\rangle+\frac{1}{3}\left\langle\Psi^{\prime} \mid \Psi^{\prime} * \Psi^{\prime}\right\rangle\right]+\mathcal{O}\left(h^{2}\right) \\
\left|\Psi^{\prime}\right\rangle \equiv|\Psi\rangle+h \chi|I\rangle \\
Q^{\prime} \equiv Q-h\left(\chi-\chi^{\dagger}\right)
\end{gathered}
$$

$\mathcal{V}(i)=\{Q, \chi\}$

$$
\begin{aligned}
& \chi \equiv \lim _{\delta \rightarrow 0}\left[\int_{P_{1}} \frac{d \xi}{2 \pi i} j(\xi, \bar{\xi})-\int_{\bar{P}_{1}} \frac{d \bar{\xi}}{2 \pi i} \bar{j}(\xi, \bar{\xi})-\kappa\left(e^{i \delta}, e^{-i \delta}\right)\right], \\
& j(\xi, \bar{\xi}) \equiv 4 \partial X^{0}(\xi) \bar{c} \bar{\partial} X^{0}(\bar{\xi}), \\
& \bar{j}(\xi, \bar{\xi}) \equiv 4 \bar{\partial} X^{0}(\bar{\xi}) c \partial X^{0}(\xi), \\
& \kappa(\xi, \bar{\xi}) \equiv \frac{1}{\pi i}\left(X^{0}(\xi, \bar{\xi})-X^{0}(i,-i)\right)\left(c \partial X^{0}(\xi)-\bar{c} \bar{\partial} X^{0}(\bar{\xi})\right) . \\
& \xrightarrow[i]{i \underbrace{P_{1}}_{e^{i \delta}}}
\end{aligned}
$$

Soft dilaton theorem

There exists \mathcal{G} such that

$$
\begin{aligned}
& {[Q, \mathcal{G}]=\chi-\chi^{\dagger}} \\
& \left\langle\mathcal{G} \Psi_{1} \mid \Psi_{2}\right\rangle+\left\langle\Psi_{1} \mid \mathcal{G} \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle \\
& \left\langle\mathcal{G} \Psi_{1} \mid \Psi_{2} * \Psi_{3}\right\rangle+\left\langle\Psi_{1} \mid \mathcal{G} \Psi_{2} * \Psi_{3}\right\rangle+\left\langle\Psi_{1} \mid \Psi_{2} * \mathcal{G} \Psi_{3}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2} * \Psi_{3}\right\rangle
\end{aligned}
$$

Using \mathcal{G}, we eventually obtain

$$
\begin{gathered}
S_{h}[|\Psi\rangle] \sim-\frac{1}{g^{2}}\left[\frac{1}{2}\left\langle\Psi^{\prime}\right|\left(Q-h\left(\chi-\chi^{\dagger}\right)\right)\left|\Psi^{\prime}\right\rangle+\frac{1}{3}\left\langle\Psi^{\prime} \mid \Psi^{\prime} * \Psi^{\prime}\right\rangle\right] \\
\sim-\frac{1+h}{g^{2}}\left[\frac{1}{2}\left\langle\Psi^{\prime \prime}\right| Q\left|\Psi^{\prime \prime}\right\rangle+\frac{1}{3}\left\langle\Psi^{\prime \prime} \mid \Psi^{\prime \prime} * \Psi^{\prime \prime}\right\rangle\right] \\
\left|\Psi^{\prime \prime}\right\rangle \equiv(1-h \mathcal{G})\left|\Psi^{\prime}\right\rangle
\end{gathered}
$$

$[Q, \mathcal{G}]=\chi-\chi^{\dagger}$

$$
\begin{aligned}
\mathcal{G} \equiv & \lim _{\delta \rightarrow 0}\left[\int_{P_{1}+P_{2}} \frac{d \xi}{2 \pi i} g_{\xi}(\xi, \bar{\xi})-\int_{\bar{P}_{1}+\bar{P}_{2}} \frac{d \bar{\xi}}{2 \pi i} g_{\bar{\xi}}(\xi, \bar{\xi})\right] \\
& g_{\xi}(\xi, \bar{\xi}) \equiv 2\left(X^{0}(\xi, \bar{\xi})-X^{0}(i,-i)\right) \partial X^{0}(\xi) \\
& g_{\bar{\xi}}(\xi, \bar{\xi}) \equiv 2\left(X^{0}(\xi, \bar{\xi})-X^{0}(i,-i)\right) \bar{\partial} X^{0}(\bar{\xi})
\end{aligned}
$$

Remarks

- The proof is valid for \mathcal{O}_{Ψ} which does not affect the definition and the manipulations of χ, \mathcal{G}.
- One can obtain the same relation for

$$
\mathcal{V}=\frac{1}{\pi i} c \bar{c} \partial X^{\mu} \bar{\partial} X^{\nu} h_{\mu \nu}
$$

with $h_{\mu}^{\mu}=-1$.

- For actual applications, it is desirable to find a way to derive $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)\left|\Psi_{\mathrm{cl}}\right\rangle$ more directly using the properties of \mathcal{G}, χ and the eom.

A more direct proof of $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$
\mathcal{G} satisfies the following identities:

$$
\begin{aligned}
\langle\mathcal{G} \Psi \mid \Psi * \Psi\rangle & =\frac{1}{3}[\langle\mathcal{G} \Psi \mid \Psi * \Psi\rangle+\langle\Psi \mid \mathcal{G} \Psi * \Psi\rangle+\langle\Psi \mid \Psi * \mathcal{G} \Psi\rangle] \\
& =\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle \\
\langle\mathcal{G} \Psi| Q|\Psi\rangle & =\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{2}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle
\end{aligned}
$$

From these, we get

$$
\begin{aligned}
E & =\frac{1}{g^{2}}\left[\frac{1}{2}\langle\Psi| Q|\Psi\rangle+\frac{1}{3}\langle\Psi \mid \Psi * \Psi\rangle\right] \\
& =\frac{1}{g^{2}}\left[\langle\mathcal{G} \Psi|(Q|\Psi\rangle+|\Psi * \Psi\rangle)-\frac{1}{2}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle\right]
\end{aligned}
$$

A more direct proof

$$
E=\frac{1}{g^{2}}\left[\langle\mathcal{G} \Psi|(Q|\Psi\rangle+|\Psi * \Psi\rangle)-\frac{1}{2}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle\right]
$$

eom implies

$$
\begin{aligned}
E & =-\frac{1}{2 g^{2}}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle \\
& =-\frac{1}{2 g^{2}}\langle\Psi|\left(\chi-\chi^{\dagger}\right)|\Psi\rangle \\
& =-\frac{1}{g^{2}}\langle I| \chi|\Psi * \Psi\rangle \\
& =\frac{1}{g^{2}}\langle I| \chi Q|\Psi\rangle \\
& =\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle
\end{aligned}
$$

Remarks

- If eom is not satisfied

$$
\begin{gathered}
Q|\Psi\rangle+|\Psi * \Psi\rangle=|\Gamma\rangle \neq 0, \\
E=\frac{1}{g^{2}}\left[\langle\mathcal{G} \Psi|(Q|\Psi\rangle+|\Psi * \Psi\rangle)-\frac{1}{2}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle\right] \\
=-\frac{1}{2 g^{2}}\langle\Psi|[Q, \mathcal{G}]|\Psi\rangle+\frac{1}{g^{2}}\langle\mathcal{G} \Psi \mid \Gamma\rangle \\
=-\frac{1}{g^{2}}\langle I| \chi|\Psi * \Psi\rangle+\frac{1}{g^{2}}\langle\mathcal{G} \Psi \mid \Gamma\rangle \\
=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle-\frac{1}{g^{2}}\langle I| \chi|\Gamma\rangle+\frac{1}{g^{2}}\langle\mathcal{G} \Psi \mid \Gamma\rangle
\end{gathered}
$$

§3 Solutions with K, B

Most of the solutions since Schnabl's one involve

$$
\begin{aligned}
K & \equiv \int \frac{d \xi}{2 \pi i} \frac{\pi}{2}\left(1+\xi^{2}\right) T(\xi) \\
B & \equiv \int \frac{d \xi}{2 \pi i} \frac{\pi}{2}\left(1+\xi^{2}\right) b(\xi)
\end{aligned}
$$

The definitions and the manipulations of operators \mathcal{G}, χ are affected by the presence of K, B.

Okawa type solutions

As an example of such solutions, let us consider Okawa type solutions (Okawa, Erler).

$$
\begin{aligned}
\Psi & =F(K) c \frac{K B}{1-F(K)^{2}} c F(K) \\
K & \equiv \int \frac{d \xi}{2 \pi i} \frac{\pi}{2}\left(1+\xi^{2}\right) T(\xi)|I\rangle \\
B & \equiv \int \frac{d \xi}{2 \pi i} \frac{\pi}{2}\left(1+\xi^{2}\right) b(\xi)|I\rangle \\
c & \equiv \frac{1}{\pi} c(1)|I\rangle
\end{aligned}
$$

Okawa type solutions

As an example of such solutions, let us consider Okawa type solutions (Okawa, Erler).

$$
\begin{gathered}
\Psi=F(K) c \frac{K B}{1-F(K)^{2}} c F(K) \\
F(K)=\int_{0}^{\infty} d L e^{-L K} f(L) \\
\frac{K}{1-F^{2}}=\int_{0}^{\infty} d L e^{-L K} \tilde{f}(L) \\
\Psi=\int d L_{1} d L_{2} d L_{3} e^{-L_{1} K} c e^{-L_{2} K} B c e^{-L_{3} K} f\left(L_{1}\right) \tilde{f}\left(L_{2}\right) f\left(L_{3}\right)
\end{gathered}
$$

wedge state with insertions

$$
\Psi=\int d L_{1} d L_{2} d L_{3} e^{-L_{1} K} c e^{-L_{2} K} B c e^{-L_{3} K} f\left(L_{1}\right) \tilde{f}\left(L_{2}\right) f\left(L_{3}\right)
$$

$$
\begin{aligned}
\Psi \equiv & \int_{0}^{\infty} d L e^{-L K} \psi(L)=\int_{0}^{\infty} d L e^{-L K} \mathcal{L}^{-1}\{\Psi\}(L) \\
\psi(L) \equiv & \int d L_{1} d L_{2} d L_{3} \delta\left(L-L_{1}-L_{2}-L_{3}\right) \\
& \times c\left(L_{2}+L_{3}\right) B c\left(L_{3}\right) f\left(L_{1}\right) \tilde{f}\left(L_{2}\right) f\left(L_{3}\right)
\end{aligned}
$$

definition of \mathcal{G}

How should we define \mathcal{G} acting on wedge states?
One way to do is

We rather take

definition of \mathcal{G}

$\mathcal{G} \Psi$ is defined so that for test state $|\phi\rangle \equiv \phi(0)|0\rangle$

$$
\begin{aligned}
\langle\phi \mid \mathcal{G} \Psi\rangle & \equiv \int_{0}^{\infty} d L\left\langle e^{L K} f \circ \phi(0) e^{-L K} \mathcal{G}(L) \psi(L)\right\rangle_{C_{L+1}} \\
f(\xi) & \equiv \frac{2}{\pi} \arctan \xi \\
\mathcal{G}(L) & \equiv \int \frac{d z}{2 \pi i} g_{z}(z, \bar{z})-\int \frac{d \bar{z}}{2 \pi i} g_{\bar{z}}(z, \bar{z})
\end{aligned}
$$

$\psi(L)$ in the correlation function denotes the operator corresponding to the string field $\psi(L)$.

$E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$

In order to obtain $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$, we need

$$
\begin{aligned}
& \left\langle\mathcal{G} \Psi_{1} \mid \Psi_{2}\right\rangle+\left\langle\Psi_{1} \mid \mathcal{G} \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle \\
& \left\langle\mathcal{G} \Psi_{1} \mid \Psi_{2} * \Psi_{3}\right\rangle+\left\langle\Psi_{1} \mid \mathcal{G} \Psi_{2} * \Psi_{3}\right\rangle+\left\langle\Psi_{1} \mid \Psi_{2} * \mathcal{G} \Psi_{3}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2} * \Psi_{3}\right\rangle \\
& {[Q, \mathcal{G}]|\Psi\rangle=\left(\chi-\chi^{\dagger}\right)|\Psi\rangle}
\end{aligned}
$$

If all these are satisfied, we get $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$.

- It is straightforward to show the first two for \mathcal{G} defined in the previous slide.
- Showing the third one is not straightforward.

$[Q, \mathcal{G}]|\Psi\rangle=\left(\chi-\chi^{\dagger}\right)|\Psi\rangle$

$$
\begin{aligned}
& {[Q, \mathcal{G}] \Psi=\int d L e^{-L K}[Q, \mathcal{G}(L)] \psi(L)} \\
& \quad+\int d L e^{-L K} \mathcal{G}(L)\left\{Q \mathcal{L}^{-1}\{\Psi\}(L)-\mathcal{L}^{-1}\{Q \psi\}(L)\right\} \\
& Q \mathcal{L}^{-1}\{\Psi\}(L)-\mathcal{L}^{-1}\{Q \psi\}(L)=-e^{L K} \partial\left(e^{-L K} \alpha(L)\right)-\delta(L) \alpha(0) \\
& \alpha(L) \equiv \quad \int d L_{1} d L_{2} d L_{3} \delta\left(L-L_{1}-L_{2}-L_{3}\right) \\
& \quad \times c\left(L_{2}+L_{3}\right) c\left(L_{3}\right) f\left(L_{1}\right) \tilde{f}\left(L_{2}\right) f\left(L_{3}\right)
\end{aligned}
$$

Assuming $\alpha(\infty)=0$ and $\alpha(0)$ is finite, we are able to get $[Q, \mathcal{G}]|\Psi\rangle=\left(\chi-\chi^{\dagger}\right)|\Psi\rangle$.

Solutions with K, B

In summary, it is possible to show $E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle$, even for the solutions with K, B provided $\alpha(\infty)=0$ and $\alpha(0)$ is finite.

$$
\begin{aligned}
& \alpha(L) \equiv \int d L_{1} d L_{2} d L_{3} \delta\left(L-L_{1}-L_{2}-L_{3}\right) \\
& \times c\left(L_{2}+L_{3}\right) c\left(L_{3}\right) f\left(L_{1}\right) \tilde{f}\left(L_{2}\right) f\left(L_{3}\right)
\end{aligned}
$$

These conditions for $\alpha(L)$ are concerned with the regularity of the function $F(K)$ for $K \sim 0, K \sim \infty$.

- If $Q|\Psi\rangle+|\Psi * \Psi\rangle=|\Gamma\rangle \neq 0$, we obtain

$$
E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle-\frac{1}{g^{2}}\langle I| \chi|\Gamma\rangle+\frac{1}{g^{2}}\langle\mathcal{G} \Psi \mid \Gamma\rangle
$$

§5 Conclusions

- We have given a proof of

$$
E=\frac{1}{g^{2}}\langle I| \mathcal{V}(i)|\Psi\rangle
$$

for a classical solution Ψ of Witten's SFT.

- The gauge invariant observables seem to have enough information to reproduce energy, boundary state, etc.. Kudrna-Maccaferri-Schnabl
- This identity can be applied to BMT, Murata-Schnabl solutions.
- It is straightforward to generalize the proof to modified cubic SSFT. T. Baba
- Masuda solution? Masuda-Noumi-Takahashi

Thank you

Murata-Schnabl solutions

In order to calculate the gauge invariant observables

$$
\Psi \rightarrow \Psi_{\epsilon} \equiv F^{2}(K+\epsilon) c B \frac{K+\epsilon}{1-F^{2}(K+\epsilon)} c
$$

The energy with this regularization can be calculated by our method:

$$
\begin{gathered}
E=\frac{1}{g^{2}}\left(\frac{N-1}{2 \pi^{2}}-R_{N}\right) \\
R_{N} \equiv \begin{cases}-\frac{i}{8 \pi^{3}} \sum_{k=0}^{N-2} \frac{N!}{k!(k+2)!(N-2-k)!}\left((2 \pi i)^{k+2}-(-2 \pi i)^{k+2}\right) & ,(N \geq 1), \\
\frac{i}{8 \pi^{3}} \sum_{k=0}^{-N-1} \frac{1-N)!}{k!(k+2)!(-N-1-k)!}\left((2 \pi i)^{k+2}-(-2 \pi i)^{k+2}\right) & ,(N \leq 0) .\end{cases}
\end{gathered}
$$

Sliver frame, wedge states

